Gauss Programs for
Bayesian Inference and
Markov Chain Monte Carlo

November 2001

Peter Lenk
Contents

1 Getting Started with GAUSS

1.1 What is Gauss? 3
1.2 Scalars, Vectors, and Matrices 4
1.3 Operators 7
1.4 Matrix Functions 8
1.5 Files, Input & Output 11

2 GAUSS Libraries 17

2.1 SRC Files 19

3 Linear Regression 29

3.1 Data Generation 30
8 Logit Model

 8.1 Data Generation 146

 8.2 Bayesian Analysis 152
Chapter 1

Getting Started with GAUSS
CHAPTER 1. GETTING STARTED WITH GAUSS

Outline

1. What is Gauss?
2. Scalars, Vectors, and Matrices
3. Operators
4. Matrix Functions
5. Files, Input & Output
1.1 What is Gauss?

Gauss is a matrix based language with many built-in functions. The basic data structures in Gauss are matrices. Special cases are vectors and scalars. Operators are matrix operators. It also has a full range of graphical features and random number generators.
1.2 Scalars, Vectors, and Matrices

1. Define scalars:

\[c = 4; d = 2; \]

2. Define a row vector:

\[x = \{ 1 2 3 4 \}; \]

Type “print x;”

3. Define a column vector:

\[x = \{ 1, 2, 3, 4 \}; \]

Type “print x;”

4. Do you ever need a sequence of numbers?

\[x = \text{seqa}(1, d, c); \]

5. Define a matrix (entered by rows):

\[amat = \{ 1 2 3, 4 5 6, 7 8 9, 10 11 12 \}; \]

Type “print amat;”
6. Do you ever need a matrix of zeros

\[cmat = \text{zeros}(5, 3); \]

or ones?

\[dmat = \text{ones}(2, 4); \]

What about the identity matrix:

\[idmat = \text{eye}(c); \]
7. You can get submatrices:

\[
\begin{align*}
\text{ar1} &= \text{amat}[1, .]; \ \text{@Row 1@} \\
\text{ar24} &= \text{amat}[2:4, .]; \ \text{@Rows 2 thru 4@} \\
\text{ac2} &= \text{amat}[., 2]; \ \text{@Column 2@} \\
\text{ac23} &= \text{amat}[., 2:3]; \ \text{@Columns 2 and 3@} \\
\text{asub} &= \text{amat}[2:4, 2:3]; \ \text{@What is it?@}
\end{align*}
\]
1.3 Operators

1. Matrix multiplication is simple:

\[
\begin{array}{c}
\text{bmat} = \begin{bmatrix} 20 & 21 \\ 22 & 23 \\ 24 & 25 \end{bmatrix}; \\
\text{cmat} = \text{amat} \ast \text{bmat};
\end{array}
\]

2. Matrix transpose is: \(\text{amatt} = \text{amat}' \);

3. How about: \(\text{dmat} = x' \text{amat} \);

4. Try \(z = x + \text{amat} \);

5. Here is something different:

\(y = x \ast \text{amat}; \) @ Element by element multiplication @

6. Try this out:

\(z = x \ast \ast \text{amat}; \) @ Kronecker product @
1.4 Matrix Functions

1. Suppose you have a positive definite covariance matrix:

\[
\sigma = \begin{bmatrix}
2 & .8 & -.5 \\
.8 & 1 & -.3 \\
-.5 & -.3 & .7
\end{bmatrix};
\]

2. You can invert it with:

\[
\sigma^{-1} = \text{invpd}(\sigma);
\]

Check it with:

\[
a = \sigma \ast \sigma^{-1};
\]

3. Its determinate is

\[
det\sigma = \text{det}(\sigma);
\]
4. Its Cholesky decomposition:

\[
\text{sig12} = \text{chol}(\sigma);
\]

Check

\[
a = \text{sig12}' \text{sig12}
\]

5. We use this in generating \(N(y|\mu, \Sigma) \):

\[
\mu = \{1, 5, 10\};
\]

\[
y = \mu + \text{sig12}' \text{rndn}(3, 1);
\]

