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1. INTRODUCTION

The modeling of sequential, individual-level choice has
emerged as a research area of great breadth, with applica-
tions throughout economics, statistics, psychology, and else-
where. A fundamental goal is determining how choices evolve
over time, and which variables drive them. A rich literature
has emerged to aid researchers in linking exogenous covariates
to temporal changes in choices. Because data are available on
observed choices but not on unobserved measures of relative
“attractiveness” of available options, the dominant method of
achieving such a linkage has been through random utility mod-
els (McFadden 1973; Manski 1977).

Within the random utility framework, one must specify both
a utility and an error structure, as well as some link func-
tion to convert to observables. Consequently, the lion’s share
of research has been dedicated to those tasks. For example,
prior approaches to modeling choice dynamics capture tempo-
ral changes in individual-level utilities by introducing lagged
terms for previous choices (cf. Heckman 1981) or by invoking
a generalized stochastic error structure (e.g., Allenby and Lenk
1994, 1995). Although these models do capture some types of
changes in utility over time in a systematic way, they do not
consider changes in variable weights, and so amount to mod-
eling shifts in the intercept of the deterministic component of
utility.

We aim to demonstrate that an essential element of choice or
utility dynamics can be captured by directly modeling changes
in parameters. To that end, we propose a Bayesian dynamic
logit model designed to capture choice dynamics by estimating
a vector autoregressive process for the parameters of individu-
als’ linear utility functions. Such an approach allows rigorous

investigation of a number of issues of interest in forecasting.
First, can parameters be distinguished by whether they are time-
varying? If they do evolve, can they be further distinguished by
the nature of their evolution? And, most important for predic-
tion, to what extent can understanding the nature of paramet-
ric evolution be used to gain superior understanding of future
choices? The model that we develop does indeed distinguish
parameters along these lines, and uses that knowledge for im-
proved forecasting.

The article is organized as follows. We review earlier litera-
ture concerning parameter dynamics, specify a Bayesian model
to account for them, and develop methods for its estimation. We
then estimate the model on individual-level sequential choices,
and demonstrate its in-sample and forecast performance. Fi-
nally, we suggest possible sources for such dynamics, as well
as potential extensions to the general method.

2. DYNAMIC MODEL SPECIFICATION

2.1 Previous Approaches to Changes in

Utilities Over Time

Although we are concerned with statistical issues, we note
that numerous behavioral studies have suggested that parame-
ters—as embodied by individual-level sensitivities—do indeed
change over time. Research on preference reversals, for exam-
ple, has demonstrated that the so-called “weight function” of
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attributes depends on such contextual features as scale com-
patibility (Slovic, Griffin, and Tversky 1990), strategy com-
patibility (Tversky, Sattath, and Slovic 1988), and framing
(Kahneman and Tversky 1979; Thaler 1985). Decision weights
are also known to be sensitive to the scale change of attribute
values in an experimental setting (von Nitzsch and Weber
1993).

Previous statistical approaches to capturing utility change
over time can be separated into two broad classes, depend-
ing on whether intercept shifts are taken to be deterministic or
stochastic. Most previous models that introduce lagged choice
variables make use of a deterministic intercept shift; the lagged
choice shifts the constant term of the deterministic component
of the utility for any particular option, so that the intercept
is o’ =« + yD;_|, where D,_| is a dummy variable for the
particular option, equaling 1 only if that option was chosen at
time ¢ — 1. Typically, the effects of the lagged choice variables
y are assumed to be homogeneous across units and options. It is
important to note that this approach can only capture intercept
shifts (in utilities over time) in a deterministic way. In contrast,
Allenby and Lenk (1994, 1995) developed a logistic regression
model that updates utilities over time by introducing an autore-
gressive error structure. In their model, the new intercept &’ is
given by o+ pe;_1, where 0 < |p| < 1 and &, is the stochastic
component of utility at time ¢ — 1. Clearly, neither of these ap-
proaches can account for utility changes generated by a change
in variable weights over time.

2.2 Observation and Evolution Densities

We describe the dynamic logit model and use three generic
subscripts; A denotes an individual unit of observation (h =
1,...,H),jdenotes an option (j =1, ..., J), and ¢ denotes time
(t=1,...,T). Let yy; = j denote the event that unit 4 chooses
option j at time ¢, let x4;; denote unit 4’s k-dimensional covari-
ate vector for option j at time ¢, and let ), denote unit A’s utility
for option j at time ¢. Thus

!
Unjt = By Xnjr + Enjes (n

where §,, is a k-dimensional coefficient vector for unit & at
time ¢ and &y is an associated error. If ey is iid Gumbel, then
a dynamic logit model arises for choice probability ps;; (cf.
McFadden 1973),

, exp(B},Xujr)
DPhjt 217(,\7111 =]lﬂh1) = 7 ht /j .
Zi:l exp(ﬁhtxhit)
To model parametric temporal variation, we assume that
B can be decomposed into two parts,

(2)

Bi =B+ bp, (3)

where B, is a time-varying coefficient vector common across
units and by, is a vector of random effects to incorporate hetero-
geneity across units. Now (2) simplifies to

Phjt =P (Yt = j1 B4, Br). “)
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To capture dynamics for f8,, we introduce a vector autore-
gressive process of order p, VAR(p) (see, Li and Tsay 1998;
Liitkepohl 1991; Polasek and Kozumi 1996),

P
Bi=d+ Y AuB,_,+w [w~NO Iy, t=1,...,T]

n=|\

=d+AZi |+ wy, &)

where d is a k-dimensional vector, A, is a (k X k) coef-
ficient matrix, A = (Ay,...,A,) is a k x kp matrix, Z, =
@B, ..., ﬂ;—p+1)/ is a kp-dimensional vector, and w; is a
k-dimensional white noise term.

Note that a number of common univariate and multivari-
ate stochastic process models, such as random walk, random
walk with drift, and AR(p), are special cases of (5). Because
A, is not assumed to be diagonal, an advantage of the VAR(p)
process over the popular dynamic simultaneous equations ap-
proach is that it allows one to monitor the relationship between
a particular element of 8, and a different element of 8,_,. Fur-
ther, (5) can capture both stationary and nonstationary dynam-
ics; it is well known that the VAR( p) process is stable and thus
stationary if

det(y — Al — - —A,P)#£0 for|ll <1, (6)

that is, if there is no root within or on the unit disk of the reverse
characteristic polynomial of the VAR(p) process. If the VAR
process is stable, then the expected value of 8, does not depend
on ¢, that is,

pg=EB)=0-A —Ay— - ~A,"'d,
where the expectation is with respect to w;, t = 1, 2, ... (Liitke-
pohl 1991).

