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Brand Portfolio Promotions 

 

Abstract 

Large firms implement brand portfolio promotions (BPP) that promote multiple brands to 

targeted consumers at discrete points in time. Such programs possess unique properties that 

require a novel model to assess their effectiveness. The authors propose a model that captures the 

magnitude and shape of the BPP effect for each brand in the portfolio, accounts for diminishing 

returns of brand exposure, and incorporates inter-temporal effect of BPPs. The model is shown to 

be general enough to apply to any discrete promotion where the carry-over effect duration is 

unknown. Several model-based metrics that allow an objective comparison of ROI from a BPP 

versus other forms of promotion are presented. Results suggest that a BPP, when contrasted to 

feature, leads to higher sales lift per household for some of the brands. The authors develop an 

optimal exposure allocation procedure based on the proposed model that informs a) which 

assortments of brands to promote across multiple BPPs and b) the exposure level for each brand.  
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Large manufacturing firms such as P&G, General Mills and Unilever own a portfolio of 

brands across multiple product categories. In recent years, it has become common for these firms 

to engage in corporate-level promotion programs that encompass multiple brands and categories. 

Unlike traditional sales promotions such as features that are distributed to the masses and 

controlled by a retailer, these promotions are mailed to carefully selected consumers at a 

predetermined time interval and coordinated across brands that the firm owns. In this paper, we 

refer to such a corporate-level promotion as brand portfolio promotion (BPP). For example, 

General Mills mails a magazine-like promotion Que Rica Vida to over two million Hispanic 

consumers and Serving Up Soul to the African-American target market (Wentz 2006). Included 

in this multi-brand promotion is information about health, wellness and recipes. Visually the 

copy quality of these glossy promotion materials is similar to widely circulated magazines such 

as Better Homes and Gardens. The length of a typical BPP magazine could vary between 40-60 

pages and as many as fifty brands could be mentioned in each BPP—featured as a brief mention 

in a recipe or an article for some brands and as a full page color ad for others (Thompson 2002). 

Despite its promise as an alternative promotional tool, we currently know little about the 

effectiveness of a BPP, how it compares to traditional forms of sales promotion, and how to 

enhance the return on investment of a BPP program. 

With these broad research questions in mind our goals in this paper are to (i) develop a 

modeling framework to examine the effectiveness of BPPs (ii) characterize the nature of BPP 

effects on sales (iii) quantify relative effectiveness of BPP to other forms of sales promotion such 

as feature and (iv) provide guidelines to enhance the effectiveness of a BPP program. While the 

print medium is one form of a BPP seen in the marketplace, its electronic counterpart is also 

quite common. P&G and Kellogg have electronic mail programs under the names Home Made 
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Simple and Kellogg Kitchens, respectively, to promote carefully selected brands from different 

categories. The empirical application presented in our paper involves the print medium, although 

the methodology applies to electronic BPPs as well.   

At first glance, a BPP appears to be similar to a feature—a vertical cooperative 

promotion involving distribution of printed materials—because each entails a brand related 

communication. However, a closer examination reveals distinct differences. First, unlike feature 

activities that have high coverage via an avenue such as a Sunday newspaper, BPPs are targeted 

at a smaller number of households. Therefore, it may be infeasible to estimate BPP effects using 

panel data due to insufficient sample size, especially for low penetration or infrequently 

purchased brands. Second, unlike a feature which communicates limited information about 

promoted brands, a BPP includes usage related information such as recipes. As a result, 

consumers likely keep BPP materials for a longer period of time than features. Because of the 

longer “shelf life”, it is important that BPP carry-over effects on brand sales be modeled 

appropriately. Third, given their programmatic nature, BPPs are distributed repeatedly over time. 

This suggests the need to model inter-temporal effects across multiple BPPs. Fourth, because a 

BPP simultaneously promotes a portfolio of brands, a suitable model must accommodate 

heterogeneity in BPP effects across brands. Finally, because each brand experiences a different 

level of exposure1, possible diminishing returns of brand exposure needs to be explicitly 

modeled. Interestingly, these properties point to the hybrid nature of a BPP because it resembles 

sales promotion in some ways and advertising in others. Measuring BPP effectiveness therefore 

requires a new modeling framework that can accommodate its unique properties. 

                                                 
1 Coverage is a distribution measure that accounts for the number of households that receive a BPP. Exposure, in 
contrast, refers to the extent of visibility a brand receives in a given BPP. 
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Development of a modeling framework to accurately capture and understand BPP effects 

is an academic challenge that is also of great interest to practitioners because accurate ROI 

assessment is necessary for the long term success of a BPP program. It is crucial for firms to be 

able to gauge sales lift as a result of BPPs vis-à-vis other promotion, such as feature, that has a 

longer history and a demonstrated effect on ROI. Brand managers, in particular, have a great 

interest in accurate assessment of BPP effectiveness because they are typically asked to 

contribute a portion of their total promotion budget for a BPP. A suitable modeling approach 

should not only measure BPP effectiveness, but also inform how to best allocate limited space 

across a finite number of brands over multiple BPPs. Practical questions for effective 

management of a BPP program include a) which assortments of brands to promote and b) the 

extent of exposure for each brand.   

To achieve our research goals, we develop a modeling framework with a system of 

equations with vector autoregressive error components that link a BPP program targeted at 

individual households to weekly store sales. In order to accurately assess effects of a BPP 

program, the model captures the magnitude and shape of each BPP’s effect at the brand level. 

We propose the use of a gamma density function to characterize the shape of BPP carry-over 

effects because it offers distinct advantages in terms of shape flexibility, parsimony and ease of 

interpretation. Because of this flexibility, the model could be applied to any form of discrete 

promotion where the effect duration is unknown. The model accommodates different levels of 

exposure across brands, accounts for diminishing returns of exposure, and captures inter-

temporal effect across multiple BPPs. To incorporate store-level heterogeneity, we impose a 

hierarchical Bayes (HB) structure to the model.  
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The proposed model and optimal exposure allocation procedure are tested using a unique 

data set provided by a multinational firm that offers brands across over fifty product categories. 

We show that an Erlang-2 density function best characterizes the shape of BPP carry-over 

effects. The results demonstrate heterogeneity in magnitude and shape of the BPP effect across 

brands. Evidence in support of diminishing returns for brand exposure and inter-temporal BPP 

effect also exists. We demonstrate the generality of our model by using it to estimate feature 

effects. Unlike a feature that exhibits an instantaneous effect, we find that a BPP has a non-

monotonic carry-over effect after the initial launch. In addition, we find that a BPP can lead to 

higher sales lifts per household than a feature in some categories. Finally, we illustrate how the 

model could be used to optimally allocate exposure across brands and BPPs to improve the 

overall profitability of the BPP program. 

