
Linking Marketing and Engineering Product Design Decisions

via Analytical Target Cascading�

Jeremy J. Michalek, Fred M. Feinberg, and Panos Y. Papalambros

Firms design products that appeal to consumers and are feasible to produce. The

resulting marketing and engineering design goals are driven by consumer prefer-

ences and engineering capabilities, two issues that conveniently are addressed in

isolation from one another. This convenient isolation, however, typically will not

result in optimal product decisions when the two problems are interrelated. A meth-

od new to the marketing community, analytical target cascading (ATC), is adopted

here to explore such interrelationships and to formalize the process of coordinating

marketing and engineering design problems in a way that is proven to yield the joint

optimal solution. The ATC model is built atop well-established marketing method-

ologies, such as conjoint, discrete choice modeling and demand forecasting. The

method is demonstrated in the design of dial-readout household scales, using real

conjoint choice data and a parametric engineering product design model. Results

indicate that the most profitable achievable product can fall short of predictions

based on marketing alone but well ahead of what engineering may produce based on

original marketing target specifications. A number of extensions can be accom-

plished readily using techniques from the extant marketing and design optimization

literature.

Introduction

P
roduct development, as a costly and time-

consuming prelude to the introduction of

new products, has been the object of intense

study by practitioners and academics in both market-

ing and engineering design. The academic literature

proposes a number of models to help guide product

planners in assessing consumer needs or ‘‘value sys-

tems,’’ as well as to capitalize on synergies in the pro-

duction process itself. As such, the entire process

typically is broken down into a number of stages

that, for parsimoniousness and reasons of disciplinary

boundaries, are addressed separately in product opti-

mization. For example, in marketing one may ask—

given a set of known characteristics and levels and,

presumably, an expedient method for delivering them

in one product at an attractive price point—which

combination would most appeal to consumers or

which combination would be most profitable. Engi-

neering design faces the converse problem of deliver-

ing an optimal, feasible product given a set of desired

performance targets, features, and costs. That is, each

discipline works under constraints and guidelines set

by the other.

In marketing conjoint studies, for example, prod-

uct characteristic levels are chosen to be in line

with engineering guidelines and so, in a sense, are
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conditional upon them.1 If engineering cannot deliver

a specific product characteristic or some particular val-

ue of it, consumers are not asked for their reactions to

it. So, what we learn about consumer preferences, and

thereby about the set of products produced, is con-

tingent on knowing in advance which targets are tech-

nically infeasible or unrealistic. Similarly, engineering

design models aim to maximize or to achieve target

levels of performance characteristics, subject to phys-

ical and production constraints, without knowing if

consumers would want and would pay for them.

A turnkey system formalizing product optimiza-

tion through coordinated communication between es-

tablished marketing and engineering design models

has not emerged for a number of reasons. First and

foremost are reasons of historical development and

disciplinary boundaries: research on product devel-

opment in marketing long has differed from that

in engineering design in terms of product representa-

tion and choice of performance and success metrics

(Krishnan and Ulrich, 2001). For example, in mar-

keting a product often is modeled as a ‘‘bundle of

attributes’’ (e.g., McAlister, 1982) over which con-

sumers have preferences represented by utilities, so

that firms can manipulate the former to maximize the

latter. In engineering design, by contrast, products

may be described as complex assemblies of interacting

components for which parametric models are built to

represent design decisions such as shape, size, and

configuration, which then are manipulated to maxi-

mize performance objectives. Measurements of ‘‘suc-

cess’’ also differ between the two disciplines, with

marketing assessing degree of market fit, consumer

satisfaction, overall share, and ultimately profit and

with engineering design concerning technical perform-

ance, innovativeness, and cost effectiveness. The two

disciplines even point to different critical success fac-

tors external to the design process itself: marketers

stress the importance of positioning, advertising mes-

sages, choosing the right price tier, and understanding

‘‘consumer needs’’ using data, while engineers gener-

ally use intuition when dealing with customer needs,

emphasizing the creativeness and functionality of the

product concept and working toward technical objec-

tives such as reliability, durability, environmental im-

pact, energy use, heat generation, manufacturability,

and cost reduction, among others. In short, the two

communities do not disagree so much on the product

development process as have different languages and

notions of drivers of success.

Second, marketing and engineering design models

differ in terms of domains and control variables, and

so their corresponding models of the product devel-

opment process do not speak easily to one another.

For example, in marketing, a chief goal simply is fig-

uring out what consumers want, addressed through

such methods as focus groups, test markets, surveys,

and measurement models like conjoint. Consumer
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preferences are taken as primitives, and one optimizes

over levels of product characteristics, looking for

‘‘sweet spots’’ in the product characteristic space. En-

gineering design, by contrast, seeks to meet specific

performance goals, conditional on existing produc-

tion processes and the realities of physics and geom-

etry. In short, both optimization variables and the

nature of constraints are very different. Formal mod-

els attempting to combine them therefore would have

to span an unusually broad domain.

Among the main problems identified by Krishnan

and Ulrich (2001) is effective communication between

marketing and engineering design. Even with full in-

formation and broadly validated modeling frame-

works, miscommunication can lead to suboptimal

product designs, a problem particularly pronounced

for high-technology products where the marketing

and engineering design domains are separated widely.

Such claims have broad antecedents in prior empirical

and theoretical research. Gupta et al. (1986) studied

the interface between marketing and research and de-

velopment (R&D) in American hi-tech firms and

found that other factors (besides standard market un-

certainty and firm strategy explanations) exert strong

effects, most notably organizational design and ‘‘so-

ciocultural’’ differences between marketing managers

and their R&D counterparts. This hardly is confined

to U.S. firms: Song and Parry (1992) confirmed these

findings for over 200 analogous firms in Japan, while

also cataloguing subtle points of difference between

the two nations’ development cultures. Souder (1988),

in analyzing a vast database of product development

projects, found a variety of consistent problem types

between marketing and R&D managers and thus for-

mulated a model to improve integration between the

two. Griffin and Hauser (1992) further considered the

multiple interfaces among marketing, engineering, and

manufacturing, comparing the effects of quality func-

tion deployment (QFD) to more traditional project

development approaches. They consistently under-

scored the critical role and nature of information

flow and how QFD uniquely allows enhanced ‘‘hori-

zontal’’ flow through the development team.

In this article, a new approach is presented to link

marketing and engineering product design decision-

making formally. In doing so, it is not the intent of

this article to merge the two but to make use of their

respective strengths and to capitalize on models that

are especially well suited to joint optimization. From

marketing, methods are adopted from discrete choice

analysis, as applied to efficient conjoint designs; both

have deep theoretical roots and have been validated in

hundreds of disparate empirical studies throughout

the world (Cattin and Wittink, 1982; Wittink and

Cattin, 1989; Wittink et al., 1994). From engineering

design, a recent set of methods is adopted joined un-

der the formalism of Analytical Target Cascading

(Kim, 2001), a hierarchical methodology for opti-

mizing complex systems by coordinating solutions to

decomposed subsystems. The present article shows

how these preexisting methods can work seamlessly

in tandem to converge on optimal product designs,

avoiding the time-consuming, error-prone, and costly

iterations that often characterize complex product de-

velopment processes.

Several key ideas pervade this study’s approach.

The first is a departure from assumptions made in

certain marketing models, which often hold that de-

sign problems are primarily ones of capital: with suf-

ficient funds, any desired combination of product

characteristics can be achieved. Although marketers

are aware that, strictly speaking, some such combi-

nations are quite difficult to attain (Urban and Ha-

user, 1993) it is fairly common in conjoint studies, for

example, to allow product characteristics to be paired

according to the needs of the experimenter (e.g., Ha-

aijer, 1999). Such a premise is enacted less commonly

by engineers, who deal more directly with feasibility

constraints: designs that cannot exist under present

technology or that are physically impossible with any

technology. The methodology presented is particular-

ly suited to support the study of complex durables

where feasibility constraints prohibit some combina-

tions of characteristics from being achievable at any

cost. This article considers such constraints in an em-

pirical application, where some product characteristic

combinations literally are impossible to achieve—not

just difficult or costly.

The second idea is the often-underestimated complex-

ity of interrelations among engineering constraints,

even for simple artifacts such as the bathroom scale

studied later in this article. When this complexity is

mapped further onto the product characteristics

space, simple strategies, like restricting product char-

acteristic levels to feasible combinations in a conjoint

study, have little value and will not lead to optimal

solutions. The simple case study of this article is an

empirical demonstration of such a situation and illus-

trates the need for caution when studying design do-

mains of higher complexity.