Finally, we model the heterogeneity of by, in (3) as a multi-
variate normal random effect,

p(bp|Xp) = Ng(0, Tp)

where Xy, is an unknown covariance matrix.

Y h, (7)

2.3 Prior Distributions

Priors are required for {ﬂf}9:1—1)’ d, A, Xy, and Xy. Fol-
lowing standard assumptions of dynamic state-space models
(Cargnoni, Miiller, and West 1997; Carlin, Polson, and Stoffer
1992; Harrison and Stevens 1976; West and Harrison 1997), we
assume that {ﬁl‘}?:1~p’ d, A, X, and Xy are mutually indepen-

dent and use the following prior distributions:
p(B,) =Ni(mg,Sp), wherei=1—p,...,0; (8)
p(d) = Ni(myg, Sq); )

p(vec(A)) = Nj2,,(myg, So); (10)
P(Zw) =W, (vw, Sw); (11)

and
p(Zp) = IWi(vp, Sp). (12)

Here vec(:) is the usual column stacking operator, so that
vec(A) is a k*p-dimensional vector. The expression p(X) =
IW, (v, S) denotes that X has a k-dimensional inverted Wishart
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distribution with parameters v and S, where v > 0 and S is non-
singular, that is, p(X) = IW, (v, S) o |B| (/246 exp(—% X
trY ~!'S). Furthermore, the parameters of the prior distributions
(mg, S, mq, Sq, Mg, Se, Vw, Sw, v, and S,) are known val-
ues that we choose to obtain noninformative proper priors. In
particular, for the prior of vec(A), we use the Minnesota pri-
ors (Doan, Litterman, and Sims 1984; Litterman 1986), which
are specialized for the VAR (p) process. Specifically, we choose
m, =0 and S, to be a diagonal matrix with elements

A 2
<—) ifr=c¢
n

010, \>
< U’) otherwise,

nog

(13)

Spen =

where s,., is the prior variance of the (r,¢) element of A,
(n=1,...,p), 0,/0. is the ratio of square roots of correspond-
ing diagonal elements of Xy, A is the prior belief on the tight-
ness around O for the diagonal elements of Aj, and 0 <6 < 1
reflects the prior belief that most of the variation of §, is ex-
plained by its own lags. Thus the Minnesota priors are locally
noninformative proper priors around 0, an attractive property
because, under the stability condition, A, tends to shrink to 0
rapidly in n (cf. Liitkepohl 1991, p. 208). The Minnesota priors
can also be characterized as smoothly decreasing priors over
lags in a harmonic manner, which is also useful for order selec-
tion of p.

3. ESTIMATION AND MODEL CHOICE

We first discuss parameter estimation of the proposed dy-
namic logit model, then describe the model selection procedure,

3.1 Full Posterior Distribution

Using the likelihood and prior specifications, we obtain the
posterior distribution for all parameters. Let

‘H={I,2,..., H} be the set of all individuals,

‘H, be a subset of H that consists of individuals that make
choices at time ¢,

o ¥, = {ymlnen, denote the observed choice data at time ¢,

e y=(y),....y7) denote all choice data from time 1 to
time 7T,
and
o B=(B\..... 87), by ={by}er,, and b = {by}jer(.

Then the posterior distribution is

p(ﬂ’ bs d7 Av ZW? Zb’)’)

T 0
o (ﬂp(y,w,,b,)) x < I1 p(/m)

=1 n=Il—p

T
X <I_[1)(Bl|d!A7 ﬂ[—l’ ""ﬁfﬁpa EW))

t=1

X (Hp(bh\m) x p(d) x p(A)

H

X p(Zw) X p(Ty), (14)
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where

J
pGilB b =[] [1rar

he™H; j=1

with gpjr = 1 if y,, = j and gyj; = 0 otherwise.

This posterior distribution has several sets of parameters,
with numerous elements. Specifically, for 8, ¢t =1—p, ..., T),
there are k(p + T); for by, (h=1,...,H), kH; for d, k;
for A, k?p; and for both X, and Ty, %k(k—i— 1). In the forthcom-
ing illustration, we have H =492, T'= 90, and k = 6, yielding
3,540 + 42p elements overall.

Because analytic methods to evaluate the posterior distrib-
ution in (14) are not available, we use Markov chain Monte
Carlo (MCMC) methods, as described in Section 3.2. For model
selection and Bayesian hypothesis testing, we use Bayes fac-
tors (Bernardo and Smith 1994) to compare two models (or hy-
potheses) Hy and H»,

_p(ylHD) [ p(y|®, H)p(®|H)) dD

— = , 15
2= N [po iy aw Y

where p(-|H;) is the prior on parameters under model i (i = 1, 2)
and p(y|-, H;) is the likelihood under model i. To estimate the
Bayes factor, we must evaluate the integrated likelihoods, using
the results from the MCMC simulation. Let ®%® g=1,..., G,
denote the G values of ® generated from the posterior distri-
bution of &, p(®|H1). The integrated likelihood for model 1,
p(yIH) = [ p(y|®, H)p(®|H1) dP in (15), can be estimated
by the harmonic mean estimator (Newton and Raftery 1994),

G =1
5 (L1
pylH ) = <G Zp(y@(&,)ﬂl)) :

g=1

This estimator converges almost surely to the correct value, but
it does not generally satisfy a Gaussian central limit theorem.
Nevertheless, it has been found to work reasonably well with
large samples (cf. Kass and Raftery 1995).

3.2 Markov Chain Monte Carlo Sampler

To evaluate the posterior distribution, p(8,b,d, A, T,
Zply). given in (14), we implement a MCMC sampler, using
the following conditional posterior distributions:

p(ﬂ|b1 d, Aa ZW5 Zhv y)
61)(b|ﬂ» d5 Av ZW» Eb’ y) ep(d|ﬂy A» ZWa va Y)
(_>[7(A'ﬂ, b’ dv EWv Zb’ Y) QP(Zw'ﬂ, bv da A’ Ebv Y)
6])(21)“3, bv ds A7 EW7 y)
We next describe the sampling procedure for each of these.