The remainder of the paper is structured as follows. We first develop our modeling 

framework by relating it to prior research. Then we empirically test the proposed model and 

provide analyses about characteristics of BPP effects, as well as a comparison of BPP and feature 

effects. Next, we present an optimal exposure allocation framework and an illustration of profit 

gains from our suggested approach. We finally conclude with a discussion of our contributions, 

some limitations, and avenues for future research. 

CONCEPTUAL AND MODEL DEVELOPMENT 

Sales promotions are discrete activities that tend to have short-term and immediate effects 

on sales (Neslin 2002, P.XI first paragraph). Because of increasing concerns about undesirable 

effects of price-oriented sales promotion on brand loyalty and price sensitivity (Jedidi, Mela, and 

Gupta 1999; Mela, Gupta, and Lehmann 1997) and advertising clutter (Brown and Rothschild 

1993; Keller 1991; Pieters and Bijmolt 1997), several companies have resorted to new promotion 
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methods that are less price-oriented and better targeted (Ansari and Mela 2003; Zhang and 

Krishnamurthi 2004). We view a brand portfolio promotion as an example of such a targeted 

sales promotion. While BPPs are typically delivered via regular or electronic mails, current 

direct mail response models (Gönül and Shi 1998; Gönül, Kim, and Shi 2000) cannot be used to 

assess its impact on sales. This is because direct mail response models rely on the availability of 

individual customers’ transaction data, which may be unavailable for BPPs. Our model therefore 

links store sales to BPP activities targeted at individuals. 

Despite its discrete nature, we expect sales lift as a result of a BPP to last beyond a single 

period, a property similar to carry-over effects in advertising (Bass and Clark 1972; Clark 1976, 

Leeflang et al. 2000 pages 85-91; Russell 1988). The magnitude and carry-over shape of the BPP 

effect is also expected to vary across brands and product categories, much like what the 

advertising literature suggests (Assmus, Farley, and Lehmann 1984; Tellis, Chandy and 

Thaivanich 2000). However, because of the discrete nature of BPP activities, we directly model 

the shape of BPP carry-over effects using a gamma density function instead of lag terms which is 

an appropriate approach for capturing carry-over effects of continuous promotion activities such 

as advertising. Carry-over effects of a single BPP that persist after the period of promotion 

attempt are also different from long-term promotion effects (Jedidi, Mela, and Gupta 1999; Mela, 

Gupta, and Lehmann 1997) that manifest as changes in brand loyalty or price sensitivity. The 

programmatic nature of BPPs dictates multiple drops over time—it is therefore necessary to 

examine inter-temporal effect associated with BPPs.  

Model Overview 

We begin with an individual store level equation that links a given brand’s sales to a 

variety of independent variables, including BPP activities. This is followed by a justification for 
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why we use a particular specification—a gamma density function—to characterize the patterns 

of BPP effects across brands. Next we expand the model to include multiple BPPs. We then 

include important covariates driven by different levels of exposure across brands and BPPs to 

capture diminishing returns on exposure and inter-temporal BPP effect. Because we are 

interested in modeling the BPP effect on a portfolio of brands, we specify a system of equations 

that links BPPs to brand sales, and account for both cross-sectional and temporal correlation in 

sales across brands and time. Finally, the model incorporates heterogeneity in parameters across 

stores through the use of a Hierarchical Bayes (HB) specification. 

Effect of a Single BPP 

We specify demand for a given brand j at time t in a given store as follows. 

(1)             jtjttjtj0jjt εIcovλτy +++= ∑k jktkj xηη  

where jty  is standardized log sales and there are k=1,…,K control variables jktx that include (i) 

time, a trend variable that refers to week number, (ii) a vector of dummies to capture seasonality, 

(iii) own price, (iv) own feature, (v) own display, (vi) competitors’ price, (vii) competitors’ 

feature and (viii) competitors’ display. All independent variables involving competition are share 

weighted across competitors to reduce the number of parameters to be estimated (Christen et al. 

1997; Kopalle, Mela, and Marsh 1999; Wittink et al. 1988). kjη , k=0, 1,…,K are brand-specific 

parameters associated with control variables, and the term jttjtj I covλτ  captures BPP effects that 

we discuss in detail next. The specification of the error term jtε will be discussed later. 

BPP Coverage Measure  

Three pieces of information with regard to BPP circulation activities are relevant: 

Whether a brand was engaged in a BPP?  For a give store, what fraction of the households in its 
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trading area received the BPP? And how many households shop at that store? In Equation 1, 

variable jtI indicates whether brand j is involved in the BPP activity in week t. Variable 

tcov denotes coverage of the BPP in week t, and varies between 0 and 1. A value of 0.5 indicates 

that 50% of the households get the BPP. For all brands that appear in a given BPP, the tcov  

variable is the same. Because different stores are associated with different number of households, 

we adjust tcov  by an appropriate scaling factor that incorporates the number of households who 

reside in the store’s trading area2. We expect a BPP to have carry-over effects that last longer 

than the week in which it is launched.  To capture such carry-over effects (explained in the next 

section), we need to allow jtI  and tcov  to remain the same after the BPP is launched for a longer 

time period than what we expect the carry-over duration to be. We use a 52-weeks time period 

because of the low possibility that a BPP effect would last beyond one year. This specification is 

different from how a mass sales promotion such as a feature gets treated in most marketing 

models—a feature effect is expected to last only a week and coverage is assumed to be 100%.  

Shape of BPP Carry-over Effects 

A BPP is likely to have a longer shelf-life in a recipient’s kitchen (or inbox). It is 

therefore reasonable to expect that households may be induced to buy brand j during any 

shopping trip after receiving the BPP. This suggests the need for a flexible functional form to 

accommodate variation in the duration of BPP effects (i.e., carry-over effects) across brands. 

While the shape of the BPP effect overall may be dictated by when the target households choose 

to act on a BPP, the shape heterogeneity across brands may also be affected by latent factors 

such as inter-purchase time and category-specific variety seeking behavior. In Equation 1, the 

                                                 
2 The scaling factor = #households in each store’s trading area/10,000. Given that each store in our sample is 
associated with fewer than 10,000 households, a scale factor takes values between 0 and 1.  



 

 

9

impact of BPP on sales is captured jointly through jτ  and jtλ , which are brand specific. 

Parameter jτ  captures the magnitude of sales lift associated with the BPP and jtλ  allows the 

shape of this effect to vary over time. This jtλ  parameter can then be represented by a gamma 

pdf as follows.  