The final idea is the key role of iteration: marketing

and engineering design decisions must be updated
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iteratively, preserving the individuality of each disci-

pline but converging to the optimum for the product

and not for the discipline. If marketing sets targets

without iterative interaction with engineering design,

results can be substantially inferior when compared to

an iterative convergent approach, such as the pro-

posed analytical target cascading (ATC) method. This

is especially intriguing, given that the ATC marketing

model used to measure consumer preferences still can

call upon the wealth of methods developed for con-

joint measurement, methods that offer optimal prod-

uct designs from a marketing viewpoint—so long as

they are checked against their technical realization.

In the next sections a short review of the relevant

literature in marketing and engineering design is pro-

vided; analytical target cascading is introduced as a

formal linking mechanism between marketing and

engineering design; and its use on a simple durable

product—a bathroom scale—is demonstrated.

Marketing and Engineering in Product Design

This article reviews extant approaches in the core dis-

ciplines of marketing and engineering design with an

eye toward how they might be yoked together for the

purposes of optimal product planning.

Marketing Product Planning Models

Kaul and Rao (1995) provided an integrative review

of product positioning and design models in the mar-

keting literature. They differentiated between product

positioning models, which involve decisions about ab-

stract perceptual attributes, and product design mod-

els, which involve choosing optimal levels for a set of

physical, measurable product characteristics. This ar-

ticle works only with measurable product character-

istics; however, a comprehensive framework similar to

the one proposed by Kaul and Rao (1995) could be

used to include perceptual attributes, product posi-

tioning, and consumer heterogeneity. In this article,

conjoint-based product design models from a market-

ing perspective will be referred to as product planning

models.

Optimal product planning in the marketing litera-

ture typically is posed as selection of optimal price

and product characteristic levels that achieve maxi-

mum profit or market share. For complex products,

where engineering constraints may prevent some com-

binations of product characteristic levels from being

technically attainable, it is difficult to define explicitly

which combinations of characteristics are feasible.

Even if these combinations can be defined and can

be eliminated from a conjoint study, the optimal so-

lution using the conjoint data still may contain infea-

sible combinations of product characteristics. For

such products, planning decisions made without en-

gineering input may yield inferior solutions.

Engineering Design Models

The engineering design optimization literature focuses

on methods for choosing values of design variables

that maximize product performance objectives. Papa-

lambros and Wilde (2000) provided an introduction

to engineering design optimization modeling tech-

niques, strategies, and examples. When multiple con-

flicting optimization objectives exist, the solution is a

Pareto set of optimal products, and the choice of a

single product from that set requires explicit expres-

sion of preferences among objectives. Such preferences

are notoriously difficult to define in practice. Some

methods use interactive, iterative searches to elicit

preferences, relying on intuition in navigating the

Pareto surface and choosing an appropriate design

(Diaz, 1987). Recent efforts in the design literature

take the approach of resolving trade-offs among

technical objectives by proposing models of the pro-

ducer’s financial objective (Georgiopoulos, 2003;

Georgiopoulos et al., 2004; Gupta and Samuel, 2001;

Hazelrigg, 1988; Li and Azarm, 2000; Wassenaar and

Chen, 2003). Gu et al. (2002) build on this work using

the collaborative optimization framework to coordi-

nate decision models in the engineering and business

disciplines. This article proposes a related methodol-

ogy, but product planning and engineering design

models are coordinated using the ATC methodology,

which has proven convergence characteristics for ar-

bitrarily large hierarchies (Michelena et al., 2003;

Michalek and Papalambros, 2004a), and techniques

from the marketing literature are drawn upon to de-

velop explicit mathematical models of demand based

on data.

Prior Approaches to Integrating Engineering into
the Marketing Product Design Literature

Over the last decade, the marketing literature increas-

ingly has turned to questions of integration with
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engineering design and production, usually noting the

difficulty of doing so. Early discussions of problems

integrating information from various sources in the

product development process include Griffin (1997)

and Wind and Mahajan (1997). Griffin (1997) was

among the first to highlight the use of cross-functional

teams to shorten—and purportedly to optimize—the

product development process, a process especially

lengthy for innovative and for highly complex prod-

ucts. Wind and Mahajan (1997) went so far as to issue

a warning about the ‘‘inadequacy’’ of modeling tech-

niques in marketing to encompass the entire new

product development (NPD) process, particularly as

design incorporates information from multiple sourc-

es. Certain externalities can come into play as well; for

example, Moorman and Slotegraaf (1999) highlighted

how information in the external environment can

stimulate firms to deploy their technology and mar-

keting capabilities so as to influence the level and

speed of relevant product development activities.

They concluded that the most valuable characteristic

of firm capabilities may be their ability to serve as

‘‘flexible strategic options.’’ How they might accom-

plish this, in practical terms, is still largely an open

question.

Part of the ‘‘integration problem’’ is certainly one

of terminology and conceptualization. Garcia and

Calantone (2002), for example, detailed the often con-

tradictory ways in which notions of innovation are

used in the NPD literature, particularly in marketing

and engineering design. They emphasized the impor-

tance of maintaining both marketing and technolog-

ical perspectives when discussing innovations and the

relative lack of empirical work directed toward ‘‘really

new’’ innovations and offer a set of measures to help

classify innovations across the domains of practition-

ers and academics.

Researchers in marketing often have pointed to

engineering design and production as the key contrib-

utors to product success or failure. Sethi et al. (2001)

stressed that multiple studies have found that the pri-

mary determinant of new product success is innova-

tiveness: the extent to which a new product provides

meaningfully unique benefits rather than the ability to

satisfy preexisting wants of the type uncovered in a

typical conjoint study. Srinivasan et al. (1997), in ad-

dressing the concept selection stage of a new product

development process, emphasized the importance of

utilizing both product characteristic-based customer

preference and product cost models, and they offered

empirical evidence for the need to push beyond such

models to more complete ‘‘customer-ready’’ proto-

types. Halman et al. (2003) additionally considered

the advantages of a platform-based approach to prod-

uct development, showing how economies of scale

enhance both marketing and physical production. Al-

though they are interested primarily in product lines

(as opposed to individual products), they underscored

the paucity of literature linking marketing with engi-

neering practice in product management.

Hauser (2001), by contrast, emphasized the sheer

complexity of the development process, in terms of

coordination of resources and agents with multiple

criteria for success (for example, speed to market,

customer satisfaction, and product quality). He ap-

plied agency theory to formulate a set of metrics and a

weighting method to help firms balance and optimize

such complex development processes, with variables

spanning concerns from both marketing and engi-

neering design. This article’s goal is similar—the de-

sire here is to coordinate models of the two camps and

to create an explicit method for joint optimization

across them.

A great majority of research on new product suc-

cess has focused on product characteristics and the

product development process, rather than interactive

and ancillary factors. In their study of product launch

support, Hultink et al. (2000) examined data on many

hundreds of product introductions and identified di-

vergent product success criteria for what they distin-

guish as ‘‘consumer goods’’ and ‘‘industrial goods.’’

For example, the former seem to benefit from strat-

egies that defend market positions, while the latter

benefit from those that leverage technological inno-

vations to penetrate new markets. Furthermore, the

optimal marketing ‘‘mix’’—the relative emphasis on

consumer-oriented variables like promotion, display

and advertising, and more nuts-and-bolts technolog-

ical dimensions—differs systematically between the

two product types, so it is unsurprising to see them

receiving different degrees of emphasis in the market-

ing and engineering design communities. However,

Kahn (2002) found that marketing assumes primary

responsibility for making market forecasts across

both types of goods, with a considerably shorter ho-

rizon for ‘‘consumer goods.’’

Pullman et al. (2002) presented one of the few stud-

ies on the relative effectiveness of marketing-based

and engineering-based approaches to optimal product

design; specifically, they considered conjoint analysis

(a marketing-based method, and one used in the pre-

sent study) and QFD (a more engineering-oriented
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approach). They found that the two approaches con-

verged on many of the most important features but

that the engineering approach was better able to high-

light those characteristics that had both positive and

negative aspects. Further, and in the present authors’

view most importantly, they found that the marketing

approach better identified current consumer prefer-

ences, while the engineering approach better identified

core consumer needs. A major conclusion of their

study is that the two approaches should be pursued in

tandem. Still, no formal system combining them pres-

ently is available to the design community. While the

present article does not directly address tools such as

QFD, which offer help to designers in the absence of

mathematical product models, it does present a for-

mal methodology to coordinate results of conjoint

analysis with product models when such models can

be called upon.