Cool! Note that \(\text{rndn}(3, 1) \) gives a vector of independent, standard normals. \(\text{rndn}(3, 10) \) gives a 3 by 10 matrix of standard normals.
6. Try

\[y = mu' + \text{rndn}(100, 3) \times sig12; \]

\[ybar = \text{meanc}(y); \]

\[ystd = \text{stdc}(y); \]

\[ycor = \text{corrx}(y); \]

\(\{f, m, p\} = \text{hist}(y[, 1], 10); \)

library pgraph;

\(\{f, m, p\} = \text{hist}(y[, 1], 10); \)

xy(y[., 1], y[., 2]);

.plctrl = -1;

xy(y[., 1], y[., 2]);

graphset;
1.5 Files, Input & Output

1. ASCII Files & Simple Data Files

- **Read ASCII File**

  ```
  load xdata[10,3] = "c:\mcmc\inout\data0.txt";
  @ data0.txt has 10 rows and 3 columns @
  @ data0.txt does not have variable names @
  @ xdata is a 10 by 3 matrix in Gauss @
  print xdata;
  ```

- **Save a matrix from GAUSS.**

  ```
  save ydata = xdata;
  @ Save xdata into file ydata.fmt @
  ```

- **Load a .FMT File.**

  ```
  load zdata = ydata;
  @ load file ydata into zdata @
  ```
2. GAUSS Files:

- Creating a GAUSS data file.

 new; @ Clear memory @
 @ Generate some data @
 nobs = 100; @ number of observations @
 nvars = 5; @ number of variables @
 vdata = rndn(100,5); @ 100 by 5 matrix of standard normals @

 @ Character vector of variables names @
 let vnames = var1 var2 var3 var4 var5;

 @ Create the Gauss file vdatag @
 create f1 = vdatag with ^vnames, 0, 8;
 @ The data is written to vdatag.dat @
 @ Names are in the vdatag.dht @
 @ f1 is the file handle @

 @ Write the matrix vdata to gauss file vdatag @
 wnum = writer(f1,vdata);
 @ wnum = number of observations written to f1 @

 @ Close the file @
 cok = close(f1);
 @ cok = 0 if successful; = -1 if unsuccessful @
• Reading a GAUSS file.

```gauss
new; @ Clears memory @
infile = "vdatag"; @ Name of Gauss File @
@ infile is the input 'file handle' for vdatag @
@ Input Gauss files @
@ Opens Gauss file & assigns file handle f1 @
open f1 = ^infile;
vdata = readr(f1,rowsf(f1));
@ vdata is the name of the matrix @
@ readr reads Gauss file with file handle f1. @
@ rowsf(f1) returns the number of rows in the Gauss file. @
@ readr reads rowsf(f1) rows, which is the entire dataset. @
cok = close(f1); @ close the file @
@ Get the variable names @
vnames = setvars(infile);
@ Print the variable names @
@ $ indicates a character vector @
print $ vnames;
```
CHAPTER 1. GETTING STARTED WITH GAUSS

3. EXCEL Files.

- Import EXCEL, version 4.0.

Convert it to a GAUSS file.

@ Example of converting EXCEL file to a gauss file @
new;
@ Set file names and paths @
fname = "c:\\mcmc\\InOut\\data2.xls";
@ EXCEL version 4.0 First row has variable names. @
dname = "c:\\mcmc\\InOut\\data2g.dat";
@ GAUSS data file @
iok = importf(fname, dname,0,1);
@ Convert EXCEL file to GAUSS data file @
@ iok = 1 if success and = 0 if failure @

@ Read Gauss File @
infile = "data2g";
open f1 = ^infile;
vdata2 = readr(f1,rowsf(f1));
cok = close(f1);
vn = setvars(infile);
print $ vn;
• Export Gauss file to EXCEL file.