(2)    
j

j

j

l

l
α

α

α j

β1

jt )β(
eλ

j

Γ
=

−
−

, where       

the index l  is different from the time index t; l  is equal to 1 for the week in which the BPP is 

launched, 2 for the week after, and so on. The parameter jα  is the shape parameter and jβ  is the 

scale parameter of the gamma pdf associated with brand j. To visualize the joint impact of jτ  

and jtλ , one could define jtjjt λτθ =  for each brand and plot jtθ  over time t.   

The use of gamma function has some similarities to previous research that uses transition 

time distributions to characterize coupon redemption (Lenk and Rao 1995) and inter-purchase 

time (Schmittlein and Morrison 1983) for a given consumer. Let us assume that (i) shopping trips 

for brand j follow a Poisson process with rate 
jβ

1 , and (ii) jα shopping trips are required before 

a consumer actually buys brand j.  Mathematically the transition time to buy brand j then follows 

a gamma distribution with shape parameter jα  and scale parameter jβ . Behaviorally, such a data 

generating mechanism appears reasonable because a consumer could choose to buy brand j after 

a period of time after browsing the BPP a few times. That is, a BPP-induced brand purchase can 

occur during any shopping trip after receiving the BPP.  

The use of the gamma density functional form in our context provides several important 

benefits. First, the gamma pdf allows us to capture sales lift over time parsimoniously because it 
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requires only three parameters to be estimated: jτ , jβ  and jα . An alternative approach, for 

example a dummy variable for each period, would require a lot more parameters without any 

precise direction for how many dummies to use. Second, the gamma pdf accommodates different 

possible patterns of sales lifts over time. The gamma function with jα =1 (i.e., exponential) 

reflects BPP’s carry-over effects that are monotonically decreasing over time. In contrast, the 

gamma function with jα =2 (i.e., Erlang-2) is a lot more flexible. In addition to a monotonic 

shape, it also allows a non-monotonic BPP effect where the brand first experiences an increase, 

followed by a peak, and then a decline in sales lift. Our empirical results further demonstrate the 

value of an Erlang-2 distribution.      

Lastly, the gamma pdf properties allow us to draw several meaningful interpretations of 

the parameter estimates. Given ∫
l

jl dlλ = 1, we can interpret jτ  as total sales lift associated with 

brand j.  The parameter jtλ  then captures how this lift is distributed over time. As a result, we 

can directly compare the magnitude of the BPP effect across brands. The higher the value of jτ , 

the higher the sales lift. Because sales lifts are spread out over time, it may be of interest to also 

derive the mode of the lifts and the impact duration. Using the gamma pdf, the mode of the lift is 

jj βα )1( −  and 95% impact duration can be easily evaluated by calculating the inverse 

cumulative probability function ),|95(.1
jjF βα− . 

Cumulative Effect of Multiple BPPs 

The model so far captures the effect of a single BPP and we need to incorporate the effect 

of M consecutive BPP’s. Therefore, we now extend Equation 1 to accommodate multiple BPPs 

(m=1, 2, …., M) over time. We accomplish this by summing the effect of individual BPPs. 

Because at a particular time t, effects of multiple BPPs may coexist, Equation 1 is rewritten as: 
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(3)        ,ε cov y jt
m
t

m
jt0jjt +++= ∑∑

m

m
jt

m
jk jktkj Ix λτηη  where 

j

m
j

j

l

ml
α

α

α j

β1
m
jt )β(

eλ
j

Γ
=

−
−

 

We allow BPP coverage ( m
tcov ) to be different across BPPs, and the lift parameter m

jτ is also 

allowed to vary by BPP. BPP coverage is likely to exhibit variation in the data for reasons 

explained in the empirical section and m
jτ is also allowed to vary in order to account for variation 

in brand exposure across BPPs. We discuss this in detail next.    

Accounting for Exposure Covariates 

Past research (see Little 1979 for an excellent review) shows that over time advertising 

effects may exhibit variation because of: 1) changes in media and copy; 2) diminishing returns 

and 3) wear-out. Below we highlight why these factors are relevant for BPPs.   

For a BPP, the exposure or overall visibility of one brand may be different from another 

brand. Variation in exposure is driven by the manner in which a brand appears in a BPP (e.g. a 

print ad, suggestion for contexts in which it could be used, an article discussing a brand). The 

main effect of exposure on BPP effectiveness is important to recognize because higher exposure 

is expected to result in higher sales (Assmus, Farley, and Lehmann 1984; Doyle and Suanders 

1990; Naik, Matrala, and Sawyer 1998). At the same time, the diminishing returns argument 

from the advertising literature (e.g., Feinberg 1992; Little 1979) suggests that as the level of 

brand exposure reaches a certain level, its incremental contribution to sales should decline. Also, 

the wear-out argument from the advertising literature (e.g., Bass et al. 2006; Eastlack and Rao 

1986; Greenberg and Suttoni 1973; Simon 1982) suggests that inter-temporal effect, caused by 

the presence of the same brand in consecutive BPPs, may dilute BPP effectiveness. Next, we 

incorporate these key covariates that are likely to moderate the BPP effect on sales. 
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With separate parameters to capture magnitude ( m
jτ ) and shape ( jα  and jβ ) of sales lifts, 

we parameterize m
jτ  as a function of two covariates of interest: brand exposure and inter-

temporal effects. 

(4)      1-m
j3

2m
j2

m
j1j0j Exposure )(ExposureExposure ττ γγγ +++=m  

A squared term of exposure is included in Equation 4 to account for diminishing returns to 

exposure; the parameter  1γ is expected to be positive and 2 γ  negative. To capture the inter-

temporal effect, we include 1-m
jExposure , the exposure level of brand j in the previous BPP; the 

parameter 3 γ  is expected to be negative3.  

Note that equation 4 allows us to efficiently estimate exposure and inter-temporal effects 

by pooling information across brands and BPPs. We allow 0jτ  to be brand specific and the .γ ’s 

are not specific to a brand or a BPP. The equation helps us capture the effect of a BPP ( m
jτ ) at 

the brand level and at the BPP attempt level. This is accomplished without directly estimating 

each m
jτ  which can be infeasible when the number of BPPs (M) and brand (J) is large. 

Collectively, Equations 3 and 4 capture i) different exposure levels across brands; ii) diminishing 

returns of exposure to sales; iii) the inter-temporal effect of a previous BPP on a current BPP and 

iv) the effect of multiple BPPs on sales.   