Finally, Leenders and Wierenga (2002) offered a

major review of extant approaches to the interplay

and integration of marketing and engineering design

with a particular emphasis on relative effectiveness.

They found that one of the most effective methods

simply is locating marketing and product develop-

ment team members closer together to facilitate the

interchange of information and, presumably, to en-

courage a form of joint optimization. They cautioned,

however, that while encouraging this sort of informa-

tion exchange indeed does enhance new product per-

formance, it nevertheless carries substantial costs,

mainly in the great deal of complexity intrinsic in for-

malizing such relationships. Although it does not ad-

dress industrial design (aesthetics) or manufacturing

(physical production) formally, the present study

serves to initiate development of the very formaliza-

tion between marketing and engineering design that

prior authors have underscored as problematic.

Although the NPD literature is too vast to sum-

marize here competently, other authors have done so

in articles devoted to the subject. Brown and Eisen-

hardt (1995), in a broadly integrative survey, present-

ed a snapshot of the burgeoning product development

literature, distinguishing three major themes: devel-

opment as rational planning, as a web of communi-

cation, and as ‘‘disciplined’’ problem-solving. Based

on these broad distinctions, they fashion a model of

critical success factors in product development, pay-

ing unusual attention to the distinct roles of various

actors—senior management, project leaders, suppli-

ers, purchasers—and the vital interplay afforded by

communication among them at various stages of the

development process. Meta-analyses of the product

performance literature are provided by Montoya-

Weiss and Calantone (1994) and by Henard and Szy-

manski (2001); both synthesized decades of prior re-

search in the area with an eye toward generalizations,

though the former did report a large number of points

of divergence, despite commonalities in methodolog-

ical approach in the surveyed literatures. Henard and

Szymanski (2001) focused specifically on the key de-

terminants of relative product success. Of two dozen

such factors identified by prior authors, they found

that the most broadly critical ones include product

advantage, market potential, the ability to match cus-

tomer needs, and preexisting firm proficiencies. Inter-

estingly, the role of communication between various

firm entities is largely that of mediator, in that many

of the critical success factors can be affected directly

by it.

For our purposes, among the key conclusion of all

these prior lines of research is this: fostering effective,

ongoing communication between marketing and en-

gineering design (among other entities) is a critical

factor in the eventual success of a product develop-

ment project. The methodology presented next is suit-

ed uniquely to accomplishing exactly that goal in a

rigorous, mathematical design system.

Methodology

This article introduces a joint system for product de-

velopment that calls upon methodologies from both

engineering design and marketing. It is anticipated

that the marketing audience will be familiar with the

‘‘marketing-related’’ methods, namely conjoint anal-

ysis and discrete choice modeling; however, descrip-

tions and references to these methodologies are

provided for the engineering community later in this

section. Conversely, ATC, despite a good deal of re-

cent application in the engineering design community,

is all but unknown to the marketing community. As

such, this article serves the expository purpose of

placing ATC in context, explaining what it does,

and presenting it formally with an eye toward encour-

aging the marketing community to apply it and to in-

tegrate more closely with engineering design. Many of

these ideas are placed directly in an engineering design

optimization context by Michalek et al. (2004a), who

similarly encouraged the engineering design commu-

nity toward greater integration.
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The ATC framework, which is discussed in detail

later in this section, allows a joint planning and engi-

neering design problem to be decomposed formally

into a (marketing) product planning subproblem and

an engineering design subproblem. Each of these sep-

arately has been the object of intense study, and

among the felicities of ATC is the ability to call on

methods for optimizing each of these subproblems in

order to attack the much more difficult joint problem

and to prove that obtained solutions are identical. The

product planning subproblem is well known to mar-

keters, as it involves choosing product characteristics

and price (e.g., as warranted by a conjoint or similar

model) that will maximize some firm-level objective

function. Here, a simple model of expected firm profit

is used, contingent on an estimated discrete choice

model, such as logit or probit. The ATC formalism

allows flexibility in this regard, and profit is just one

among any number of possible firm-level objectives.

The engineering design subproblem is quite different

and involves choosing a feasible design that achieves

known target product characteristics as closely as

possible.

Using ATC, the subproblems are solved iteratively

until the joint system converges upon a consistent op-

timal product design. Michelena et al. (2003) and

Michalek and Papalambros (2004a) showed that

ATC converges, within user-defined tolerances, to

the solution of the joint system for a wide class of

problems, variable types, and for any number of sub-

systems in a hierarchy. Although the model is pre-

sented formally later, the main ideas are depicted

in Figure 1.

The marketing product planning subproblem re-

quires that profit be maximized with respect to prod-

uct characteristics and price but also stipulates

minimal deviation from an achievable engineering de-

sign; it is in this last requirement that the formulation

differs from the one typical in marketing applications.

The engineering design subproblem is in some sense

the dual: it sets design decisions to minimize devia-

tions from the product characteristics requested by

marketers but must respect engineering constraints,

which often are exogenous in the sense of being dic-

tated by, for example, geometry and physics. The two

problems ‘‘speak’’ to one another in a very natural

sense. In real organizations, it is typical for one group,

either marketing or engineering design, to deliver an

initial set of specifications, which the other attempts

to meet, thus starting off an actual iterative process

between the two. This article uses models to perform

iterations and to reach a desirable, feasible, and con-

sistent solution. It does not address potential savings

in reducing the ‘‘physical’’ iteration between groups of

people, but it is believed that these will be consider-

able if the models required for ATC are available.

Next, ATC is considered in greater detail, with

specific attention paid to its interrelations with prior

and potential future research in marketing.

Analytical Target Cascading

At its core, analytical target cascading is a methodol-

ogy for systems optimization. It works by viewing a

complex system as a decomposable hierarchy of in-

terrelated subsystems, each of which can be analyzed

and optimized separately and then coordinated (Kim,

2001). In order to apply ATC, one must have a math-

ematical model for each of the subsystems—which in

general can be numerous, although this article refers

to only one engineering design subsystem—so that

one can compute subsystem response as a function of

decisions made for that subsystem. Given the various

mathematical models for the subsystems, the modeler

organizes them into a hierarchy, as in the computer

example shown in Figure 2; note that the top level

represents the overall system and that each lower level

represents a subsystem of its parent element. The

process would be similar for even small durables, al-

though the number of subsystems and their potential

interactions would be smaller. For example, in the

Marketing Product Planning Subproblem

maximize Profit, and 
minimize Deviation from engineering design

with respect to Price and product characteristic targets, 
where Profit depends on price, demand, and 

cost, and 
Demand is predicted using discrete
choice analysis and conjoint data. 

Engineering Design Subproblem

minimize Deviation from product characteristic
targets set by marketing

with respect to Design decisions
subject to Engineering constraints 

where Product characteristics depend on the 
design decisions. 

Product characteristic targets 
Engineering design responses

Figure 1. ATC Formulation of the Product Planning and Engi-
neering Design Product Development Subproblems

48 J PROD INNOV MANAG
2005;22:42–62

J. J. MICHALEK ET AL.



dial-readout scales studied here, the hierarchy consists

only of one marketing subsystem (parent) and one

engineering design subsystem (child); however, in gen-

eral both the marketing and engineering models could

consist of a hierarchy of any number of submodels.

Papalambros (2001) provided an overview of the ATC

literature, and Michalek and Papalambros (2004b)

provided details of the generalized ATC formulation.

ATC has been applied to automotive systems (Kim et

al., 2002, 2003a, 2003b) including the design of prod-

uct families (Kokkolaras et al., 2002), as well as to

design of building systems (Choudhary et al., 2003).

In the ATC process, top-level system design targets

are propagated down to subsystems, which then are

optimized to match the targets as closely as possible.

The resulting responses are rebalanced at higher levels

by iteratively adjusting targets and designs through-

out the hierarchy to achieve consistency, the latter

process called a coordination strategy. Michelena et

al. (2003) proved that, using certain classes of coor-

dination strategies, the ATC formulation will con-

verge to the same solution as the undecomposed (or

‘‘all-at-once’’) problem, within a user-specified toler-

ance (Michalek and Papalambros, 2004a).

Using ATC can be advantageous because it organ-

izes and separates models and information by focus or

discipline, providing communication only where nec-

essary. Some problems that are computationally dif-

ficult or impossible to solve all at once can be solved

using ATC, and in some cases ATC can result in im-

proved computational efficiency because the formu-

lation of each individual element typically has fewer

degrees of freedom and fewer constraints than the all-

at-once formulation.