3.2.1  Sampling Fromp(B|b,d, A, Xy, Xy, y). Tosample
from p(B|b,d, A, Ty, Xy, y), we need the conditional poste-
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rior density for B;, p(B;|B,2, b, d, A, Ey, Ep,y). When 1 <
t<T,

p(ﬂ['ﬁm;&p b, d, Aa EW’ Zb’ y)

p
& Hp(ﬁl—}—mld’A’ ﬂt+mf]9 st ’ﬂt+m—pv 2:W)
m=0
X p(y¢|B;, br) (16)
= N(F£;, F)p(y|B;: b)), amn
where
p
So'+ Y ALEIA, t=1-p,... —10
m=1—t
P
B TS A ALESA,, =1 T—p
Ft - m=1
T—t
DY ALEA, t=T—p+1,...,T—1
m=]
z.) t=T,
and
m;)S, "
14 p !
+ Z (ﬂt+m_d_ Z Aﬂﬂt+m—n> 2:v—le;n’
m=I1—t n=1,ntm
t=1-p,...,—1,0

P /
(d +y Amﬁt,m> )

m=1

P p i
+ Z <ﬁ1+m —d- Z AnﬂH_m_n) Z;lAZn,
m=1

n=1,n#m

P !
(d +y A,n/f,_,n) =y

m=1

T—t I4 /
+ Z (ﬂﬂrm —d- Z Anﬁt+m—n> ZV_V]A;’H’

m=1 n=1,nzm

t=T—-p+1,...,T—1

P /
<d+ZAmﬂT m) zv_vl‘ t=T.

m=1

Given (17), a Metropolis—Hastings algorithm step can be
conducted as follows (Chib and Greenberg 1995; Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller 1953):

L. Sample B} from a proposal density, N(ﬂfm, ¢gl), where

P is the most recently updated value and ¢g is a fixed
tuning constant.
2. Substitute B} for B with acceptance probability

p(ytlﬂ;kabl‘)N(ﬂHtht»Ft) 1)
Pyl BT bIN BT [F £, F)' )’

m(BF, B) = min(
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where N(B,|F/f;, I;) denotes the multivariate normal den-
sity with mean F/f; and covariance matrix F;, evaluated

at g,.
3.2.2 Sampling From p(b|B,d, A, Xy, Zy,,y) and p(d|B,
A, Xy, Xp,y). The conditional posterior density for by, is
p(bhlﬂr’ d, A, Xy, Zp, Vi) O(P(b/7|zb) 1_[[7()7/1r|ﬂn bp),
i
where t, = {t:h € H,;}. A Metropolis—Hastings step can be

used, as follows:

1. Sample b} from a proposal density, N (bgre, dpli), where
nge is the most recently updated value and ¢y, is a fixed
tuning constant.

2. Substitute b} for b}:le with acceptance probability

pOHZ) I, POl B, D)) )

P 1Z0) [T, pCm B2 B

The conditional posterior density for d is

(b, bZre) = min <

T
PAIB, A, Ty, Tu,y) o« [ [p(B/1d, A Zi—1, T)p(d)

=1
=N(uj, Z3), (18)

a multivariate normal density with mean vector puj = Xj x
{Sglmd + Z?:} Z‘;](ﬂ, — AZ,_,)} and covariance matrix
Th=(Sy +TEH 7

3.2.3  Sampling From p(A[B,b,d, Xy, Xp,y). Let the
(k*p)-vector a = vec(A); let Z = (Zy, Zy,..., Zr—1), B, =

B, — d, and ﬁ = (ﬁ,,...,BT); and let the kT-vector B =
vec(f). Then the conditional posterior of « is

p(elB, Tw)
=p(a|B,b,d, Ty, Zp, y) « p(Ble, Ty)p(ar)

1 / o
ocexp[-i{(ﬂ —(Z' @La) Ar ® Z‘;l)(ﬂ — (Z' @)

+ (o — moc)/S;I (a — ma)}]~
By completing the square in o,

p(elB, Ty) =N(a*, T¥), (19)

a (k*p)-dimension normal density with mean vector a* =
X {S;lma +(Z& ZV_VI)/}} and covariance matrix X, = [S‘;l +
ZZ T H1 "

If we do not impose the stability restriction on the VAR(p)
process, then (19) can be used directly to sample «. In this case
the probability of the VAR( p) process being stable can be esti-
mated by counting the number of iterations when the sampled «
satisfies (6). However, with a stability restriction on the VAR(p)
process, there is a difficulty in sampling . Under the stability
condition (6), & should be sampled from N(a*, £%)I(x € B),
where B is the region in which the stability condition is sat-
isfied. The simplest way to sample a under the stability re-
striction is to use rejection sampling, by accepting a sampled
from N(a®, X7 ) only if it satisfies (6). However, rejection sam-
pling will be inefficient, because the rejection rate increases
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exponentially with the dimension of «. Even for a univariate
AR(p) process, the acceptance rate of rejection sampling ap-
proaches 50% (e.g., Barnett, Kohn, and Sheather 1996).

We therefore sample o directly from N(«*, X%)I(a € B)
under the stability restriction by using single-variable slice-
sampling, as proposed by Neal (1997). Recall that e = (¢, .. .,
akzp)’, and consider the conditional distribution of ¢;, f(«;) =
p(ag|remaining components of «;), which is proportional to
N(o*, 22) (e € B). Generating values of ¢; proceeds by re-
placing the previous value, o™, with a new value, oV, as fol-
lows:

1. Define a horizontal slice, " = {o;:z < f(«;)}, where z is
an auxiliary variable sampled uniformly from ((),f(oell-)re)).

2. Find an interval, I = (L, R), around a?rc on " such that
fL) <zand f(R) < z.

3. Accept ", sampled uniformly from 7, if f(o]*") > z.

Roberts and Rosenthal (1999) showed that the slice sampler
is irreducible and aperiodic and satisfies the detailed-balance
condition. The advantages of the slice sampler are that it can
be used for any log-concave probability density function. Fur-
thermore, it can avoid slow random-walk convergence, because
o™ is always replaced by «"¥ in each iteration and it is pos-
sible to obtain a large jump from oz:-)re to ¥, Computation of
f(a;) involves the evaluation of /(e € B). Note that the eval-
uation of /(« € B) does not require computation of lower and
upper bounds of the region B. One must simply check whether
or not «; falls inside the region B, by using (6).

In some cases, a researcher may have prior beliefs on « (or,
equivalently, A) and so wishes to place restrictions on a subset
of «. In such a case, «, under arbitrary restrictions, can be eas-
ily sampled as follows. Suppose that & = («|; &) with ety = a,
where a is a vector of restricted values. Define a partition ma-
trix P such that & = Pec. Then the conditional posterior density
of oy given ap = a, N(e| |y = a), can be easily obtained from
N(Pa*, PX}P). If the partitioned submatrix for oy in PXP’
is singular, the Moore—Penrose inverse can be used to derive
N(otg|ay = a).