Full Model for a BPP Program 

To complete the model, the system of brand-specific J equations is specified jointly as a 

seemingly unrelated regression (SUR) model to account for possible cross-sectional correlation 

                                                 
3 We also tried to include 2m

jExposure − but its effect is not significant.  
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in sales across brands (Zellner 1987). Equations 3 and 4 have both linear and non-linear parts as 

seen below:  
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Then, the system of aggregate demand equations is given by 

(6)  
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2

1

, jtj v+= 1-jtjt ε ε φ  

where jY , j =1, 2, ….., J is a vector of standardized log sales of brand j, jμ is a column vector of 

linear parameters to be estimated which include 0.  and jj τη , j=1,..,J and ),,( 321 γγγγ =′ .  The 

use of standardized log sales as the dependent variable allows us to pool information across 

brands to estimate exposure and inter-temporal effects, and compare estimates across brands in a 

meaningful way. 

 Extending Equation 1 to capture both cross-sectional and temporal correlation in sales 

across brands and time, we specify the error term jtε  to follow a stationary VAR(1) process 

(Chib and Greenberg 1995). This error specification subsumes two error components: i) the 

vector ),0(~ ΣNvt capturing cross-sectional correlation across brands at time t and ii) the 

vector jφ , a component of Φ capturing serial correlation between brand j at time t and all brands 
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at time t-1. )(vE =0 and TIvvE ⊗Σ=')( , where TI is a T×T unit matrix, and Σ is a positive 

definite J×J matrix. Φ  is a J×J matrix with characteristic roots inside the unit circle.  

 The model specification up to Equation 6 does not take into account that data were 

collected from multiple stores s. To capture parameter heterogeneity across stores in an efficient 

manner, we impose a hierarchical Bayes (HB) structure on the model. Given little within-store 

variation in coverage and a large number of stores with low coverage, we only account for the 

store heterogeneity in control variables. Referring back to Equation 1, the vector 

),..,,.....,,..,( 0110
'

JKJKs ηηηηη = is allowed to vary by store and ),(~ ηηη DMVNs . We select this 

distribution of heterogeneity because it is commonly used in marketing (Rossi and Allenby 

2003). While other functional forms could have been used, prior work by Andrews, Ainslie and 

Currim (2002) and Ansari and Mela (2003) suggests that the multivariate normal is a good 

approximation to different shapes of heterogeneity distributions (e.g., gamma and bi-modal 

distributions). Specifying the linear part of the model as in Equation 6 helps us simplify the 

estimation procedure using MCMC methods. Please see the web appendix for detailed estimation 

procedure.   

EMPIRICAL FINDINGS 

Data Overview 

Data for this research were provided by a multinational company that offers brands 

across more than fifty categories4 and ACNielsen. Most of these brands are present in traditional 

channels such as grocery stores, drug stores and mass merchandisers. In a corporate-level effort 

to promote directly to consumers, the company periodically distributes BPPs to over a million 

households in a western country. This BPP program had been in place for several years at the 

                                                 
4 In order to protect its identity, we cannot reveal the company name as well as brand names. 
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time of our analysis. Each BPP contains information about the company’s products such as 

suggestions for how the products could be used and brand-specific ads.  

We obtained weekly store-level data for ten brands over a 210-week period. The ten 

brands are from different product categories, routinely included in the BPP and selected 

randomly. The data include information on brand sales, prices, feature, display, and BPP 

coverage associated with each store. Data on sales, prices, feature and display for competitive 

brands that accounted for 80% of the category sales for all ten categories were also available. 

BPP coverage was calculated by mapping each store trading area to addresses of households 

around it. It is equal to the total of number of households receiving the BPP divided by the total 

number of households in the store trading area.  

Because of their targeted nature, the BPP materials were sent to households more likely 

to consume in the categories in which the firm has presence. The targeting was done at the zip+4 

level. Existing data were first used to uncover variables (e.g. demographics) most likely to 

explain consumption. Based on a scoring algorithm, zip+4 areas that scored high on these 

variables were included in the sample. All model-based conclusions therefore apply to a sample 

selected using this targeting rule. The stores in our data are spread over ten different regions of 

the country and only those stores (n=126) that carried all ten brands during the 210-week period 

were included in the study. Fourteen BPPs were distributed successively during the 210-week 

period with the periods between two BPPs ranging from 9-14 weeks. The first 56 weeks is the 

period before the BPP program was launched.   

Summary Statistics 

Table 1 presents summary statistics for and characteristics of the data we use for model 

calibration. Some of the brands have a dominant share (A, B, C and D) and others do not (G, H, 
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I, J). Large variation in the variables reported is observed. The average sales across brands varied 

from 38.8 to 277.3 pounds/week. Large variation in price (per pound), feature, and display is also 

observed. Brand C was featured the most (24%) and Brand A the least (6%). Brand I was 

displayed a lot (25%) whereas Brand J was rarely on display (3%). Private label brands are 

strong competitors for certain brands (E, F, J) and number of competitors vary substantially. 

Seven of the ten brands belong to categories that could be labeled as ingredients, the rest do not.       

 Insert Table 1 Here 
 

The average coverage (i.e. percent of households in the store’s trading area that received 

BPP) across the fourteen BPPs and ten regions was 9% with a standard deviation of 10%, and a 

range of 0 to 88%. Large variation in coverage is observed across the 14 BPPs. Region 4, for 

example, had high coverage of over 30% for BPP5 and low coverage of less than 10% for 

several BPPs. Large variation in coverage across regions and multiple campaigns is desirable in 

order to estimate the model parameters (τ and β) that inform BPP effectiveness.   

Each brand could appear in a BPP in a variety of ways, such as mentions in articles, 

suggestions for usage, pictures in the table of contents, full-page or half-page ads, etc. The 

company developed a point system to measure the exposure level of a brand by assigning a fixed 

number of points to these different ways a brand can possibly appear in a BPP. More points are 

associated with higher exposure. For instance, a back cover ad received more points than a ¼ 

page ad inside the BPP. Similarly, a brand-specific ingredient shown in a recipe was given more 

points than a minor mention in an article that merely promoted the category. Given that a brand 

could appear multiple times, and in different ways in a BPP, the measure for brand exposure that 

ranged between 0 and 87 was calculated by summing points associated with each brand. The 

average exposure across fourteen BPPs and ten brands was 17 with a standard deviation of 16. 
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On average across BPPs, the least exposed brands were C (6.3) and I (7.4) and the most exposed 

brands were G (42.8) and J (32.2). In addition to inter-brand variation, there was substantial 

variation in exposure levels of a brand across BPPs. Across the fourteen BPPs, the exposure 

range for Brand G was 19.1 to 83, and for brand I was zero to 28.8. Such large variation in 

exposure across brands and BPPs is desirable in order to estimate the γ parameters (Equation 4) 

that assess the link between exposure and BPP effectiveness.  