As mentioned earlier, the formulation and example

presented in this article contains a hierarchy of only

two elements: the marketing product planning sub-

problem M and the engineering design subproblem E,

which is the child (sublevel) of M. However, for com-

plex systems ATC allows the flexibility to model the

engineering design subproblem as a hierarchy of sub-

systems and components rather than with a single el-

ement. It is possible to conceive of a formulation

where marketing tasks are also modeled as a hierarchy

such that the product planning subsystem interacts

with engineering design while other subsystems rep-

resent other aspects of the marketing mix such as

promotion, packaging, pricing, and positioning.

In the following subsections, the engineering design

model and product planning model used in this article

are described in detail. Table 1 provides an overview

of the notation.

ATC Engineering Design Subproblem

In the engineering design subproblem, design charac-

teristics z are calculated as functions of the design

variables x using the response functions r(x), where

the variables x are constrained to feasible values

by constraint functions g(x) and h(x). General pro-

cedures for defining design variables x, response

functions r(x), and constraint functions g(x), and

h(x) to define a product design space are well

COMPUTER WORKSTATION

MONITOR COMPUTER KEYBOARD MOUSE

HARD DRIVE MOTHERBOARD CD-ROM DRIVE

PROCESSOR MEMORY FAN CACHE

...

... 

...

... 

...

...

Figure 2. Hypothetical ATC Hierarchy for a Computer Work-
station

Table 1. Summary of Notation Used for Formal ATC Setup

�k k Vector norm r Vector response function that calculates product characteristics
� Term-by-term vector multiplication s Size of the entire market
cI Investment cost v Deterministic component of utility
cV Variable cost per product w Vector of weighting coefficients
g Vector function of inequality constraints x Vector of design variables
h Vector function of equality constraints zE Vector of product characteristics achieved by engineering
j Product index zM Vector of product characteristic targets set by marketing
J Number of product alternatives Z Binary characteristic level indicator variable
k Product characteristic index b Part-worth coefficient
l Product characteristic level index P Profit
p Selling price C Spline function to interpolate part-worths
Pj Probability of choosing alternative j x Random (error) component of utility
q Product demand
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established in the design optimization literature (Pa-

palambros and Wilde, 2000); however, modeling spe-

cifics are entirely product dependent. The objective

function of the engineering subproblem is to mini-

mize deviation between the product characteristics

achieved by the design zE and the targets set by mar-

keting zM. Using ATC notation introduced in

Michalek and Papalambros (2004b), this objective

function is written as

w � ðzM � zEÞk k22; ð1Þ
where kk22 denotes the square of the l2 norm, w is a

weighting coefficient vector, and � indicates term-

by-term multiplication, such that [a1 a2 . . . an] � [b1 b2
. . . bn]5 [ab1 ab2 . . . abn]. For complex products, en-

gineering constraints typically restrict the ability to

meet some combinations of product characteristic tar-

gets, and the ATC process acts to guide marketing in

setting achievable targets while designing feasible

products that meet those targets.

ATC Marketing Product Planning Subproblem

In the marketing planning subproblem, a fairly simple

model of profit, P, is adopted, which in the standard

way is taken to be revenue minus cost, or

P ¼ qðp� cVÞ � cI: ð2Þ
Here, q is the quantity of the product produced and

sold (product demand), p is the selling price, cV is the

variable cost per product, and cI is the investment

cost. It would be possible to augment this model fur-

ther in any number of ways popular in the extant lit-

erature—for example, a discount function to capture

the time value of money, a separate term to account

for fixed costs or salvage value, or a concave loss-like

function for risk and uncertainty. Nevertheless, Eq.

(2) captures the main forces at work and can be mod-

ified readily. Among the firm’s decision variables are

pricing and product characteristics. For simplicity

here the variable and investment costs cV and cI are

considered constant across all possible product de-

signs; however, they also could be written as functions

of the engineering design decisions. Note that overall

demand q depends on price p as well as on product

characteristics z.

To establish a plausible demand function q as a

function of the decision variables z and p a straight-

forward version of choice-based conjoint using the

standard logit model is called upon; see, for example,

Louviere and Woodworth (1983) for an early appli-

cation of a similar model. Only the design of a single

product is considered here, and so the types of heter-

ogeneity corrections allowed by more recent latent

class and hierarchical Bayes approaches are less rele-

vant here than they would be in the case of a product

line, thus simplifying implementation considerably.

Andrews et al. (2002b) provided a full discussion of

these issues specifically in the context of conjoint. Fi-

nally, demand is formulated with the producer oper-

ating as a monopolist or at least in a market where the

firm’s decision variables do not result in predictable

systematic variation in the actions of other firms (i.e.,

in a so-called ‘‘zero conjectural variations’’ setting). It

is possible to adopt a game theoretic setting to ac-

count for potential oligopoly, and a version of such a

setup applied in a similar production-based context

can be found in Michalek et al. (2004b).

Demand model. A vast body of work in discrete

choice analysis has enabled the modeling of choices

made in uncertain environments (Train, 2003). As is

typical in marketing applications, this article turns to

a random utility formulation to link observed covari-

ates—here, price and product characteristics—to ob-

served individual-level choices. Formally, there is a set

J of product alternatives numbered 1, 2, . . . , J with

deterministic components {v1, v2, . . . , vJ} and associ-

ated errors {x1, x2, . . . , xJ}. To account for the pos-

sibility of no alternative being acceptable, there is also

an ‘‘outside good,’’ indexed as alternative 0, with er-

ror x0 and attraction value v0 normalized to zero

(v05 0). The probability Pj that a choice of alterna-

tive j is observed is equal to the probability that al-

ternative j has the highest utility:

Pj ¼ Pr vj þ xj � vj0 þ xj0 ; 8j0 2 J
� �

: ð3Þ

Computational efficiency depends critically on the

distribution assumed for the x random error terms

in Eq. (3). Errors can take several forms, and it gen-

erally requires extremely large samples for as-

sumptions about distributional error to have any

substantive impact; consequently, researchers often

work with error specifications allowing the most trac-

tability. For example, if errors are assumed to be nor-

mally distributed, then the form of Pj is called the

multinomial probit model, which does not admit of

closed-form expressions for choice probabilities

in terms of underlying attractions. However, if x
terms are assumed to be Type II extreme-value (or

Gumbel) distributed (i.e., Pr[xox]5 exp[� exp

(� x)]), as in Guadagni and Little (1983), then it can
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be shown that

Pj ¼ evj 1þ
X
j02J

evj0

" #�1

P0 ¼ Pr½NoChoice� ¼ 1þ
X
j02J

evj0

" #�1

;

ð4Þ

where the ‘‘1’’ in the denominator accounts for the

outside good, with v05 0 (see Train 2003, chapter 3

for proof). This form is called the multinomial logit

model (MNL). Note that, even in a monopolist set-

ting, the presence of an outside good ensures that the

probability of ‘‘no choice’’ is always non-zero, and so

choice probabilities for undesirable or overly expen-

sive products will be low.

It is assumed that v can be measured as a function

of observable quantities such as price, product char-

acteristics, consumer characteristics, and so forth.

This article considers only price and product charac-

teristics. A rule is needed for mapping prices and

product characteristics into the deterministic compo-

nent of utility v. A good deal of recent work examines

nonparametric methods for accommodating individ-

ual-level (Kalyanam and Shively, 1998; Kim et al.,

2003c) or latent utility functions (Andrews et al.,

2002a). These, however, are computationally inten-

sive and are difficult to embed within an iterative op-

timization scheme. Instead, this article turns to a

simple linear mapping of product characteristic levels

(conjoint part-worths), using natural splines to inter-

polate intermediate values and noting that any fully

specified, differentiable rule would work equally well.

The observable component of utility vj for product j is

then written as

vj ¼
XK
k¼1

XLk

l¼1

bklZjkl; ð5Þ

where Zjkl is a binary dummy variable such that

Zjkl5 1 indicates alternative j possesses characteris-

tic/price k at level l, and bkl is the ‘‘part-worth’’ co-

efficient of characteristic/price k at level l. In Z the

elements of the product characteristic vector z are

enumerated as k5 {1, 2, . . . K� 1}, and price p in-

cluded as the last term, k5K. Each product charac-

teristic/price k is discretized into Lk levels, l5 {1, 2,

. . . Lk}. One advantage of using discrete levels is that

it does not presume linearity with respect to the con-

tinuous variables. For example, it cannot be assumed

that a US$5 price increase has the same effect for a

$10 product as it does for a $25 product.