3.2.4  Sampling Fromp(Zw|B,b,d, A, Xy, y) and p(Xp|8,
b,d, A, Zy,y). The conditional posterior density for Xy is

P(ZwlB.b,d, A, Tb,y) = p(EwlB, (Blg; , 4. A, Y)
o IW(V5,, S5,
an inverted Wishart density with v}, = vy + T and S}, =S, +
ST LY, wherel, =8, —d — AZ,_ .
The conditional posterior density for Xy, is
]7(Zb|b) = 17(Zb|y, ﬂv bs d7 A: ZW’ Y)
o IW (v, S5, (20

an inverted Wishart density with vy =vp 4+ H and S} = Sy, +
Z/ze'hf bhb;z‘

3.3 Comparative Model Specifications

The model (2) has parameters {8,}._,, {bs}i_,. d, {A,)”

n=1’
Yw, and Xy,. We consider several alternative models that differ
by the structural assumptions imposed on d, {A,}’_,, and X,

n=1"
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as follows:

{An)P Tw

Model d n=1

No parameter dynamics
My Static random-effects logit model NR 0 0

Parameter dynamics

M;: Dynamic linear model; random walk 0 p=1 Ay =I NR
Mo: Random walk with a drift NR p=1;A;=I NR
Ms: VAR( p) NR NR NR
My: Restricted VAR( p); RVAR( p) NR Ap= diagonal NR
NOTE: NR, no restriction.

All models listed in this table incorporate heterogeneity as
a random-effects specification; see (7). Model My is the tra-
ditional random-effect logit, which assumes that there are no
parameter dynamics. Models M|—-M4 allow for parameter dy-
namics in different ways. Model M1, the popular dynamic linear
model (Harrison and Stevens 1976; West and Harrison 1997),
assumes a random-walk process for 8, with mean vector 8,_;
and covariance matrix Y. Model M3 assumes a random-walk
process with a drift term for §,. Model M3 is the proposed
VAR(p) process model. Model My is a restricted VAR(p)
[RVAR(p)] process model under the restriction that {A,} are
diagonal matrices. Thus, in terms of parametric restriction,
M C My C My C M3

Mg can be easily estimated by skipping the MCMC steps
for B,, Ly, and vec(A). M) can be estimated by skipping the
MCMC steps of d and vec(A). Similarly, M, can be esti-
mated by skipping the MCMC step for vec(A). We estimate
M3 and M4 under the stability condition given in (6).

To test the accuracy of parameter recovery, we performed two
extensive simulation studies that differed in the relative com-
plexity of B,’s dynamics. All model parameters were recovered
well in each. (Full results are available from the authors.)

4. EMPIRICAL ILLUSTRATION

4.1 Data and Independent Variables

The proposed model was estimated on A. C. Nielsen lig-
uid detergent scanner data over 96 weeks. The data con-
sist of 492 individual units (households) that made choices
among four options {A, B, C, D} at least seven times during the
96-week period. The first 90 weeks of data were used as a train-
ing sample to estimate the model, and the remaining 6 weeks of
data were used for predicting the future model parameters. The
numbers of observations for the training and future parameter
forecasting samples were 6,364 and 318. To ensure identifiabil-
ity, the time-varying common effect of the fourth option as well
as its random effect were fixed to be 0. This requires that the
values xy;, for option j be the differences of the corresponding
predictor variable values for options j and the base option, J.
The vector xy;, thus consists of three option dummies and three
covariates, the differences in feature, display and price; note
that the first two are binary, whereas the last one is continuous.

All mean vectors of the normal priors [i.e., mg, mg, and my
in (8) to (10)] were set to 0. The chosen values for Sg and Sq
were 1001. For the inverse-Wishart priors of Xy and Xy, the
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degree of freedom parameters were set at 2 and the scale pa-
rameters were chosen so as to make the expected values 1001 .
For the value of Sy in (10) and (13), Litterman (1986) suggested
choosing 2, 6, and {¢;} by examining the data and trying several
different values. However, this approach entails double usage of
data. We thus set A = 1.0, 0 to .5, and all ratios ¢,/c. to 1. For
VAR( p) when p > 1, we set Sy using (13) with A =1.0,0 = .5,

and & =1,
O

4.2 Markov Chain Monte Carlo Estimation

The tuning constants for the proposal distributions in the
Metropolis—Hastings algorithms (e.g., ¢g in Sec. 3.2.1) were
chosen to produce similar acceptance rates across models.
There exists a trade-off between convergence speed and ac-
ceptance rate in the Metropolis—Hastings algorithm (Chib and
Greenberg 1995). As tuning constants become smaller, the ac-
ceptance rate increases, but we need a longer chain, because the
distance between the previous value and a newly accepted value
becomes smaller. The chosen tuning constants for 8, and by,
were approximately ¢g = .07 and ¢y, = .3. For all models, the
acceptance rates for 8, and b, given these tuning constants,
ranged from 53.2% to 55.7% and from 53.8% to 57.5%.

The number of quantities of interest for the VAR (p) model is
quite large. For example, excluding b, there are 630 quantities
for the full VAR(1) model. Thus we must be careful in deter-
mining convergence of the MCMC sampler. Specifically, we
determine convergence after examining all quantities except b.
To monitor convergence, we use Geweke’s (1992) convergence
diagnostic, which is based on the smooth spectral density of a
MCMC posterior sample. The periodogram for spectral density
estimation involves two important choices: window and trunca-
tion point. We use the Tukey window and choose the truncation
point after looking at the autocovariance function, as Jenkins
and Watts (1968) suggested.

After 20,000 iterations, all models seem to reach conver-
gence. Figure 1 is a typical example; for the VAR(1) model,
it shows the trace plot for the six elements of 8, for the first
40,000 iterations, where G represents Geweke’s convergence
diagnostic with 20,000 burn-in periods. Across all models, the
proportion of quantities that pass the Geweke diagnostic ranges
from 91.3% to 98.1%. For the rejected quantities, we used
Heidelberger and Welch’s (1983) half-width test, which the ma-
jority passed. All inferences made here are based on the next
20,000 iterations.

4.3 Tests for Parameter Dynamics

After estimating models My—M,4, we can test whether there
is evidence that parameters are time-varying. Specifically, we
have the following hypotheses:

Hy : Parameters are static (Mg)
and

H; : Parameters display some form of dynamics (M, My, M3,
or My).

The computed integrated likelihoods and the Bayes factors
for a comparison of models Mo and M; (BFy, »,) are given
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in Table 1. Because VAR(2) has a smaller integrated likelihood
than VAR(1) and its estimated A5 is close to a null matrix, we do
not estimate VAR( ) models of higher orders. We also do not
estimate RVAR( p) with order greater than 2, because RVAR(2)
shows smaller integrated likelihood than RVAR(1), and its esti-
mated A is close to null.