@ Export Gauss data file to EXCEL @
fold = "c:\\mcmc\\InOut\\data2g.dat";
fnew = "c:\\mcmc\\InOut\\data3.xls";
exok = exportf(fold, fnew, 0);
@ fold is the path & name of the Gauss file @
@ fnew is the path & name of the target EXCEL file @
@ 0 is default -> all variables @
@ exok = 1 is success; = 0 is failure @

• Export Data to EXCEL File

@ Export data to EXCEL file @
@ Create some data. @
mdata = rndn(50,4);

@ Give variables their names @
let mnames = bayes is more fun;

@ Give path + file name for EXCEL file @
outxls = "c:\\mcmc\\InOut\\mdata.xls";

@ Export it. @
exok = export(mdata, outxls, mnames);
Chapter 2

GAUSS Libraries

GAUSS allows user defined subroutines to be added to the GAUSS programming environment. Extending Gauss is accomplished with libraries files. Libraries define collections of subroutines or Gauss procedures. These procedures are complied by Gauss with the command:

\[
\text{library } < \text{lib1} >, < \text{lib2} >, ... < \text{libn} >;
\]

The graphics library is “pgraph.” Before using graphics, type:

\[
\text{library pgraph;}
\]

We used this command on page (10).

Library files define procedures for the GAUSS compiler. They have an “lcg” extension and reside in the subdirectory:

C:\GAUSS\LIB

My programs uses the library bamm.lcg, which contains my subroutines for Simpson’s integration and some random number generators. Before running my programs, you need to issue:
library pgraph, bamm;

bamm.lcg only defines subroutines contained in one file. In general, one LCG library can pull subroutines from several files, and one file of procedures can be used by more than one LCG file. The only constraint is that on a particular library call, each subroutine is uniquely defined by a LCG file. The contents of bamm.lcg is:

c:\mcmc\src\bamm.src
 intsim : proc
dir1 : proc
diroid : proc
wishart0 : proc
wishart : proc
rndmn : proc
rndzmn : proc
rndtna : proc
rndtnb : proc
rndonab : proc
rndgamlo : proc
rndgamup : proc

The first line gives the path and file name for the file that contains the procedures. The following lines gives names of the procedures that you wish to compile. You do not have to list all procedures in your file.

2.1 SRC Files

The code for the procedures in a library file is contained in a SRC file. These have the extension “src” and are in the directory. GAUSS’s SRC files are in:

C:\GAUSS\SRC

However, you can place your procedures anywhere, just as long as the LCG gives the correct path. Each procedure in the SRC file has to be defined in a LCG file. bamm.lcg and bamm.src work together.
CHAPTER 2. GAUSS LIBRARIES

/*
**
* (C) Copyright 1999, Peter Lenk. All Rights Reserved.
* BAMM.SRC are my procedures for Lenk’s MCMC
* INTSIM performs Simpson’s integration.
* Note: Gauss does it too, but my version is simpler when
* fx is computed over a fixed grid x to plot fx versus x.
* DIR1 generates a dirichlet random deviate.
* DIRORD generates ordered dirichlet random deviates
* WISHART0 generates a standard Wishart.
* WISHART generates general Wishart & Inverse Wishart
* RNDMN generates multinomial counts.
* RNDZMN generates indicator for bin gets ball.
* RNDTNA generates truncated normals above a value
* RNDTNB generates truncated normals below a value
* RDNAB generates normal between a and b.
* RNDGAML0 generates truncated gamma above lower bound.

*/

/*

* INTSIM performs simpson’s integration
* f = function, grid must have 2*m+1 points, k cols
* del = grid size, scalar or k by 1 vector

*/
PROC intsim(f, delta);
local r, t, even, fint;
fint = 0;
r = rows(f);
if r == 2*floor(r/2);
 print "ERROR: Even number of rows for simpson’s integration";
elseif r == 3; @ Simple Simpson’s Integration @
t = 1|4|1;
fint = (t'f).*(delta')/3;
else; @ Composite Simpson’s Integration @
t = 1|(ones((r-3)/2,1).*.(4|2))|4|1;
fint = (t'f).*(delta')/3;
endif;
retp(fint');
endp;
2.1. SRC FILES

/*

* DIR1.G generates a matrix of Dirichlet random variables
* Rows are independent random variables.
* INPUT
* xi = n x h matrix of parameters
* Each row are the parameters for a Dirichlet.
* OUTPUT
* x = n by h matrix of dirichlet probabilities
* each row is an independent dirichlet(xi).