Given a set of observed choice data, values can be

found for the b parameters such that the likelihood of

the model predicting the observed data is maximized.

A great deal of research in marketing is devoted to

recovering model parameters through latent classes,

finite mixtures or using hierarchical Bayes methods

(Andrews et al., 2002a); however, here simply the

standard maximum likelihood formulation is used

(Louviere et al., 2000). The log of the sample likeli-

hood for a particular individual on a particular choice

occasion n is

X
j2Jn

Fnj ln

exp
PK
k¼1

PLk

l¼1

bklZjkl

� �

1þ
P

j02Jn

exp
PK
k¼1

PLk

l¼1

bklZj0kl

� �
2
6664

3
7775; ð6Þ

where Fnj5 1 if the observed choice on choice occa-

sion n is alternative j and Fnj5 0 if j is not the ob-

served choice. Here Jn is the set of alternatives

available on choice occasion n. Equation is maxi-

mized with respect to the b terms after summing

across all individuals and choice occasions. In this

way, the part-worth coefficients bkl are obtained for

each level l of each product characteristic/price k.

In all random utility models, such as the logit used

here, one must be careful about model identification;

for example, adding a constant term to all attraction

values v shifts them upward to the same extent and

does not change choice probabilities predicted by the

logit model. Thus, in using (5), there is an infinite

number of solutions for optimal b values that predict

equivalent choice probabilities and therefore have

identical likelihood values. Standard practice is to im-

pose an identification constraint on the system of co-

efficients, which unambiguously chooses just one

among all possible ‘‘optimal’’ solutions. Such con-

straints typically set a linear combination of the coef-

ficients to zero. For clarity, this article selects from

the infinity of equivalent solutions the one solution

where the mean coefficient value
PLk

l¼1
bkl
Lk

� �
is the

same for all k. By adding this constraint the model has

1þ
PK

k¼1 Lk � 1ð Þ degrees of freedom, and the solu-

tion is uniquely defined (i.e., ‘‘identified’’).

The bkl terms represent part-worths of discrete val-

ues but have no information about intermediate val-

ues. To optimize over continuously valued product

characteristics and price, it is necessary to estimate

utilities for such intermediate values. To this end, pol-

ynomial splines are used, because linear splines are
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not differentiable at knots (the estimated values). In

the case study natural cubic splines are used, although

with a greater number of characteristic levels higher-

order splines would be possible. Lastly, then, the de-

terministic component of utility can be written as a

function of the continuous-valued product character-

istics values z and price p using the spline function Ck

of the discrete level part-worths bkl for each charac-

teristic/price k. If price is indexed as k5K, the at-

traction value is written as

vj ¼ C zj; pj
� �

¼
XK�1

k¼1

Ck zj
	 


k

� �
þCK pj

� �
; ð7Þ

where the angle bracket notation hzjik indicates the

kth element of the vector zj.

Thus far, only the question of relative preference

among the alternatives has been taken up, as embod-

ied by choice probability. The model specification is

completed through invoking a known market poten-

tial, s. This is reasonable, given the quasi-monopolist

setting, although it is acknowledged that markets with

some degree of category expansion—as a function of

price and product characteristics—would need to

have market potential measured as a function of those

quantities, after which optimization could be carried

out. Given market potential s, demand qj for product j

is linearly related to choice probabilities:

qj ¼ sPj ¼ senj 1þ
X
j02J

evj0

" #�1

: ð8Þ

Such market potentials can be given exogenously at

the outset or estimated through a variety of tech-

niques based on historical data or test markets [See

Lilien et al. (1992) for a full review of such methods].

It is stressed once again that the ATC methodology

requires only representation of demand as a function

of price and product characteristics, not necessarily

one related to the form chosen for this or any partic-

ular study.

Conjoint analysis. Maximum likelihood estimation

can be used to fit b parameters to any set of observed

choice data; however, collinearities in the character-

istics and price of the choice sets can make accurate

parameter estimation difficult and can cause problems

generalizing to new choice sets (Louviere et al., 2000).

Conjoint analysis (CA) has been used widely to

develop efficient, orthogonal, and balanced survey

designs (experimental designs) to determine which

product characteristics are important to consumers

and appropriate levels for each characteristic. There is

a vast literature on conjoint analysis and appropriate

experimental designs, and the reader should be direct-

ed to any of the classic or recent articles, notably

Louviere’s (1988) expository article, the review by

Green and Srinivasan (1990), or Kuhfeld’s (2003) ex-

haustive account.

Conjoint studies present subjects with a series of

products or product descriptions, which they evalu-

ate. Products can be presented in various ways, but

characteristic levels always are made clear, either in

list form, pictorially, or both. Subjects can indicate

their preferences among products by ranking (i.e.,

putting in an ordered list), rating (for example, on a

1–10 scale), or choosing their favorite from a set. This

article suggests the use of choice-based conjoint for

data collection because it is more natural for respond-

ents (who choose products rather than rating or rank-

ing them in their daily lives). Concordant with

standard practice (Kuhfeld, 2003), efficient designs

are generated to collect maximum information about

preferences with a minimum number of questions, of-

fering successive sets of products and asking which is

most preferred in each or whether none is acceptable

(the ‘‘no choice’’ option).

Complete Formulation

Figure 3 depicts a schematic of the complete ATC

formulation of the product development problem for

a single-product-producing monopolist using the re-

duced variable formulation (substituting for epsilon in

the original formulation) described in Michalek and

Papalambros (2004b). In this formulation there is

only one product, so the product index j is dropped.

In the product planning subproblem, price p and

product characteristic targets zM are chosen to max-

imize profitP while minimizing the deviation between

the product characteristic targets set by marketing

zM and those achieved by the engineering design zE
using weighting coefficients w to specify the trade-

off between the two objectives. Profit P is calculated

as revenue minus cost as in Eq. (2), and demand

q is calculated using the logit model in Eqs. (7)–(8)

with known market potential s. In the engineering

design subproblem, design variables x are chosen to

minimize the deviation between characteristics

achieved by the design zE and targets set by market-

ing zM using Eq. (1) subject to engineering constraints

g(x) and h(x). These two subproblems are solved it-

eratively, each using standard nonlinear programming
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techniques (Papalambros and Wilde, 2000) to solve

each subproblem until the system converges. The weight-

ing update method (Michalek and Papalambros,

2004a) then may be used to find weighting coefficient

values w that produce a solution satisfying user-specified

tolerances for inconsistency between marketing and

engineering for each term in z. This method is impor-

tant for producing consistent solutions in cases where

the top-level subproblem does not have an attainable

target: in this case profit is maximized rather than

setting an attainable profit target.

Empirical Application: Dial-Readout Scales

The potential of the joint marketing and engineering

design model is illustrated in the design of a standard

household dial-readout bathroom scale. Scales pos-

sess a number of attractive features for the purposes

of this article: (1) consumers are nearly uniformly fa-

miliar with them; (2) the ‘‘range’’ of bathroom scales

in the marketplace is relatively small, even among in-

expensive consumer durables, and as such would have

to be considered moderately differentiated at most; (3)

even the best scales are not very costly, so one could

potentially measure price effects well; (4) the number

of characteristics consumers value is not large, the

number of ‘‘levels’’ (part-worths) within each charac-

teristic is reasonable, and characteristics and levels

can be known in advance through prior studies and

on-line data; and (5) lack of mechanical complexity

makes it possible to formulate a small, explicit set of

geometric and physical constraints for the engineering

design subproblem. These simplifications are conven-

ient, but the methodology presented here can be used

for most durable products, even if certain modeling

aspects may vary considerably (in terms of arduous-

ness) among products.

Marketing Planning Subproblem

Marketers first must identify which product charac-

teristics under their control are of interest to consum-

ers and which levels they can distinguish. A great deal

of information on bathroom scales was made availa-

ble to us in a proprietary report indicating which

characteristics figured high in consumer preferences.

Some, like color, could be interchanged or manipu-

lated on the fly without interaction with other scale

components and thus were left out of this study’s ex-

perimental design. It also was considered which char-

acteristics would be especially important to convey in

an online purchase environment, the environment the

current experiment was meant loosely to simulate,

given that the study itself was conducted on the Web.