As shown in Table 1, we find exceptionally strong evidence
supporting parameter dynamics. All models incorporating pa-
rameter dynamics (M|—-My) are decisively preferred over the
traditional static random-effects model (Mgy). Therefore, the
model parameters, taken as a set, are evidently time-varying.

Selection Among Dynamic Models. The most preferred
among the parameter dynamics models (M;—-Mj) is RVAR(1),
as shown in Table 1. The Bayes factors for RVAR(!]) against
the other dynamic models range from 9.8e+49 to 9.3e+-15.
Most interestingly, the RVAR(1) model is decisively preferred
to the full VAR(1) model (Bayes factor = .98¢410), suggesting
that A, is diagonal or very nearly so. Further, the VAR(1) and
RVAR(1) models are preferred over M and M», implying that
the matrix A| is not an identity matrix; furthermore, the value
of Ay, reported later, suggests stable parameter dynamics.

4.4 Cross-Validation

One can appeal to cross-validation to compare My, the static
random-effects model, with the RVAR(1) model. To do this, we
divide the 96 weeks of data into two sets. The “calibration data
set” consists of the first w weeks of data and is used for parame-
ter estimation, whereas the “prediction dataset” consists of the
remaining 96 — w weeks and is used, unsurprisingly, for pre-
diction. We investigated values for w = {50, 55, 60, 65, 70} to
assess how additional calibration data affects predictive accu-
racy. For the calibration dataset, we computed the Bayes factor
of My versus RVAR(1). Results are given in Table 2. Regard-
less of the value for w, model RVAR(1) is decisively preferred
to Mp.

The results for the prediction dataset were based on the fol-
lowing approach. For both models My and RVAR(]), we es-
timated the likelihood for the prediction data set as follows.
For model My, we estimated this likelihood by first comput-
ing choice probabilities (2) for the prediction dataset (given
by, and B simulated at each MCMC iteration) and taking an
average of these choice probabilities for the prediction dataset
across MCMC iterations. For model RVAR(1), we did the same
given each value of by and B, r=w, ..., 96.

The resulting estimated log-likelihoods are also given in Ta-
ble 2. The RVAR(1) model is moderately preferred to model
My, so we next investigate RVAR(1) in more detail.

4.5 Estimation for the Training Sample

Because the RVAR(1) model performs better than other
VAR( p) models (see Table 1), we report further estimation re-
sults for this model alone. The RVAR(1) model implies the fol-
lowing structure for the regression parameter vector 8,

ﬂht = ﬂt + by,
Bi=d+AB,_+w,
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Figure 1. Running Mean Plot of B¢ for the Full VAR(1) Model. (a) dump (G = —.28); (b) dumg (G = 1.15); (c) dumg (G = .34); (d) feature
(G=—1.54); (e) display (G= 1.17); () price (G = —.59). G denotes Geweke's convergence diagnostic.

Table 1. Model Comparison for Training Sample

Log of integrated Bayes factor
M; likelihood ( BFmy. M, )

No parameter dynamics case

My: Static random-effects logit model —3,436.33 1.0

Parameter dynamics case

M;: Dynamic linear model —3,068.50 1.79e—160
Mo: Random walk with a drift —3,072.44 9.22e-159
Ms: VAR( p)

VAR(1) —3,061.90 2.44e—163
VAR(2) —3,075.66 2.31e-157
My: RVAR(p)

RVAR(1) —3,038.89 2.48e—173
RVAR(2) —3,063.15 8.51e—163

and

by ~N(0, ), w; ~ N0, Zw),
where A| is a diagonal matrix. The parameters, apart from
B, and by, are thus d, diag(A1), Xy, and Xy,

An important derived parameter is the long-run mean of 8,
ng=>0—-A 1)~ 'd. Furthermore, the long-run variance for the
ith element of B, is

.:7”’ (21)

where Xy, ;; and A;;; are the ith diagonal elements of X
and A;. (See Hamilton 1994 for derivation of the moments of
the full VAR( p) process.) An indication of the overall variabil-
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Table 2. Cross-Validation Comparisons

Calibration sample

Log-likelihood for prediction sample

log(integrated likelihood)

Bayes factor

Data used Mo RVAR(1) (H1: Mp) Mo RVAR(1)
Weeks 1-50 —2,048.60 —1,782.73 3.42e—-116 -2,256.17 —2,236.09
Weeks 1-55 —2,247.86 —1,946.93 1.33e-123 —1,942.92 —1,916.08
Weeks 1-60 —2,449.33 —2,166.87 2.13e-123 —1,623.90 —1,613.33
Weeks 1-65 —-2,571.30 -2,315.47 7.84e-112 —1,396.55 —1,388.50
Weeks 1-70 -2,812.06 —2,516.53 4.50e—129 —-1,080.21 —1,071.03

ity for element i of 8, is thus given by
ow,ii

T 22
T (22)

var(Bp,i) = + Zb,i,i
which can be used to give an idea of the relative contributions of
parameter dynamics and heterogeneity. It can also be compared
with the elements of E(B,) = pg = I — A1)~ 'd to get an idea
of the relative variability of the elements of ;.

Estimation of B,. Figure 2 plots posterior means and the
5th and 95th percentiles for all time-varying parameters §,. It
suggests fairly large temporal fluctuations; all intercepts show
strong stochastic patterns, and all variable coefficients display
stochastic dynamics. There are several periods that show sub-
stantial shifts from B,_; to §,.

Estimation of d and A;. If we define “significant differ-
ence’” to mean that a (5th percentile, 95th percentile) interval
does not contain 0, Table 3 suggests that all elements of d, ex-
cept the coefficients of the dummy for option C (dum¢) and
of feature, are significantly different from 0. Likewise, the ele-
ments of A; corresponding to dumy, dumgpg, and Price are sig-
nificantly different from 0, which suggests systematic dynamics
over time for the corresponding elements of §,.

Estimation of Xy,. Table 4 gives estimates for X,. Poste-
rior means are given on and below the main diagonal, with
posterior standard deviations given in parentheses; the poste-
rior means of the correlation coefficients are given above the
main diagonal. For the diagonal elements of Xy, the ratios of
posterior means to posterior standard deviations are between
4.8 and 6.1. Thus, these elements of X, differ from 0, imply-
ing that all elements of §, are changing over time. Among the
off-diagonal elements, the coefficient of dump has meaningful
correlation with the coefficient of dumy and the coefficient of
price. Overall, we conclude that in our dataset, 8, is apparently
time-varying, with a fairly pronounced degree of white noise.