Model Estimation: Preliminary Tests 

 We began by fitting a simple aggregate model that attempts to detect BPP effects at four 

arbitrary points in time (1 week, 1 month, 2 months and 7 months) after a BPP drop. The results 

showed that both the magnitude and shape of the BPP effect vary by brand. Our proposed model 

specification captures this heterogeneity in BPP effects across brands using a parsimonious 

specification that does not require a parameter for each week. In testing our model, we learned 

that estimating α and β  at the same time could be difficult. The reason is that different 

combinations of α  and β  values can give rise to very similar patterns of lifts (e.g., α =2 

and β =0.5 can give rise to a similar pattern whenα =1 and β =0.5). Perhaps because of this 

reason, previous research (e.g. Gupta 1988, 1991) that uses the family of gamma distributions to 

characterize transition times has limited its focus to exponential (α =1) and Erlang-2 (i.e., α =2) 

distributions. Unlike the exponential distribution which is monotonically decreasing, the Erlang-

2 distribution provides greater flexibility by allowing for both monotonic and non-monotonic 

shapes. Preliminary empirical results (we assume φ j=0 in Equation 6 in preliminary tests to save 

on computation time) support this greater flexibility argument. We find that the model with α =2 
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or Erlang-2 function (DIC5  = -112628) provide a better fit than the model with α =1 or 

exponential function (DIC = -112708). Because of its ability to accommodate non-monotonic 

shapes, Erlang-2 captures BPP carry-over effects well.   

 Additional model fit comparisons also point to the suitability of an Erlang-2 

specification. In these comparisons, we considered three benchmark models in which a uniform 

BPP effect is assumed to last: i) 1 week, ii) 8 weeks or iii) 16-weeks. The model comparison 

results show that our proposed model (DIC  = -112628) fits better than the 1-week (DIC = -

112841), 8-weeks (DIC = -112875), and 16-weeks (DIC = -112722) BPP effect models. These 

results suggest that the Erlang-2 specification is more appropriate than a uniform BPP effect, and 

provide empirical support for the flexibility advantage of the Erlang-2 specification.  

To investigate the generalizability of the Erlang-2 approach for any form of discrete 

promotion, we estimate a model where we impose the Erlang-2 shape on both BPP and feature 

effects. To see the results visually we plot feature and BPP effect for three brands (B, D and F) in 

Figure 1. These results show that BPP effects first increase, reach a peak, and then taper off. In 

contrast, feature effects peak in the first week and dissipate quickly thereafter. Theβ  parameters 

(i.e. mode of the lift distribution) for the feature effect range between 0.70 and 1.28 for the ten 

brands. This result is consistent with the monotonic effect seen visually in Figure 1. Nonetheless, 

the fit statistics show that a model with 1-week dummy (DIC  = -112628) to capture feature 

effects performs better than that with the Erlang-2 specification (DIC = -112752). While the 

above findings demonstrate generalizability of the proposed model in capturing the carry-over 

                                                 
5  We use deviance (Gelman et.al. 2004), D(y|θ) = -2logp(y|θ), as the measure of model fit.  Because of the 
connection between the deviance and the Kullback-Leibler information measure, the lowest expected deviance will 
have the highest posterior probability for large sample sizes.  We compute mean deviance based on simulated draws 

of the posterior distribution ( ∑=
l

l
avg yD

L
yD ),(1)(ˆ θ ).   
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effect pattern for any form of discrete promotion, the fit statistics show that feature effects are 

best modeled as a 1-week effect, which is the specification we use in our final model estimation 

reported next. 

Insert Figure 1 Here 
 

Parameter Estimates 

After the above preliminary model tests, we obtain parameter estimates for the full model 

(Equation 6). The parameter estimates are obtained using the MCMC estimation algorithm 

described in the Web Appendix. Generating 5,000 draws, we kept every 25th draw of the last 

2,500 draws to compute posterior means of the parameters (Table 2). We will first briefly discuss 

the estimates involving control parameters such as own and competitive price, feature and 

display. This is followed by a discussion of model parameters involving BPP coverage and 

exposure. 

Insert Table 2 Here 
 

Across all brands, own price is found to be a significant predictor of sales. In particular, 

Brands A and G are the most elastic and Brand I the least. Across all brands, own feature and 

display estimates are also significant and their magnitudes vary. While competitive price effects 

are strong and significant, the competitive feature and display effects are mostly insignificant and 

weak. We also observe unexpected signs for the competitive feature effects for Brand B and 

Brand J. One possible explanation may be that because these two specific brands compete 

primarily with private labels and other small brands, competitive features had a small spill-over 

effect on these brands. Seasonal patterns appear to exist across all brands. Eight of the ten brands 

show a downward trend in sales over time. This, in part, may be driven by the fact that an 

increasing number of people were shopping at Wal-Mart and A.C. Nielsen is unable to measure 
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sales for Wal-Mart stores. Finally, we observe that the diagonal values of Φ are positive and 

significant, indicating the presence of autocorrelation in the sales data.   

All ten lift parameters ( oτ ) are significantly higher than zero, and exhibit a large variation 

across brands. Brand D ( oτ  = 10.25) exhibits the highest lift and brand A ( oτ  = 2.63) the lowest.  

This variation in lift by brand could potentially be explained by category specific factors such as 

purchase cycle time, brand share, number of the competitors and private label share. For 

example, are frequently purchased brands likely to exhibit higher lifts because of salience effects 

of a BPP? Does high private label presence suggest a lower lift because of possible substitution?  

While the limited number of brands (n=10) included in this paper can not provide conclusive 

evidence, own market share (correlation=.48 p=.18) and private label share (correlation=-.4, 

p=.28), are good candidates for further investigation. When expanded to a larger number of 

brands, such analyses could uncover factors most likely to impact BPP effectiveness.   

Estimates for the shape parameter (β ), which is the mode of the distribution, also varies 

across the ten brands. Notice that brand B reaches its peak effect the fastest (smallest β  of 1.93) 

and brand H the slowest (largest β  of 5.53). To see the joint impact of these two parameters we 

define tot λτθ =  for each brand and plot tθ  over a 30-week period for all ten brands in Figure 2. 

We can see that the lift for Brand B occurs pretty early and dissipates quickly whereas the lifts 

for Brands F, G and H linger over a long period of time. The 95% duration impact exhibits a 

large range of 9 to 26 weeks. This pattern of results is consistent with our assertion that a BPP is 

likely to have a shelf-life beyond one week.   

Insert Figure 2 Here 
 

In the model, we also include terms to capture the effect of brand exposure (Equation 4). 