Finally, it is important that the chosen characteristics

can be quantified directly and can be conveyed easily

to respondents in an unambiguous manner; thus, neb-

ulous descriptors such as ‘‘nicely proportioned’’ were
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Figure 3. ATC Formulation of the Product Planning and Engi-

neering Design Product Development Problem

Table 2. Product Characteristic and Price Levels

k Description Metric Units Levels

z1 Weight Capacity Weight Causing a 3601 Dial Turn lbs 200 250 300 350 400
z2 Aspect Ratio Platform Length Divided by Width — 6/8 7/8 8/8 8/7 8/6
z3 Platform Area Platform Length Times Width in2 100 110 120 130 140
z4 Tick Mark Gap Distance between 1-lb Tick Marks in. 2/32 3/32 4/32 5/32 6/32
z5 Number Size Length of Readout Number in. 0.75 1.00 1.25 1.50 1.75
p Price US Dollars $ 10 15 20 25 30
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eschewed in favor of actual proportions. Five product

characteristics—weight capacity, aspect ratio, plat-

form area, tick mark gap, and number size—plus

price were adopted because of their relevance to con-

sumers and designers as well as their prevalence in

online purchase descriptions and pictures. These ap-

pear, along with the levels for each, in Table 2. Each

characteristic was discretized into five levels, which

allowed adequate spline interpolation (see the Appen-

dix). These levels were chosen to span the range of

values of products in the market based on a sample of

32 different scales sold on the Internet, to ensure re-

alism and to capture realistic anticipated trade-offs.

Characteristics such as brand name were avoided de-

liberately because of great differential familiarity and

lack of a direct tie-in with the design of the underlying

product.

An efficient choice-based conjoint design (50 sets of

three-products, plus ‘‘no choice’’) was used and im-

plemented on the Internet. Respondents were solicited

through announcements on numerous Internet news-

groups as well as through two classes at the University

of Michigan: one in marketing research, the other in

engineering design. All respondents,2 184 in total,

were offered incentives in the form of sweepstakes for

gift certificates in various amounts. A great deal of

effort was put into having the choice task correspond

to the sort found at online shopping sites. To that end,

scales were presented in terms of their underlying

product characteristic information in list format and

pictorially, including a close-up of the dial to facilitate

comparison across the last two characteristics; a

screen capture is provided in Figure 4.

As dictated by the conjoint design, options involv-

ing physically or geometrically infeasible product

characteristic level combinations were included, be-

cause responses were used to measure consumer value

systems (part-worth utilities) and trade-offs, not to be

restricted to feasible designs in the engineering design

subproblem. Not requiring such a feasible set to be

delineated explicitly in advance is among the main

strengths of the ATC approach, as is shown later.

Model parameters were estimated, as described

earlier, using maximum likelihood and a Newton-

type algorithm.3 The resulting b values are listed in

Table 3; these values have been scaled so that the

mean in each set of characteristics is the same. The

average b value for each characteristic is � 0.004,

Figure 4. Online Conjoint Scale Choice Task

2Demographic data also were solicited from respondents. This
study’s sample was 58% male. For men, mean height, weight, and age
were 70.7 inches, 177 pounds, and 28.2, respectively; corresponding
values for women were 64.6 inches, 129 pounds, and 26.5, respectively.
Respondents also were asked three questions relevant to scale purchase
behavior: (1) Do you need vision correction to see clearly at a distance
of 6 feet? (2) Have you tried (deliberately) to lose at least 10 pounds in
the last year? and (3) Have you purchased a scale in the past two years?
Female and male affirmative proportions were {0.49, 0.40, 0.22} and
{0.48, 0.36, 0.22}, respectively and were not statistically distinguisha-
ble. No significant systematic relationships were noted between these
variables and preference patterns in the conjoint task.

3 Estimation for the conjoint model was based on maximum like-
lihood using standard gradient search methods; all starting values
converged to identical optima. At the optimum, the log-likelihood,
LL5 � 10983. This model can be compared to a series of nested al-
ternatives: to a seven-parameter model, which sets equal levels within
characteristics but allows the characteristics themselves to vary
(LL5 � 12066); to a one-parameter model, which estimates only the
‘‘no choice’’ option’s relative attractiveness (LL5 � 12716); and to a
‘zero parameter’ model, which assigns equal probability to all choices
(LL5 � 12753). Each can be rejected very strongly against the pre-
ceding one.
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corresponding to the relative attractiveness of scales

with respect to the ‘‘no choice’’ option, which for

identification purposes has v05 0 identically. These

values show reasonable trends: respondents monoton-

ically prefer larger numbers and lower cost but have

interior preferences for weight capacity, platform

area, shape (aspect ratio), and interval mark gap.

One might argue that more weight capacity is always

better, so body weight data was collected on partic-

ipants. The heaviest was 280 pounds, so none in fact

would have required either of the two highest capacity

levels (therefore the mild utility decline may be attrib-

utable to wanting to avoid excess capacity or even not

wishing to appear as if it were needed). Natural cubic

spline functions Cb, provided in the Appendix, were

fit to these b values for each characteristic and for

price. Based on discussions with a major scale man-

ufacturer, (exogenous) values for cost cV5 $3 per unit

and for initial investment cI5 $1 million were as-

sumed, as well as for market size s, which was set to

5 million, the approximate yearly market for dial

scales in the United States. Using this last figure and

the estimated splines, demand q was computed using

Eqs. (7)–(8).

Engineering Design Subproblem

Reverse engineering was used to create the engineer-

ing design submodel. Three scales of different con-

struction were purchased and were disassembled; this

allowed a determination of the relevant functional

components and their dependencies and interrela-

tions. These are shown in Figure 5a (Michalek et al.,

2004), and the resultant design variables for the engi-

neering design submodel are depicted in Figure 5b.

Analysis of the three different scales indicated they

operated on essentially identical principles. In Figure

5a, levers A create mechanical advantage and trans-

late the force of the user’s weight from the cover B to

coil spring C, which is displaced proportionally to the

applied force; a pivot lever D transfers the vertical

motion of the spring to the horizontal motion of gear

rack E, after which pinion gear F translates the rack’s

linear motion to rotation of the dial G. Although this

basic topology is common to the three scales exam-

ined, dimensions vary; for example, the ratio of dial-

turn per applied force depends on the dimensions of

the levers, the rack and pinion, and the spring prop-

erties. Because the topology is common, it is possible

to represent a parametric space of design alternatives

using a set of design variables. Figure 5b shows the set

of 14 design variables chosen for this study, all of

which are real-valued, positive, and continuous in na-

ture. Other dimensions were considered to be fixed

parameters y with values based on the observed scales,

as shown in Table 4.

Constraint functions. Eight mathematical constraint

functions g(x) were developed based on geometric and

mechanical relationships to ensure that the design

B 

A 

C 

D 

E 

F 

G 

x

x

x

x

x

x

x  (spring 
constant) 

x  (rack length) 
x  (pitch diameter) 

x  (pivot horizontal arm length) 
x  (pivot vertical arm length)

x (dial diameter)

x

x

(a)

(b)

Figure 5. Disassembled Scale Showing (a) Components and (b)

Design Variables

Table 3. Part-Worth Coefficient (b) Values

Weight Capacity Platform Area Size of Number

200 lbs. � 0.534 100 in.2 0.015 0.75 in. � 0.744
250 lbs. 0.129 110 in.2 � 0.098 1.00 in. � 0.198
300 lbs. 0.228 120 in.2 0.049 1.25 in. 0.235
350 lbs. 0.104 130 in.2 0.047 1.50 in. 0.291
400 lbs. 0.052 140 in.2 � 0.033 1.75 in. 0.396