Estimation of Xy,. Table 5 gives estimates for Xy,. Poste-
rior means are again given on and below the main diagonal,
with posterior standard deviations in parentheses; the posterior
means of the correlation coefficients are given above the main
diagonal. This table suggests that Xy, is neither a null matrix
nor a diagonal matrix; furthermore, all diagonal elements are
significantly different from O.

Let us briefly examine the effect of parameter dynamics on
the heterogeneity distribution by comparing posterior means for
the covariance Xy, for both the RVAR(1) model and model My.
For model My, the posterior mean for the diagonal of Xy, is

5.4701 8.4474 11.1818 1.8029 1.9395 5.3011
(.6615) (.9838) (1.4515) (.2342) (.2695) (.6255) |’

where the respective posterior standard deviations are given in
parentheses. These diagonal elements are 18.2-32.0% smaller
than the corresponding elements of Xy, for the RVAR(1) model,
which were given in Table 5. Therefore, the traditional random-
effects logit model “underestimated” the extent of heterogene-
ity.

Discussion. The elements of d and A, for the option C
dummy are essentially 0, but the corresponding variance in X,
is positive. Thus the dynamics for the dummy variable of op-
tion C consist of a white noise term only. The dynamics for
the dummies for options A and B, on the other hand, consti-
tute AR(1) processes. Allenby and Lenk (1994) also reported
an autocorrelated error structure for utilities. Because they in-
troduced a scalar for the error autocorrelation of utilities across
choice occasions, they implicitly assumed that choice dummy
effects would follow the same type of stochastic process with
the sample autocorrelation coefficient. However, our results
suggest different stochastic processes for each. Specifically, the
feature coefficient seems to follow a pure white noise process,
the Display coefficient is found to follow a white noise process
with a non-0 mean, and the Price coefficient appears to follow
a AR(1) process, over the observation period.

Table 6 gives the posterior means for the following quanti-
ties:

e jig, the long-run mean of B, (and the posterior standard
deviation of pg)

e ./ Var(ﬁht,i) =

ation for 8,
e /Xy, i, the standard deviation of the heterogeneity com-
ponent, by, of B,
D ii
IﬁA%,i,i
namic component, 8;, of 8,
o /Xy, i, the standard deviation of the “white noise” com-

ponent of ;.

® 0gi= , the long-run standard deviation of the dy-

The posterior mean of g displays the anticipated signs. The
posterior standard deviations for some of the elements are rela-
tively large, notably for the option C dummy, Feature, and Dis-
play, suggesting a fair amount of uncertainty about the actual
value of pg. A comparison of the results for pg with those
for d in Table 3 shows a moderate difference for Price.

The overall variability in 8j,, as measured by the posterior
mean for the standard deviation /var(B,;), is quite large. In
fact, all of these standard deviations are larger than the corre-
sponding elements of ug, so the corresponding regression coef-
ficients are negative for some households and time periods and
positive for others. Thus, although the posterior means for the
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Figure 2. Dynamics of 8. (a) dumgy; (b) dumg; (c) dumg; (d) feature; (e) display; (f) price. Solid lines denote estimated values. The lower and

upper bars denote the 5th and 95th percentiles.

elements of the long-run mean g g display the anticipated signs,
this is not necessarily true for individual households.

Let us next examine the contribution to the overall variabil-
ity in B, that can be attributed to household heterogeneity
and to parameter dynamics. Household heterogeneity can be
measured by the square root of the diagonal elements of Xy,
+/ 5b,i,i» and parameter dynamics can be measured by og; =

\/Ew,i,i/(1 - A%,i,i
Feature and Display, the posterior means for the standard de-
viation of the heterogeneity component are quite a bit larger
than the posterior means for the corresponding values of ag,;.
Household heterogeneity is thus a very important component in

the overall variability in By;.

); see (21). Table 6 suggests that, except for

Finally, let us contrast g ;, the long-run standard deviation of
the dynamic component, 8, =d + A f,_| + w, with /2y ;;,
the standard deviation of the “white noise” component, w;. The
value of the posterior mean for /Xy, ; ; is only slightly smaller
than that for o ;. This suggests that the “white noise” compo-
nent is the dominant force in the parameter dynamics of each
component of 3,.

4.6 Tests for Structural Change

It is important to check whether or not parameter dynamics
truly exist in the training sample. After dividing the 90 weeks of
data into nine datasets such that y, = {y,},lgzlo(z_ 141> Where z =
1,...,9, we estimate all nine regression coefficients {Bz}2=1
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Table 3. Estimates of d and A

Estimate (5th percentile, 95th percentile)

(standard deviation; MC error)

interval

d
dumg —.5410 (.2265; .0094) (—.9182, — 1744)
dumg 1.1811 (.3020; .0157) (.6867,1.6780)
dumg 1172 (.2900; .0168) (—.3634,.5982)
Feature .1887 (.2213; .0107) (~.1722,.5536)
Display .6387 (.3528; .0182) (.1115,1.2451)
Price —2.0741 (.4470; .0243) (—2.7682, —1.3043)
diag(A)
dumg .2322 (.1339; .0051) (.0282,.4632)
dumg .2640 (.1397; .0058) (.0467,.4989)
dumg —.0087 (.1525; .0067) (—.2328,.2655)
Feature .1659 (.1691; .0134) (—.1411,.4213)
Display —.0765 (.1890; .0089) (—.3999,.2241)
Price .2958 (.1423; .0068) (.0747,.5420)
Table 4. Estimate of Xy,
aump dumpg dumg Feature Display Price
dumg 2.2014 1842 .1582 -.0107 —.0581 .0797
(.3718)
dump 4612 2.8483 .3099 —.0106 —.1046 —.2411
(.3033) (.5006)
dumg 3771 .8401 2.5797 .0145 —.0876 —.2210
(.2864) (.3567) (.4453)
Feature —.0249 —.0280 .0364 2.4485 .0129 .0094
(.2816) (.3243) (.3059) (.4502)
Display —.1580 —.3238 —.2581 .0371 3.3642 .0715
(.3433) (.3942) (.3784) (.3661) (.6998)
Price .1756 —.6038 —.5267 .0218 .2000 2.2031
(.2596) (.3089) (.2931) (.2783) (.3354) (.3630)
Table 5. Estimate of X p
dumg dumg dume Feature Display Price
dumg 7.2242 .1683 2161 —.1588 —.0699 —.0151
(.8232)
dumg 1.5397 11.5826 .2263 —.0486 —.1414 —.4943
(.7671) (1.3067)
dumg 2.3549 3.1222 16.4344 —.0314 —.1346 —.2889
(.9208) (1.1404) (2.0409)
Feature —.6407 —.2483 -.1913 2.2548 -.0736 0311
(.4182) (.5370) (.6885) (.3371)
Display —.2898 —.7423 —.8419 —.1706 2.3795 1282
(.4220) (.5843) (.7388) (.2292) (.3906)
Price —.1034 —4.2839 —2.9822 .1189 .5036 6.4841
(.5319) (.7081) (.7751) (.3935) (.40869) (.7261)
Table 6. Elements of Variation in B pt
f " Jvar(Bht,i) v Zb,ii og,i  Ew,ii
dumg —.7037 3.0965 2.6834 1.5385 1.4786
(.2739) (.1523) (.1528) (.1433) (.1235)
dumg 1.6095 3.8334 3.3979 1.7667 1.6813
(.3129) (.1910) (.1920) (.1664) (.1462)
dumg 1147 4.3613 4.0462 1.6201 1.6003
(.2882) (.2407) (.2499) (.1415) (.1365)
Feature .2270 2.2001 1.4975 1.6067 1.5583
(.2710) (.1423) (1115) (.1551) (.1416)
Display .5849 2.4236 1.5375 1.8671 1.8246
(.2909) (.1809) (.1247) (.2023) (.1873)
Price —2.9491 2.9930 2.5424 1.5728 1.4794
(.2833) (.1504) (.1423) (.1518) (.1206)