The results show that 21  and γγ  estimates (11.00 and -2.04, respectively) are significant 
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(probability<0.05). The negative sign for 2 γ  supports the diminishing returns argument. The 

parameter estimate 3 γ  (-5.91) is found to be significant (probability<0.05), providing evidence in 

support of a negative inter-temporal effect. This implies that if a brand received exposure in the 

previous BPP, its lift parameter value in the current BPP is lower, as compared to a situation in 

which the brand did not receive any exposure in the previous BPP. We attribute this effect to 

wear-out, although stockpiling (van Heerde, Wittink, Leeflang 2004) could also potentially 

manifest itself as a negative inter-temporal effect. 

Insert Figure 3 Here 
 

To see how lift and shape vary by brand and BPP, we plot the percent sales gain over the 

entire duration of the data in Figure 3. Across brands, variation in percent sales lifts is not only 

driven by differences in parameter estimates, but also by changes in BPP coverage over time. 

Despite its complex pattern, we can still see that the peak of sales lift for Brand B occurred 

earlier than those of other brands, consistent with the pattern we observed in Figure 2. 

To ensure stability of the reported parameter estimates (Table 2) we conduct a split-half 

validation. We divide the data into two parts by randomly assigning stores to two separate 

groups. We estimate our proposed model for each group and compare the results with what we 

report in Table 2. Of particular interest are the estimates pertaining to BPP. The results show that 

the estimates for both the first and second halves are statistically the same (cut-off probability or 

significance level of 0.05) as the estimates reported in Table 2. The split-half results therefore 

provide evidence in support of the stability of our results.  

Comparison of BPP and Feature Effects 

 A good model should help make decisions that enhance a firm’s return on investment. 

Next we demonstrate how firms can use our model to derive a variety of metrics to measure BPP 
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effectiveness. These metrics are beneficial because they provide an objective guideline for 

promotion allocation decisions across different types of promotion. To obtain appropriate 

measures of effectiveness we use store specific parameter estimates to calculate (i) baseline sales 

without BPP or feature (ii) sales in the presence of BPP activities only, and (iii) sales in the 

presence of feature activities only. Based on these calculations we create several metrics that are 

reported in Table 3. 

Insert Table 3 Here 
 

The results in the top half of the table pertain to BPP effectiveness. For the 126 stores in 

the data set, the average number of households per store is 3554. The average number of 

households receiving a BPP is less than 10% and varies between 299 and 320 per store. The 

difference between (ii) and (i) in the previous paragraph provides a direct measure of unit sales 

lift attributable to the BPP activities that occurred during the 152 weeks of the data. In addition 

to reporting the unit lift, we also report the contribution margin and percent lift per BPP. Finally, 

for ease of comparison, the incremental unit sales lift is also translated into unit lift per BPP/store 

and per BPP/household6.   

The bottom half of the table corresponds to feature effectiveness. Unlike a BPP, where 

households are selected based on pre-determined criteria, a feature has much wider coverage 

(e.g., through mail, retail stores, Sunday newspaper). For the purpose of our calculation, we 

assume 100% feature coverage—the average number of households receiving feature is therefore 

assumed to be the same as the average number of households/store. Across brands, the average 

number of features during the 152 weeks of data is higher than the number of BPPs. For all 

brands, features result in much higher overall unit lifts than BPPs. These findings are expected 

because of i) the higher average number of features/store in the data, as compared to the number 
                                                 
6 We thank a reviewer for this idea.  
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of BPPs (e.g., 27 features on average versus 14 BPPs for brand G) and ii) higher coverage of 

feature. While the measure of unit lift/store/promotion attempt (i.e., feature or BPP) reported in 

Table 3 accounts for the first reason, it does not account for the second. A more meaningful 

measure is unit lift/household/promotion attempt. The comparison of feature and BPP based on 

this measure indicates that a BPP is more effective than a feature for brands C, D, E and G. The 

opposite is true for brands A and I. Of course, these conclusions should not be extrapolated to the 

general population given the sample selection process for a BPP. These results should be viewed 

as the comparison between the effectiveness of a promotion targeted to the masses (features) vs. 

that of a promotion targeted to a smaller subset of carefully selected consumers (BPPs).   

Table 3 illustrates how the proposed model can be used to assess relative effectiveness of 

a BPP program, as compared to another promotion form such as feature. Such an assessment has 

direct implications for resource allocation of promotion dollars. In addition, the cumulative 

contribution margin for all brands (not just the ten that we studied) that appear across multiple 

BPPs, viewed in conjunction with the cost of producing and distributing the BPPs, could provide 

a direct measure of ROI for the BPP program. A substantial variation in contribution margin 

across brands is observed in Table 3. The model’s ability to capture this variation in profitability 

can provide some guidance to effectively manage a BPP program. We demonstrate this 

important use of the model in the next section. 

Optimal Exposure Allocation for a BPP Program 

Several papers in marketing have investigated ways in which return on promotional 

dollars could be maximized (e.g. Mahajan and Muller 1986; Doyle and Saunders 1990; Feinberg 

1992, 2001; Bronnenberg 1998; Naik, Raman and Winer 2005; Bass, Bruce, Majumdar and 

Murthi 2006). Effective management of a BPP program could also be viewed as an optimization 
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problem where key questions include: Which brands to include in each BPP attempt? What is the 

extent of exposure that each brand should receive? Next we illustrate how the proposed modeling 

framework could be used to optimally allocate the constrained BPP space across different brands 

and BPPs.  

Our goal in the following illustration is to develop a promotion exposure calendar for a 

portfolio of brands. We restrict our attention to the ten brands included in this paper and BPP5, 

BPP6 and BPP7. We calculate the profitability7 of the BPP exposure calendar actually used by 

the company and assess ways in which it could be improved. The objective function is to 

maximize incremental profit for the ten brands across the three BPPs. We use a greedy search 

procedure (Krieger and Green 1985) because brute force search for optimal exposure from all 

possible combinations of brands and BPPs was infeasible.  

 Several differences between the actual and optimal allocation emerge (detailed results are 

reported in the Web Appendix). First, the optimal allocation would have resulted in an increased 

profit of 5.32%. Second, across the three BPPs, brands D and J should have received a lower 

exposure and the resulting available space could have been profitably allocated to brand A. 

Finally and most interestingly, Brand F, G and H should have received a much higher exposure 

for BPP5 and BPP7 than the actual, and should not have been included at all in BPP6. In contrast 

to the current exposure allocation, these results point to exposure pulsing as a more profitable 

BPP management strategy for some brands. 

