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Motivation

Absent dimensions occur in multivariate
problems when one or more dimensions are
completely unobserved for some sampling
units

It differs from usual missing data problems in
that both the independent and dependent
variables are unobserved

Problem is so pervasive that researchers may
not recognize that they have absent
dimensions
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Examples

Not all stores carry all brands in every time
period

Sales are missing for absent dimensions
Marketing mix is missing

Not all choice sets include every brand in
CBC Study

Different schools offer different educational
programs
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So What?

Imputing both independent and dependent
observations for absent dimension is
ill-poised problem in many contexts

Likelihood function is well-defined, but
Multivariate observations have different
lengths
Inverted Wishart is no longer conjugate for
the error covariance matrix
Could do it with Metropolis, but that is not
fun
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Common Kludge # 1

Restrict analysis to subset of dimensions that
are present across all units

Example: brand demand study
Exclude small-share brands
Focus on national brands and store brand
Distorts market analysis

Example: educational outcome study
Focus on common set of programs
Potentially biases outcomes
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Common Kludge # 2

Ignore error correlations

Example: CBC Brand Study
More brands in study than alternatives in
choice sets
Distorts estimated heterogeneity
Misleading market share simulations
IIA worries
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Common Kludge # 3

Pool absent dimensions into “Other”
dimension

Keeps full covariance

Meaning of “Other” is problematic
Demand for “Other”?
Marketing mix for “Other”?
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Simple Solution

In MCMC impute the missing error term for
the absent dimensions

Continue as though you have the full data set

Adds about three lines of code

Adds an indicator for absent dimensions to
data structure
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Multivariate Regression

Model: for i = 1, . . . , n

Yi = Xiβ + ǫi with ǫi ∼ Nm(0,Σ)

Priors β ∼ Np(b0, V0) and Σ ∼ IWm(f0, S0)

A(i) is set of indices for the absent
dimensions with #A(i) = mi

P(i) is set of indices for the present
dimensions with #P(i) = m−mi
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MCMC: Initial Assignment

Initialization of absent dimensions
YA(i) ← 0

XA(i) ← 0

Setting XA(i) to zero facilitates draws of the
regression coefficients from their full
conditional distributions
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MCMC: Absent Residuals

Present residuals: RP(i) = YP(i) −XP(i)β

Absent residuals from conditional normal

RA(i)|RP(i),Σ, β ∼ Nm−mi
(µA(i)|P(i),ΣA(i)|P(i))

Conditional mean

µA(i)|P(i) = ΣA(i),P(i)Σ
−1
P(i),P(i)RP(i)

Conditional covariance

ΣA(i)|P(i) = ΣA(i),A(i)−ΣA(i),P(i)Σ
−1
P(i),P(i)ΣP(i),A(i)

SBIES University of Iowa April 28–29, 2006 – p. 12



MCMC: Update Assignment

YA(i) ← RA(i)

XA(i) ← 0
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MCMC: β and Σ

β| Rest ∼ Np (bn, Vn)

Vn =
(

V −1
0 +

∑n

i=1 X ′iΣ
−1Xi

)−1

bn = Vn

(

V −1
0 b0 +

∑n

i=1 XiΣ
−1Yi

)

Σ|Rest ∼ IWm(fn, Sn)

fn = f0 + n

Sn = S0 +
∑n

i=1 (Yi −Xiβ) (Yi −Xiβ)′

Same code as though all dimensions are
present because
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Two Simulations

m = 3; n = 500, and p = 2

One dimension is absent for each observation

Simulation A
Observe all pairs of present dimensions
{1,2}, {1,3}, and {2,3}

Simulation B
Only observe pairs {1,2} and {2,3}
No sample information about σ1,3
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Regression Coefficients

Recovers true values
Simulation A Simulation B

Coefficient True Mean STD Mean STD

β1 1.0 1.057 0.036 1.062 0.042

β2 -1.0 -0.958 0.033 -0.953 0.040
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Error Variance

Estimate of σ1,3 for Simulation B is based on
prior, but other parameters are recovered

Simulation A Simulation B

Covariance True Mean STD Mean STD

σ1,1 1.0 0.990 0.074 0.900 0.082

σ1,2 0.6 0.622 0.078 0.586 0.076

σ1,3 -0.5 -0.445 0.059 0.072 0.451

σ2,2 1.4 1.358 0.105 1.517 0.096

σ2,3 0.0 0.132 0.080 0.100 0.064

σ3,3 0.8 0.809 0.062 0.724 0.065
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Simulation A: Error Variance
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Simulation B: Error Variance
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Mixing

Pay a small price in mixing of the MCMC
chain

Simulation
n = 500; m = 3; p = 4
Full data set
1
3 of the dimensions were randomly deleted

Posterior means are close for full and
absent cases
Posterior standard deviations are small for
full case
ACF on next slide
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Full versus Absent ACF
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HB Multivariate Regression

Model: for j = 1, . . . , ni and i = 1, . . . , N

Yij = Xijβi + ǫij with ǫi ∼ Nm(0,Σ)

βi = Θ′zi + δi with δi ∼ Np (0,Λ)

Priors

Σ ∼ IWm(f0, S0)

Λ ∼ IWp(g0, T0)

~Θ′ ∼ Npq (U0, V0)
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Analysis

Full conditional distribution of the residuals
RA(i,j) for the absent dimensions has a
conditional normal distribution given RP(i,j)