*/
PROC dir1(xi);
local x,r,c;
 r = rows(xi);
 c = cols(xi);
 x = rndgam(r,c,xi);
 retp(x./sumc(x'));
endp;

/*
**
* DIRORD generates truncated dirichlet random deviates.
* p_1 <= p_2 <= ... <= p_K
* Uses slice sampling.
* INPUT:
* alpha = k x 1 vector of "alpha" values
* xgam = n x k vector of truncated gammas used in prob
* OUTPUT:
* prob = n x k matrix of probabilities
* xgam = updated values of truncated gammas.
**
*/
PROC (2) = dirord(alpha,xgam);
local i,k,n,u1,u2,umin,c;
 k = cols(xgam);
 n = rows(xgam);
 u1 = rndu(n,k);
 u2 = rndu(n,k);
if alpha[1] == 1; @ alpha = 1 implies that x is exponential @
 xgam[.,1] = -ln(1-u2[.,1]);
else;
 c = 1/(alpha[1]-1);
umin = (u1[,]^c).*xgam[,]1;
umin = (umin < 0).*(0-umin) + umin; @ umin > 0 @
xgam[,]1 = umin - ln(1-u2[,]1);
endif;
i = 2;
do while i <= k;
 if alpha[i] == 1; @ alpha = 1 @
 umin = xgam[,]i-1;
xgam[,]i = umin-ln(1-u2[,]i));
 else;
 c = 1/(alpha[i]-1);
 umin = (u1[,]i^c).*xgam[,]i;
 umin = maxc((umin-xgam[,]i-1));
 endif;
i = i + 1;
endo;
retp(xgam./(sumc(xgam')), xgam);
endp;

PROC wishart0(m,n);
local i,j,t,x,alpha;
t = zeros(m,m);
if m >= n;
 print "ERROR: DF of Wishart < Dimension";
elseif m > 1; @ more than one dimension @
 @ Create low diagonal matrix with N(0,1) deviates @
 t = rndn(m*(m-1)/2,1); @ vector of normals @
 t = lowmat(xpnd(t)); @ expand into symmetric & reshape into lower diagonal matrix @
 t = zeros(1,m)!((t-'zeros(m-1,1)); @ fill-out zeros @
 @ put gamma down diagonal @
 alpha = seqa(n,-1,m)/2;
2.1. SRC FILES

```plaintext
x = sqrt( rndgam(m,1,alpha)*2 ); @ gamma(alpha,0.5) @
t = diagrv(t,x);
retp(t*t'); @ outer product gives bartlett’s decomposion @
elseif m == 1; @ m = 1 -> Wishart is gamma(df/2,1) @
x = rndgam(1,1,n/2);
retp(x);
else;
print "ERROR: DF of Wishart < 1: df = " m;
endif;
endp;

/*************************************************************************
* WISHART
* Generates general Wishart and Inverted Wishart
* INPUT
* dim = dimension of matrix
* df = degree of freedom
* gmat = scale matrix
* OUTPUT
* wish = random matrix with the Wishart distribution
* wishi = random matrix that is inverted Wishart.
* NOTE:
* In most MCMC applications,
* df is the posterior degrees of freedom:
* df = df0 + n where df0 = prior df.
* gmat is the posterior scale matrix:
* gmat = (g0^{-1} + sum_{i=1}^n (y_i - mu_i)(y_i - mu_i)' )^{-1}
* where g0 is the prior scale matrix.
* wishi = Sigma, the covariance matrix
* wish = Sigma^{-1}
***************************************************************************/
PROC (2) = wishart(dim,df,gmat);
local wish, wishi, gmat12, w;
gmat12 = chol(gmat);
w = wishart0(dim,df); @ Get standard Wishart @
wish = gmat12\'w*gmat12; @ Wishart @
wishi = invpd(wish); @ Inverted Wishart @
retp(wish,wishi);
endp;

/***********************************************************************
* RNDMN generates multinomial random deviates
```
* X is MN_K(n,p): n trials, k cells, p = probs.
*
* Input:
* n = number of trials
* p = j by k matrix of probabilities
* Each row is a probability vector
*
* Output:
* X = j by k matrix
* Each row is multinomial counts.
*
**
*/
PROC rndmn(n,prob);
local x,xrows,cells,i,u;
xrows = rows(prob);
cells = cols(prob);
if not ((prob >= 0) and (prob <= 1));
 errorlog "ERROR in RNDMN.G: probability not between 0 and 1";
endif;
if not sumc(prob') == 1;
 errorlog "ERROR in RNDMN.G: probability does not sum to 1";
endif;
x = zeros(xrows,cells);
i = 1;
u = rndu(xrows,n);
do while i <= cells;
 x[.,i] = sumc(((u.>0) .and (u.<= prob[.,i]))');
 u = u - prob[.,i];
i = i + 1;
endo;
retp(x);
endp;