The above illustration demonstrates the value of the proposed model in assessing which 

brands to include in the BPPs and the relative exposure of those brands. Results suggest that 

opportunities to allocate BPP exposure more efficiently exist. The pulsing pattern in our 

                                                 
7 Technical details are available from the authors upon request.   
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optimization exercise is primarily driven by the negative inter-temporal effect present between 

discrete BPP drops. This argument is more in line with Park and Hahn (1991), Naik, Mantrala, 

and Sawyer (1998) and Simon (1982) than the S-shaped response function argument provided by 

others (Feinberg 1992; Mahajan and Muller 1986; Sasieni 1971, 1989). Because of the non-

linear objective function (e.g. margins, lift magnitude/shape and exposure level vary by brand), a 

priori prediction for the optimal exposure allocation is not possible. This suggests that much like 

a direct mail marketing applications, model based optimization should be field tested on a small 

scale (e.g. in a given region) before adopting it for larger BPP campaigns. 

 

 DISCUSSION 

At a tactical level, a BPP is a promotion tool that is more targeted and provides a lift that 

lasts longer than traditional sales promotions. Theoretically, its effect could be attributed to 

increased brand awareness, knowledge of new usage contexts or greater brand liking as a result 

the message content. At a strategic level, a BPP could be used to exploit complimentarity 

between brands that a firm offers, build individual brand equity, and even fortify a firm’s 

corporate brand. Because large CPG firms often have presence in scores of product categories, 

complementarity is natural (e.g., waffles and syrup, cake mix and frosting). By carefully 

selecting brands to include in a BPP, a firm can exploit synergies between brand sales across 

categories. In an effort to build an individual brand (e.g., Hamburger Helper), a brand manager 

can target BPPs to market segments most likely to act as opinion leaders. At a broader level, 

corporations that rely heavily on their corporate brand names (e.g., Kellogg) could use BPPs as a 

means to communicate the collective power of the brands in a single medium to the more 

profitable segments in the market.   
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For the above tactical and strategic reasons, BPPs have become increasingly popular in 

the marketplace. Several unique properties associated with BPPs suggest that there is a need to 

develop a new modeling framework to test BPP effectiveness. In this paper, we develop one such 

model. The model structure is parsimonious yet flexible. It successfully captures heterogeneity in 

the magnitude and shape of sales lift across brands as a result of BPPs, and accounts for 

diminishing returns and inter-temporal effect of BPP exposure. The proposed model could be 

applied to any form of discrete promotion where the effect duration is unknown. Several ROI- 

related metrics are distilled out of the model to assess relative effectiveness of a BPP against 

traditional forms of sales promotion. Building an optimal exposure allocation framework based 

on our model, we demonstrate that a firm can potentially improve profitability of its BBP 

program by optimally allocating exposure across brands and BPPs.    

Using data involving ten brands over 210 weeks and fourteen BPPs to test the proposed 

model, we uncover several interesting results. First, although both features and BPPs are discrete 

promotions, our results suggest that unlike features, BPPs exhibit non-monotonic carry-over 

effects beyond the period of its launch. Our results also suggest substantial heterogeneity in the 

magnitude and shape of sales lifts across brands. With regard to effectiveness, we find BPPs 

leading to higher lifts/household/promotion attempt than features for some brands. Finally, given 

the discrete nature of BPP and its proneness to repetition wear-out (i.e., negative inter-temporal 

effect), our optimal exposure allocation exercise suggests that a pulsing exposure strategy across 

multiple BPPs may have been more effective for some brands. 

A unique aspect of a BPP is that while it is targeted at the household level, its effect 

needs to be measured at the market level. An appealing aspect of such a “micro-macro” approach 

to measurement, modeling, and subsequent optimization, is its generalizability to some retailing 
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practices. Retail stores (e.g., Home Depot) often send direct mail promotions—similar in a lot of 

ways to a BPP— to households to increase store traffic and encourage after-sales services. Our 

proposed model can help assess effectiveness of these programs by linking promotions to store 

sales. Another interesting context involves retailers that have presence in multiple channels (e.g. 

Lands’ End products can be ordered online, at a physical store, and via a catalog). A firm can use 

our model to gauge how promotion in a catalog may spill-over to physical stores. In general, our 

model applies to contexts in which individual consumer response to discrete promotion activities 

may not be observable, but promotion coverage and sales data at a more aggregate level (e.g. 

store) are.   

There are several limitations and opportunities for future research. While the scaling 

factor in Equation 1 accounts for sales lift differences because of store size (i.e. for a given lift 

parameter τ, larger stores experience a larger sales lift), it is plausible that the parameter τ is also 

store specific. In our analyses, we were unable to estimate store-specific lift parameters because 

of a large number of stores with low coverage (33% of the stores have less than 5% coverage) 

and little within-store variation in coverage among those stores. Given our data limitation, future 

research may benefit from conducting a field experiment where the variation in coverage across 

and within stores can be manipulated such that store-level life parameters can be estimated. 

Heterogeneity in lift parameters could be easily incorporated by treating the lift parameter in a 

manner similar to the control variables (see Step 1, Web Appendix). 

As suggested earlier in the paper, the model structure allows for further predictive 

analyses involving lift magnitude and duration by expressingτ =f(covariates) and 

β =f(covariates). Relevant lift magnitude covariates permit an investigation of brand-specific 

questions such as: Is the BPP effect moderated by presence of private labels? Is BPP more 
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effective in mature or new categories? Lift duration covariates also allow us to explore questions 

such as: Do brands with shorter inter-purchase times tend to spike sooner? When accompanied 

by a coupon, does a BPP effect occur faster? While we do not conduct such brand-level analyses 

because of the small sample size (n=10 in our data), the model structure permits easy 

investigation of these questions given data on all brands that were included in a BPP.  

We found that there is very little variation in times between BPPs (range = 8-14 weeks; 

mean = 11; std = 2) in our data. As a result, we could not incorporate the potential moderating 

impact of inter-BPP time on BPP effect. For example, it is certainly plausible that the effect of a 

current BPP may be mitigated if it is launched too close in time to the previous BPP. We 

recognize inter-BPP time as an important decision variable in managing a BPP program, and 

encourage future research to study its effect on overall program profitability. Such a model could 

also lend itself nicely to a dynamic optimization framework (Mesak and Zhang 2001) that could 

help determine the optimal inter-BPP time.  