201
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for these nine datasets simultaneously, where f, contains logit
coefficients belonging to y,. As before, to estimate {,82}?:1, we

use the MCMC sampler; specifically, distributions involving 8
in (14) are changed to estimate {,82}?:1 as follows:

9
(Hmwz, b))p(/ia.

z=I

(23)

It is readily apparent that the foregoing model is a counterpart
to the tests on structural intercept and slope changes in the clas-
sical econometrics literature. Hence we call (23) a structural
change model. By estimating this model, we can test

Hi:fi=-=p (M)

and
Hai i o fo
The log of the integrated likelihood of the structural change
model is —3,351.46. Clearly, the null hypothesis H| is rejected
(Bayes factor favoring H; over Hy = 1.38¢—37). This in turn
further verifies that parameter dynamics exist for these data.
Note that the RVAR(1) model is still decisively preferred over
the structural change model [Bayes factor favoring RVAR(1)

over the structural change model = 5.59¢+135], implying that
B, varies within each set of observations.

(structural change model).

4.7 Aggregation Bias

The estimation results of the structural change model raise an
issue. Typically, a researcher uses a subset of the entire avail-
able data for model estimation purposes. However, the assump-
tion that information obtained from currently available data will
also be valid in the future may be problematic; furthermore, ob-
tained estimates can depend on the time periods for which a
choice model is fitted. Thus if parameter dynamics exist, then
estimates deriving from My can suffer from aggregation bias.

To illustrate the potential for aggregation bias, we compare
the estimates of the structural change model with those of both
My and RVAR(1). As shown in Figure 3, there are several cases
in which the estimates of Mo deviate noticeably from the es-
timates of the structural change model. However, the estimates
of RVAR(1) strongly overlap with those of the structural change
model. This suggests that it may be possible to substantially re-
duce the degree of aggregation bias if parameter dynamics are
appropriately accounted for.

4.8 Effects of Parameter Dynamics on Choice Behavior

We have shown that by incorporating temporal variation in
parameters directly, choice dynamics can be better captured
through a form of VAR process than by either the traditional
static model or previous dynamic models. To examine poten-
tial sources of superior prediction of choice dynamics, we now
investigate the effects of exogenous covariates and parameter
dynamics on choice behavior.

From (2), define the following derivatives:

apn; O
W P b=
Piai D= g P )= e
and
32pi;
h . 1jf
" ’l = EYEY
Py kB (. D) 0Xnirk OBk
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Figure 3. Comparison of Price Coefficient Estimates for the Struc-
tural Change (—) and RVAR(1) (—) Models. (a) Structural change ver-
sus My; (b) structural change versus RVAR(1). Lower and upper dotted
lines enveloping each solid line of estimates denote the corresponding
5th and 95th percentiles.

Next, we computed py,,(j, ) = nl,ZheH, Pﬁ,,k(j, i) as the
sample average of p)}c]), . (J, ) in period 7, where n, is the sample
size of H,. Similarly, we computed the following sample aver-
ages of the foregoing quantities: o, , (/, /), g, (s Px, 8.4 (J: 1)
and oy, ., (J, ). For Mo, B is replaced by the kth element
of the regression coefficients. We compute these sample aver-
age estimates for both My and RVAR(1) for each time period.
For option j = A and variable = Price (k = 6), Table 7 gives
the MCMC estimates of these household-averaged derivatives
further averaged over the 90-week observation period, for ex-
ample, py, (j, ) = % Z?ﬁl P, (s ). The pattern of results in-
dicates that Mo tends to overestimate all quantities of interest.

4.9 m-Step-Ahead Parameter Forecasting

Let us now consider forecasting. Given that we have data
through period T, m-step-ahead forecasts can be readily ob-
tained with another MCMC run. For example, such a simulation
yields posterior distributions for 87,

We conducted six-step-ahead forecasting, obtaining poste-
rior distributions for 84, ,,, where T =90 and m=1,...,6. At
each MCMC iteration, it is straightforward to simulate these fu-
ture parameters, 7., given B, d, Ay, and X, using (5). The
posterior means and standard deviations of 8r,,, are, there-
fore, readily available from MCMC runs of 87, ,,. Table 8 gives
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Table 7. The Averaged Effects of Covariate and Parameters

on Choice Behavior

Mo RVAR(1)
Pxg 1 (A A) —.1515 (.0047) —.1408 (.0052)
Px (A B) .0616 (.0028) .0556 (.0030)
Pxe (A C) .0333 ( 0021) .0324 (.0023)
Oxy (A, D) .0565 (.0027) .0528 (.0028)
Py ictA) —.0461 (.0015) 0383 (.0013)
08y (B) .0404 (.0015) .0327 (.0018)
Py (C) 0227 (.0012) 0191 (.0011)
08 (D) —.0170 (.0013) —.0135 (.0011)
Pxe icBri A A) .0559 (.0023) 0447 (.0022)
P B i (A B) —.0151 (.0014) ~.0119 (.0013)
Pxy By (A C) —.0110 (.0012) —.0087 (.0011)
Py Br (A D) —.0298 (.0011) —.0241 (.0011)

NOTE: Standard deviations are in parentheses.

their means and standard deviations for weeks 91-96, suggest-
ing considerable forecasting uncertainty.