Simulation
m = 4; p = 5, and q = 3 (covariate zi)
N = 500 and 11 ≤ ni ≤ 20

One or two absent dimensions for each
observation
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Fit Statistics for βi

Correlation RMSE

Intercept 1 0.972 1.824

Intercept 2 0.732 1.970

Intercept 3 0.692 2.140

Intercept 4 0.864 2.319

X1 0.998 0.364

X2 0.969 0.662
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Error Variance

True Y1 Y2 Y3 Y4

Y1 1.0 0.1 0.0 1.0

Y2 0.1 4.0 0.0 4.1

Y3 0.0 0.0 9.0 0.0

Y4 1.0 4.1 0.0 21.0

Bayes Y1 Y2 Y3 Y4

Y1 1.004 0.068 0.154 0.935

Y2 0.068 4.052 0.180 4.111

Y3 0.154 0.180 9.131 0.166

Y4 0.935 4.111 0.166 21.529
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Explained Heterogeneity Θ

True CNST 1 CNST 2 CNST 3 CNST 4 X1 X2

CNST -15.0 -5.0 5.0 20.0 -5.0 3.0

Z1 2.0 1.0 0.0 -2.0 1.0 -0.2

Z2 -1.0 -0.5 0.0 1.0 -0.2 0.5

Bayes CNST 1 CNST 2 CNST 3 CNST 4 X1 X2

CNST -14.778 -6.497 5.521 18.754 -4.168 -2.199

Z1 1.745 0.920 -0.203 -2.148 0.951 0.282

Z2 -0.798 -0.295 0.070 1.333 -0.186 0.530
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Unexplained Heterogeneity Λ

True CNST 1 CNST 2 CNST 3 CNST 4 X1 X2

CNST 1 0.250 -0.500 0.750 0.000 0.125 -0.150

CNST 2 -0.500 2.000 -1.000 0.000 -0.750 -0.700

CNST 3 0.750 -1.000 4.750 0.000 1.625 -0.875

CNST 4 0.000 0.000 0.000 4.000 0.000 0.000

X1 0.125 -0.750 1.625 0.000 7.563 2.975

X2 -0.150 -0.700 -0.875 0.000 2.975 11.093

Bayes CNST 1 CNST 2 CNST 3 CNST 4 X1 X2

CNST 1 0.277 -0.002 -0.107 0.251 0.432 0.586

CNST 2 -0.002 2.160 -1.571 -0.421 0.034 0.252

CNST 3 -0.107 -1.571 3.363 -1.207 2.255 -0.377

CNST 4 0.251 -0.421 -1.207 3.951 0.726 0.678

X1 0.432 0.034 2.255 0.726 8.586 3.281

X2 0.586 0.252 -0.377 0.678 3.281 10.414
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HB Multinomial Probit

Varying choice sets P(i, j)

Random Utility Model

Yij = Xijβi + ǫij with ǫi ∼ NP(i,j)(0,Σ)

βi = Θ′zi + δi with δi ∼ Np (0,Λ)

Generate YP(i,j) given RA(i,j) to satisfy order
condition that the utility for the observed
choice exceeds the other

Generate RA(i,j) given YP(i,j): no side
conditions
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CBC Experiment

Sawtooth Software Data

326 IT purchasing managers

PC Profiles
5 brands of PC
4 Product attributes with 3 levels each
4 levels for Price

8 Choice tasks per subject

3 Profiles per task plus “None”

Firm and purchasing manager covariates
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Models

Model 1: impute absent dimensions
Errors associated with 5 brand concepts
3 brands in each choice task
2 absent dimensions

Model 2: independent errors
Each brand has differen error variance
Zero covariances

Model 3: errors go with presentation order

Last profile held-out for predictive accuracy
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Error Variances: Model 1

Brand A Brand B Brand C Brand D Brand E

Brand A 0.889 0.174 -0.156 -0.716 0.040

Brand B 0.174 0.860 0.055 0.037 -0.564

Brand C -0.156 0.055 0.961 -0.247 -0.754

Brand D -0.716 0.037 -0.247 0.875 0.135

Brand E 0.040 -0.564 -0.754 0.135 1.000
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Error Variances: Models 2 and 3

Model 2 Brand A Brand B Brand C Brand D Brand E

Brand A 1.042 0.000 0.000 0.000 0.000

Brand B 0.000 1.041 0.000 0.000 0.000

Brand C 0.000 0.000 1.053 0.000 0.000

Brand D 0.000 0.000 0.000 1.036 0.000

Brand E 0.000 0.000 0.000 0.000 1.000

Model 3 Order 1 Order 2 Order 3

Order 1 1.386 -0.569 -0.617

Order 2 -0.569 1.107 -0.535

Order 3 -0.617 -0.535 1.000
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Estimation Results

Estimated partworths and explained
heterogeneity tend to be similar for all three
models

Pattern of “important” factors differ

Unexplained heterogeneity is much larger for
Model 2 than Models 1 and 3

Assuming independent errors seems to
move error variation to partworth
heterogeneity
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Hold-Out Predictive Performance

Hit Rate Improvement
Model 1 56.6%
Model 2 52.2% 8.4%
Model 3 48.8% 16.1%

Brier Score Reduction
Model 1 0.377
Model 2 0.479 21.4%
Model 3 0.508 25.8%
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Conclusion

Absent dimensions occur frequently

Complicates estimation, especially of
variances

Ad hoc approaches
“Data washing”
Assume it away with independence

Imputing absent residuals is effective and
easy
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