Platform
Aspect Ratio

Interval Mark Gap Price

0.75 � 0.058 2/32 in. � 0.366 $10 0.719
0.88 0.253 3/32 in. � 0.164 $15 0.482
1.00 0.278 4/32 in. 0.215 $20 0.054
1.14 � 0.025 5/32 in. 0.194 $25 � 0.368
1.33 � 0.467 6/32 in. 0.100 $30 � 0.908
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variable vector x represents a meaningful, feasible de-

sign. First, the dial (G) diameter x12 must be small

enough to fit inside the base widthwise, where the base

width is measured as the cover width x14 minus the gap

y1 between the cover and the base on both sides:

x12 � x14 � 2y1: ð9Þ

The dial G also must fit lengthwise inside the scale

base (x13� 2y1) with sufficient room for the spring

plate (x7þ y9):

x12 � x13 � 2y1 � x7 � y9: ð10Þ

The length of the short levers (x4þ x5) must be small

enough to fit inside the base lengthwise (x13� 2y1):

x4 þ x5ð Þ � x13 � 2y1: ð11Þ

The position along the long lever of the short lever

joint x5 must be within the bounds of the long lever

length x2:

x5 � x2: ð12Þ

In the fully extended position, the end of the rack E

(x7þ y9þ x11þ x8) must fit inside the scale body

lengthwise (x13� 2y1):

x7 þ y9 þ x11 þ x8 � x13 � 2y1: ð13Þ

However, the length x8 of the rack E must be long

enough to span the space between the pivot lever D

and the pinion F:

x8 � x13 � 2y1ð Þ � x12

2
þ y7

� �
� x7 � y9 � x10: ð14Þ

The two long levers connect to the top edge of the

base rather than the side. Therefore, the lever length

(x1þ x2) is limited by the width dimension of the scale

body (x14� 2y1). Using the Pythagorean Theorem,

ðx1 þ x2Þ2 � ðx13 � 2y1 � x7Þ2

þ x14 � 2y1

2

� �2

: ð15Þ

However, for stability the long levers must be long

enough (x1þ x2) to attach to the top edge of the base

at a minimum distance y13 from the centerline. Again,

using the Pythagorean Theorem,

x1 þ x2ð Þ2� x13 � 2y1 � x7ð Þ2þy213: ð16Þ
In addition, simple bounds are provided to ensure

that all variables are positive. Given that all x are

positive, any real-valued vector x that satisfies Eqs.

(10)–(16) represents a valid, feasible design.

Response functions. Next, the response functions

r(x) that calculate product characteristics z in terms of

the design variables x are defined. Assuming the scale

is made up of rigid bodies (except for the spring) and

using standard static force and moment balancing

(Hibbeler, 1993), the weight capacity z1 can be derived

as a function of the position of the cover force on the

long (x1) and short (x3) levers, the length of the long

(x1þ x2) and short (x3þ x4) levers, the position of the

joint x5, the dimensions of the pivot (x10 and x11), the

pitch diameter of the pinion x9, and the spring con-

stant x6:

z1 ¼
4px6x9x10 x1 þ x2ð Þ x3 þ x4ð Þ
x11 x1 x3 þ x4ð Þ þ x3 x1 þ x5ð Þð Þ : ð17Þ

The aspect ratio is the length of the cover divided by

its width:

z2 ¼
x13

x14
: ð18Þ

The area of the scale cover is its length times its width:

z3 ¼ x13x14: ð19Þ
The arc length of the gap between 1–lb interval tick

marks is proportional to the dial diameter x12 and

inversely proportional to the weight capacity z1 [see

Eq. (17)]:

z4 ¼ p
x12

z1
: ð20Þ

Finally, the number length, a measure of overall print-

ed number size, is calculated in terms of the dial di-

ameter x12 and weight capacity z1 using trigonometry

based on the fixed span of numbers along the tick

marks y10 (the printed number is assumed to span a

fixed number of tick marks), the positioning of the

numbers on the dial y11, and the aspect ratio (length/

Table 4. Engineering Design Model Parameters

Name Description Value Units

y1 Gap between Base and Cover 0.30 in
y2 Minimum Distance between

Spring and Base
0.50 in

y3 Internal Thickness of Scale 1.90 in
y4 Minimum Pinion Pitch Diameter 0.25 in
y5 Length of Window 3.00 in
y6 Width of Window 2.00 in
y7 Distance between Top of Cover

and Window
1.13 in

y8 Number of lbs Measured per Tick Mark 1.00 lbs
y9 Horizontal Distance between

Spring and Pivot
1.10 in

y10 Length of Tick MarkþGap to Number 0.31 in
y11 Number of lbs that Number Length Spans 16.00 lbs
y12 Aspect Ratio of Number (Length/Width) 1.29 —
y13 Minimum Allowable Distance of

Lever at Base to Centerline
4.00 in
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width) of the rectangular space allocated for the

number y12:

z5 ¼
2tan

py11
z1

� �� �
x12

2
� y10

� �

1þ 2

y12
tan

py11
z1

� �� � : ð21Þ

Equations (17)–(21) form the vector function r(x),

which maps design variables x onto product charac-

teristics z so that product characteristics can be cal-

culated for any design. The design variables x are

constrained to feasible values by the constraint func-

tions g(x); therefore, the resultant product character-

istics z5 r(x) also are restricted to feasible

combinations.4

Results

The engineering design and marketing subproblems

were solved iteratively until convergence using the

Matlab function fmincon, based on the sequential

quadratic programming method (Papalambros and

Wilde, 2000), to solve each subproblem. This gradi-

ent-based search algorithm generates local optima,

and global optima can be found only through multi-

start. The reported solution represents the best local

optimizer found over several starting points based on

the dimensions of scales used for reverse engineering.5

At the solution, shown in 0 the optimal scale design is

bounded by active engineering constraints that ensure

the dial, the spring plate, and the levers are not too

large to fit inside the scale. The optimal scale charac-

teristics are within the range of scales found in online

e-commerce, and none of the variable bounds are ac-

tive except for x7, which is unique because it is ex-

plicitly bound by the specified parameter value of y2
rather than by an arbitrary bound.

In the engineering model, several product charac-

teristics are functions of the ratios of some of the de-

sign variables. For example, an increase in lever

length can be traded off for a changed spring con-

stant, force placement, pinion gear pitch diameter, or

pivot lever dimensions to yield an equivalent weight

capacity. This means that two different designs with

appropriate design variable ratios may exhibit the

same product characteristics and also that an infinite

number of design solutions are equivalent from a

marketing perspective. One such design is reported

in Table 5. Additional models representing cost struc-

tures in terms of design variables or part commonality

among product variants in a product line could be

used to select a single design among the set of other-

wise equivalent designs; however, this possibility has

not been explored here.

Comparison of ATC with Disjoint Decision-Making

One might question whether the joint method pro-

posed here has a substantial impact on product design

and, ultimately, resulting profit. The role of ATC in

avoiding infeasible products has been emphasized;

however, this example demonstrates the impact

ATC can have on profitability. Let us examine a

case of disjoint decision-making by marketing and

engineering design, similar to the methodology pro-

posed by Cooper et al. (2003), where (1) marketing

defines desired product characteristics; (2) engineering

designs a feasible product to meet the requested char-

acteristics as closely as possible; and (3) marketing

prices the actualized product.

In the first step, marketing chooses the optimal

price and product characteristic combination condi-

tional on the monopolist/single-product framework

and known consumer preference data (arrived at us-

ing conjoint, a discrete choice model, and the profit

function). This step is referred to as analytical target

setting (Cooper et al., 2003). Based on the optimal

price and characteristics at this stage, expected price,

market share, and profit are $28.04, 64.3%, and

$79.5M, respectively, as shown in Table 6. There is

no guarantee that a feasible product can be designed

that exhibits the desired target characteristics. So,

4The entire system, including the marketing and engineering design
submodels and all supporting data, is available from the authors in the
research section of http://ode.engin.umich.edu.

5 The individual marketing and engineering design subproblems
were solved using the Matlab 6.5.1 function fmincon, based on the
sequential quadratic programming method (Papalambros and Wilde,
2000). Default parameters settings were used to define the fmincon al-
gorithm except for a setting of DiffMaxChange5 10� 6 was used for
both subproblems to force tight finite differencing steps for better de-
rivative approximations. Convergence of the ATC subproblem coor-
dination was strictly defined as occurring when the engineering design
subproblem and the marketing subproblem each are unable to improve
the respective objective function value from the value using the optimal
solution in the previous iteration. The number of ATC coordination
iterations required to converge varies depending on the starting point
and weighting coefficients used. Using the starting point generated
by the disjoint case with weighting coefficients of 105 , the system con-
verged in 1815 ATC iterations (each subproblem solved 1,815 times,
taking on the order of one second each iteration), and the resulting
inconsistency between marketing targets and engineering design char-
acteristics are less than 0.3% for all characteristics. Use of smaller
weighting coefficients yields faster convergence but greater inconsis-
tency between marketing targets and engineering design characteristics
[See Michalek and Papalambros (2004a) for details]. For example,
weighting coefficients of 104 yield convergence in only 31 ATC itera-
tions with inconsistencies less than 10% for all characteristics.
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engineering designs a feasible product that meets the

product characteristics requested by marketing as

closely as possible. At this point the product design

is considered fixed, but price is an easily changed var-

iable, so it can be reconsidered based on the charac-

teristics of the achieved design [a simple form of

Cooper et al.’s (2003) ‘‘Reduced ATS’’ problem].