The optimal exposure allocation for a BPP program deserves further investigation. While 

the profit gain of 5% suggested by our exercise is modest, refinements to the proposed approach 

may result in greater gains. For example, while the ten categories used in our analyses were 

independent, inter-related categories that are likely to exhibit complementarity are also present in 

a BPP. For such categories, brand portfolio level synergies could be captured by including cross 

BPP elasticity terms in Equation 1. Spill-over effects of the corporate brand name, or the family 

brand names, that are quite prominent in a BPP may also be accounted. On the flip side, many 

companies operate with multiple brands within a category, and substitution effects may have 

important implications for their BPP programs. Careful modeling of these possible effects is 

likely to suggest ways in which a BPP program could be managed more profitably.  
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Finally, in this paper we do not model the process by which households are selected. 

With additional data related to household selection, a structural model to assess BPP effects can 

be developed. According to the Lucas critique, such a structural model is preferred because it 

better handles a potential endogeneity problem (Franses 2005). Another direction to develop a 

structural model is by modeling the process that dictates choice and exposure of brands that are 

included in a BPP.  
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Table 1 
Summary Statistics 

 
 
 

 Market 
share 

Average 
Weekly 

Sales 
(in Pounds) 

Average 
Price 
(per 

Pound) 

Average 
Feature 

Average 
Display 

Private 
label 
share 

Number of 
Competitors

Purchase 
cycle time 

Ingredient 

Brand A 0.76 130.2 0.17 0.06 0.15 0.12 3 71 Yes 

Brand B 0.73 38.8 0.31 0.08 0.18 0.21 4 69 Yes 

Brand C 0.7 226.6 0.49 0.24 0.17 0 3 56 No 

Brand D 0.67 52.3 0.2 0.09 0.09 0.14 3 52 Yes 

Brand E 0.46 137.2 0.18 0.12 0.12 0.35 3 66 Yes 

Brand F 0.41 118 0.22 0.15 0.09 0.45 4 50 Yes 

Brand G 0.27 277.3 0.18 0.17 0.19 0.12 7 61 Yes 

Brand H 0.25 68.3 0.28 0.09 0.09 0.26 16 59 No 

Brand I 0.24 194.9 0.27 0.2 0.25 0.12 8 58 No 

Brand J 0.22 71 0.29 0.15 0.03 0.52 3 53 Yes 
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Table 2 
Brand Specific Parameter Estimates1 

 

  
Brand  

A 
Brand  

B 
Brand  

C 
Brand  

D 
Brand 

 E 
Brand  

F 
Brand  

G 
Brand  

H 
Brand 

 I 
Brand  

J 
CP related parameters           
           
Lift parameter (τ0) 2.63 7.68 5.25 10.25 5.36 5.09 2.82 4.51 4.58 3.44 
Shape parameter (β) 3.53 1.93 4.15 3.81 4.68 4.87 4.84 5.53 4.23 4.55 
95% impact duration 17 9 20 18 22 23 23 26 20 22 
           
Non-CP related parameters          
          
Trend (α1) -0.06 -0.08 -0.03 -0.11 -0.06 -0.02 -0.10 0.06 -0.08 0.05 
Seasonality (α2) - Q2 -0.25 -0.24 -0.14 0.04 0.40 0.02 0.11 0.05 -0.02 -0.04 
                           - Q3 -0.23 -0.20 -0.20 -0.15 0.19 0.06 0.01 0.10 -0.05 -0.01 
                           - Q4 0.13 0.39 -0.09 0.11 0.38 0.40 -0.18 0.28 0.04 0.11 
Price (α3) -10.73 -6.22 -5.46 -6.87 -7.50 -6.89 -11.89 -4.30 -3.04 -6.62 
Feature (α4) 0.36 0.41 0.31 0.50 0.59 0.37 0.32 0.47 0.56 0.28 
Display (α5) 0.22 0.29 0.37 0.25 0.31 0.22 0.22 0.46 0.36 0.37 
Competitive price (α6) 1.63 0.63 -0.06 2.14 1.75 1.43 3.35 0.37 1.74 1.49 
Competitive feature (α7) 0.03 0.19 -0.06 0.01 0.01 0.00 0.02 -0.03 -0.05 0.039 
Competitive display (α8) -0.02 0.01 -0.06 0.04 -0.03 -0.03 -0.02 -0.00 -0.07 -0.02 
Diag (Φ) 0.43 0.38 0.37 0.48 0.53 0.62 0.33 0.40 0.34 0.54 

 

1Estimates that are statistically significant (probability<0.05) are in bold.  
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Table 3 

Comparison of BPP and Feature Effectiveness  
# Stores = 126; # Periods = 152 weeks; Average #hh/store = 3554 

 

    
Brand 

A 
Brand 

B 
Brand 

C 
Brand 

D 
Brand 

E 
Brand 

F 
Brand 

G 
Brand 

H 
Brand  

I 
Brand 

J 

BPP 
Average # hh receiving    
   each BPP 305 306 320 309 309 307 309 309 299 309 

  # BPPs 10 11 11 14 14 13 14 14 11 14 
  Unit lift 8629 8779 25811 12824 21121 16987 39401 9152 20572 11308 
 Contribution margin ($) 7594 11677 40782 12567 20699 14439 38219 10525 28184 8707 

 Percent lift/BPP1 0.33 1.9 0.5 0.97 0.51 0.48 0.42 0.33 0.62 0.46 
 Unit lift/store/BPP 6.1 6.12 19.2 6.18 12.36 9.21 21.63 6.18 14.95 6.18 
  Unit lift/hh/BPP 0.02 0.02 0.06 0.02 0.04 0.03 0.07 0.02 0.05 0.02 

Feature 
Average # hh receiving   
   each Feature2 3554 3554 3554 3554 3554 3554 3554 3554 3554 3554 

 Average # feature 9 13 39 14 18 23 27 14 33 24 
 Unit lift 96511 71993 396263 63772 215677 210288 394660 91084 804263 126038 
 Contribution margin ($) 84930 95751 626096 62497 211364 178745 382820 104747 1101841 97049 
 Percent lift/feature3 32.09 47.31 25.88 41.46 41.36 39.73 23.36 26.19 87.79 27.25 
 Unit lift/store/feature 106.62 71.08 106.62 35.54 106.62 106.62 142.16 71.08 248.78 71.08 

 Unit lift/hh/feature 0.03 0.02 0.03 0.01 0.03 0.03 0.04 0.02 0.07 0.02 
1Percent lift per BPP = [(aggregate units lift for all BPPs/baseline sales (no feature or BPP))*100)]/#BPPs  
2Assumes feature coverage=100% 

3Percent lift per feature = (aggregate units lift in weeks with features/baseline sales (no feature or BPP) in those weeks)*100 
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Figure 1 
Shape Comparison of Feature and BPP Effects 
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Figure 2 
Lift and Shape Variation by Brand 
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Figure 3 
Lift and Shape Variation by Brand and BPP 
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