We compared the performance of the six forecasted Br.,,
values based on the RVAR(1) model with that of the tradi-
tional static logit model M. For both models, we computed log-
likelihood values for the prediction dataset. We obtained these
likelihood values by first computing predicted choice probabil-
ities, (2), for the forecasting dataset given all parameters simu-
lated at each MCMC iteration, then taking the average of these
predicted choice probabilities across MCMC iterations. The
computed log-likelihoods for the forecasting sample, the sum-
mation of log of (2) given the average of choice probabilities,
are —202.21 for RVAR(1) and —208.89 for M. For the future
parameter forecasting sample, RVAR(1) demonstrates slightly
better performance than M.

5. CONCLUSION AND FUTURE RESEARCH

Although choice models have achieved a great deal of so-
phistication over the past decade, researchers have only recently
begun to address the interplay of choice dynamics and parame-
ter dynamics. To this end, we have proposed a general VAR
framework to account for the phenomenon, one that can be
grafted onto any specifications for utility or error structure. In
this framework, we can rigorously test a number of hypothe-
ses about the nature of parametric evolution—among them its

order, which parameters are involved, and which affect others—
as well as demonstrate improved predictive performance.

A number of clear conclusions emerge from our empirical
analysis. First and foremost, some (although not all) of the
parameters demonstrated strong evidence of temporal varia-
tion. This was clear even under the parsimonious specification
that emerged as the strongest candidate, RVAR(I). Incorporat-
ing such a stochastic parametric structure into existing models
would entail a comparatively modest increase in the number
of estimated quantities, and should emerge as an attractive al-
ternative to models presuming parametric constancy. Second,
forecast performance was improved substantially over the stan-
dard random-eftects logit model. In fact, the random-effects
model appears prone to aggregation biases when its parame-
ter estimates deviate from the implied long-term levels sug-
gested by the VAR(p) specification. To our knowledge, this
result is new, and we believe that it merits study in and of it-
self, given the popularity of the random-effects logit model-
ing framework. Finally, our data suggest that choice dynamics
may be misattributed to exogenous covariates when parameters
are presumed not to have dynamics of their own. For exam-
ple, the random-effects model appears to underadjust for brand-
switching behavior, perhaps because such behavior is assumed
to be governed by external stimuli, given fixed parameters.

With respect to possible explanations for parameter dynam-
ics, a number of potential explanations can be ruled out—
specifically, systematic changes in the characteristics of pooled
samples over time and changes in the distribution of stimuli
across options. Further, analytic examination and simulation
demonstrated that if all or some of the population update their
parameters over time, then systematic parameter dynamics may
exist even at the population level, as captured by the VAR(p)
process.

Suggesting explanations for parametric evolution post hoc,
other than those already tested, amounts to speculation. Some
authors, however, have provided bases for further investiga-
tions along these lines. Yang, Allenby, and Fennell (2002) noted
that scanner panel data do not accommodate the proper unit of
analysis in modeling preference changes: a person-activity oc-
casion. They discussed how for many activities (e.g., snacking,
serving wine), the consumer environment is not constant from
one usage occasion to another, so that preferences are rightly
situationally or motivationally dependent. Although they ex-
plicitly pointed out that occasions for use of laundry detergent,

Table 8. Six-Step-Ahead Forecasting of B;

dump dumg dumg Feature  Display Price
Week 91 —.6915 1.4296 1153 1756 .6704 —3.1938
(.2841) (.3402) (.3081) (.3335) (.4910) (.3367)
Week 92 —.7000 1.5482 .1206 .2119 5336 —3.0395
(.2620) (.3015) (.2883) (.2686) (.3057) (.2871)
Week 93 —.7024 1.56858 1151 .2223 .5946 —2.9868
(2671)  (3037)  (2880)  (.2672)  (.3020) (.2797)
Week 94 —.7032 1.56993 1151 2252 5790 —2.9664
(.2705) (.3074) (.2881) (.2686) (.2895) (.2798)
Week 95 —.7035 1.6048 1147 .2263 5868 —2.9576
(2721)  (3097)  (.2881)  (.2698)  (.2930) (.2808)
Week 96 —.7036 1.6072 1147 2267 5837  —-2.9535
(2729)  (.3110)  (2881)  (.2703)  (.2901) (.2817)
Long-term mean -—-.7037 1.6095 1147 .2270 .5849 —2.9491

NOTE: Standard deviations are in parentheses.
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the product class used in our study, are less likely to be subject
to this sort of temporal preference variation, we believe that
their approach merits formal study on data like our own, which
would provide the proverbial strong test. One would need re-
course to purchase occasion data transcending the panel record
alone, and Yang et al. presented approaches to this practical
problem at length.

In a similar vein, Wakefield and Inman (2003) also noted
that little research has focused on the effects of consump-
tion occasion or context on consumer price sensitivity. They
found price sensitivity to be attenuated by hedonic and so-
cial consumption situations; because intended consumption
occasion varies across consumers and time, this variation is
unobserved and could well lead to a moderate degree of para-
metric evolution in some categories. There is also the re-
lated issue of seasonality, although product usage cycles for
most frequently purchased goods are considerably shorter than
can be supported by purely seasonal explanation. We believe
that such issues can be addressed directly through access to
auxiliary data—surveys, logs, or self-reports—on individual
panelist’s usage occasions, perhaps supplemented by brand-
by-brand household-level stocks. Such data allow for a mod-
eling framework that accounts for parametric evolution at a
less-aggregated, perhaps individual, level. Implementing such
a model presents substantial challenges in terms of both data
requirements and estimation technology, although we suspect
each of these impediments to wane with time.

Our model is not without its limitations. One such limitation
is the requirement for data over a relatively long period. In many
applications, particularly in field data, long strings of choices
are not often available. Another limitation involves variable se-
lection. To be sure, this problem bedevils all empirical choice
research, but we know little about the dependence of the present
model, in terms of order selection for p, on the choice of covari-
ates. Finally, the model itself can entail a very large number of
parameters, making model comparison and interpretation con-
siderably more challenging.

Limitations aside, the model can be widely applied in choice
research, due to both its generality and its silence on utility and
error structure. We believe that it can be readily extended to in-
clude parameter dynamics on an individual level or in a mixture
modeling framework. Such an extension would allow different
groups of decision makers to update their sensitivities in dif-
ferent ways and would, in our view, offer another compelling
dimension through which to examine varied choice behavior.

[Received February 2002. Revised April 2004.]
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