The resulting price, share, and profit in this scenario

are $25.54, 54.8%, and $60.8M, respectively, as

shown in Table 6. This involves a sizeable decrease

in price and share and a truly enormous drop in profit

from what marketing had planned originally using

target product characteristics. Consumers often desire

combinations of product characteristic values that are

difficult or impossible to produce together, so it is

important to examine the realizable share and profit

levels. In a scenario such as this, marketing may ac-

cuse engineering design of failing to deliver, while en-

gineering design may blame marketing for requesting

a product that could not be built, causing substantial

unnecessary compromises in the final product design.

With contingent, sequential decision-making each

side would be in the right from its own perspective,

but the final decisions would be inferior.

For comparison, let these two groups use ATC as a

tool for communication, considering both the trade-

offs among desirable product characteristics and the

feasibility of obtaining these characteristics. In this

case, an entirely different product is designed, with

price, market share, and profit of $26.41, 59.0%, and

$68.0M, respectively, as shown in Table 6. Although

the price is not much higher than in the disjoint case

above, share and profit are improved significantly.

This difference in profitability is nontrivial, approxi-

mately $7,200,000, a 12% increase over the ‘‘best fea-

sible’’ design offered by engineering design based on

‘‘optimal’’ marketing target specifications alone. Thus,

ATC, using the same submodels, converges to a jointly

optimal solution offering far better market prospects.

Conclusions

From the perspective of the producer, marketing and

engineering design ideally work together to achieve a

Table 5. Optimal Scale Design

Variable and Description Value Lower Bound Upper Bound

Marketing Variables z1 Weight Capacity 254 lbs. 200 lbs. 400 lbs.
z2 Aspect Ratio 0.997 0.75 1.33
z3 Platform Area 133 in2 100 in2 140 in2

z4 Tick Mark Gap 0.116 in. 1/16 in. 3/16 in.
z5 Number Size 1.33 in. 0.75 in. 1.75
p Price $26.41 $10.00 $30.00

Engineering Variables x1 Length from Base to Force on Long Lever 2.30 in. 0.125 in. 36 in.
x2 Length from Force to Spring on Long Lever 8.87 in. 0.125 in. 36 in.
x3 Length from Base to Force on Short Lever 1.34 in. 0.125 in. 24 in.
x4 Length from Force to Joint on Short Lever 1.75 in. 0.125 in. 24 in.
x5 Length from Force to Joint on Long Lever 0.41 in. 0.125 in. 36 in.
x6 Spring Constant 95.7 lb./in. 1.00 lb./in. 200 lb./in.
x7 Distance from Base Edge to Spring 0.50 in. 0.50 in. 12 in.
x8 Length of Rack 7.44 in. 1.00 in. 36 in.
x9 Pitch Diameter of Pinion 0.25 in. 0.25 in. 24 in.

x10 Length of Pivot’s Horizontal Arm 0.50 in. 0.50 in. 1.9 in.
x11 Length of Pivot’s Vertical Arm 1.90 in. 0.50 in. 1.9 in.
x12 Dial Diameter 9.34 in. 1.00 in. 36 in.
x13 Cover Length 11.54 in. 1.00 in. 36 in.
x14 Cover Width 11.57 in. 1.00 in. 36 in.

Table 6. Optimal Product Characteristic Levels, Prices,
Shares and Profits in Three Scenarios

Description Unit

Disjoint Joint

Initial
Marketing

Plan

Final
Product
Design ATC

z1 Weight Capacity lbs 283 222 254
z2 Aspect Ratio — 0.946 1.041 0.997
z3 Platform Area in.2 124.2 127.8 133.4
z4 Tick Mark Gap in. 0.136 0.1322 0.116
z5 Number Size in. 1.75 1.478 1.33
p Price $ $28.04 $25.54 $26.41
Pj Market Share % 64.3% 54.8% 59.0%
P Profit $ $79.5 M $60.8 M $68.0 M
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common goal: creating the product with greatest val-

ue for the firm. As detailed here and in earlier cited

research, goals, language and modes of operation in

the two disciplines tend to insulate each from the other.

The practical upshot is that each tends to solve prob-

lems relative to constraints ‘‘exogenously’’ set by the

other. The proposed methodology, based on analyt-

ical target cascading, allows the disciplines to remain

independent yet to link their product subproblems

formally, using time-tested models from both fields.

It is instructive to consider what this joint meth-

odology offers each of the constituent communities.

For the marketing community, ATC goes beyond

merely facilitating communication and cutting down

time-consuming iterations; it helps whenever market-

ers confront even moderately complex products and/

or production processes in which some combinations

of desired characteristics are technologically imprac-

tical or even physically impossible. This feasible set of

products is seldom one that can be described easily in

the product characteristic space and is ordinarily a

function of the technical decisions of the product. In

short, the method allows marketers to dispense, at

least initially, with questions of ‘‘what can be made?’’

and to focus instead on what they do best: discerning

what consumers most value.

The method offers distinct benefits for the engi-

neering design community. The main one is that of

helping to ‘‘contextualize’’ design decisions within the

larger framework of the firm and how it satisfies its

customer base. Instead of resolving engineering trade-

offs—for example, among competing performance

objectives, as in multiobjective optimization—purely

in terms of technological or physical possibility, it al-

lows such decisions to be tied directly into the firm’s

overall objective, that of producing a successful and

profitable product. The proposed methods would al-

low, for example, sensitivity analysis, where small de-

sign changes could be mapped to their eventual profit

implications. Such an analysis would be unthinkable

without a conjoined system of consumer needs and

resultant demand, as provided by the marketing sub-

model and linked through ATC.

This article is intended as an introduction to a

methodology that can be extended readily to far

greater complexity using known methods. For exam-

ple, this study’s consumer response model was made

as simple as possible, based on a homogenous-coeffi-

cient logit model. Well-known hierarchical Bayes

methods could be substituted to allow inference for

heterogeneous populations, and probit models with

full error covariance could help account for potential

IIA problems (Kahneman and Tversky, 1979), albeit

at great loss of tractability. In turn, models allowing

heterogeneous preferences (and thus demand) would

allow one to design product lines. The present authors

intend to report on such an extension in future work.

It even would be possible to improve extant conjoint

methods by allowing them to generate only feasible

tasks: those that maximize utility measurement accu-

racy within the range of technologically possible prod-

uct configurations.

On the engineering side, great emphasis was placed

on an overarching engineering design submodel,

which was based on a single product topology appro-

priate for rectangular dial-readout scales. Product va-

riety could be enhanced by incorporating multiple

product topologies, with the potential for automatic

topology generation (as in, for example, Campbell

et al., 1998). A deliberately simplistic cost model also

was chosen for illustration; however, more detailed

cost models can be integrated to the engineering de-

cision model. By doing so, it would be possible to

have another sort of feedback, wherein the marketing

submodel sets target production cost and the engi-

neering design submodel designs feasible products

that meet cost targets. Product lines or families can

be accommodated on the engineering side as well, en-

abling study of component- and process-sharing ef-

fects on the production cost structure (Fellini et al.,

2003) or the use of flexible and reconfigurable man-

ufacturing equipment (Koren et al., 1999).

In closing, there are several points to stress for both

communities. The first involves the viewpoint, com-

mon in marketing, that design constraints generally

can be overcome by allotting appropriate funds. In

some cases they cannot. Marketing methods must

learn to take note not only of costly designs but also

of utterly infeasible ones, a concept foundational in

the ATC formulation presented here. The present au-

thors believe this can only improve predictive accura-

cy and simultaneously can reduce data requirements

for the dominant models used in new product fore-

casting. In parallel, the engineering design community

must accept that price and consumer preferences are

aspects of design just as real as those determined by

physics. Second, determining which product charac-

teristic combinations are infeasible can be exception-

ally difficult even when producing only a single

product as simple as the scales considered in this ar-

ticle. Even if infeasible combinations are eliminated

in conjoint questions, optimal designs still may be
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infeasible; this is particularly important for continu-

ous variable formulations. The ATC approach allows

marketing and engineering design to formulate their

own submodels, using methods most familiar to each,

and to link them afterward, so that an optimal joint

decision can be reached. Finally, designs reached

using ATC necessarily converge on joint optimality

and, as such, guarantee better profitability—or any

other chosen metric—than the suboptimal solutions

achieved by solving the engineering design and mar-

keting design problems sequentially. Given its relative

ease of implementation, this last benefit may prove a

deciding factor in the willingness of firms to adopt

ATC processes for complex design projects.
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Appendix

Spline-Interpolated Part-Worths
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