/***
* RNDZMN.G generates multinomial(1,prob).
* Z indicates the bin that gets the ball.
*
* INPUT
* prob = n x h; n = number of obs, h = number of bins.
* prob[i,j] = P(z_i is in bin j)
* rows are independent.
*
* OUTPUT
* z = n x 1 vector
* z[i] = j if bin j received ball.
2.1. SRC FILES

PROC rndzmn(prob);
local z,j,u,h,n;
 n = rows(prob);
 h = cols(prob);
if not ((prob >= 0) and (prob <= 1));
 errorlog "ERROR in RNDZMN.G: probability not between 0 and 1";
 endif;
if not ((sumc(prob') > 0.999999) and (sumc(prob') < 1.000001));
 errorlog "ERROR in RNDZMN.G: probability does not sum to 1";
 endif;
 z = zeros(n,1);
 u = rndu(n,1);
 j = 1;
 do while j <= h;
 z = z + ((u.>0).and (u.<= prob[.,j]).)*j;
 u = u - prob[.,j];
 j = j + 1;
 endo;
 retp(z);
endp;

* RNDTNA generates from a truncated normal distribution
* Truncation is above from (-infinity, xtop)
* INPUT
* mu = vector of means
* sigma = vector of stds
* xtop = upper limit
* OUTPUT
* x = truncated normal

PROC rndtta(mu,sigma, xtop);
local u, fb, x;
 u = rndu(rows(mu),1);
 fb = cdfn((xtop - mu)./sigma);
 x = mu + sigma.*cdfni(u.*fb);
 x = (xtop - x).*(x .> xtop) + x;
 retp(x);
endp;
CHAPTER 2. GAUSS LIBRARIES

PROC rndtnb(mu,sigma,xbot);
local u, fa, fb, x ;
u = rndu(rows(mu),1);
fa = cdfn((xbot - mu)./sigma);
fb = 1;
x = mu + sigma.*cdfni(fa + u.*(fb-fa));
x = (xbot - x).*x .< xbot + x;
retp(x);
endp;

PROC rndnab(nr,nc,xm,xv,low,up);
local flow, fup, xstd, x;
if low > up;
errorlog "Error in RNDNAB: Lower bound exceeds upper bound.";
print "low = " low " up = " up;

2.1. SRC FILES

```plaintext
retp(0);
endif;
xstd = sqrt(xv); @ STD of X @
flow = cdfn((low-xm)/xstd); @ Normal cdf of lower bound @
fup = cdfn((up-xm)/xstd); @ Normal cdf of upper bound @
if flow >= 1;
    errorlog "RNDNAB: F(lower bound) = 1";
    retp(0);
endif;
if fup <= 0;
    errorlog "RNDNAB: F(upper bound) = 0";
    retp(0);
endif;

x = xm + xstd*cdfni( (fup - flow)*rndu(nr,nc) + flow) ;
x = (low - x).*((x .< low) + x);
x = (up - x).*((x .> up) + x);
retp(x);
endp;
```

```
/*
*************************************************************************
* RNDGAMLO.G
*
* f(x) \propto I( x> low) x^{alpha-1}exp(-beta*x)
*
* INPUT:
* nr = number of rows
* nc = number of columns
* alpha = shape parameters of gamma: scalar
* beta = scale parameter: scalar
* low = lower limit: scalar.
*
* OUTPUT
* truncated gamma
*************************************************************************/

proc rndgamlo(nr, nc, alpha,beta,low);
local glow, p, a2, x;
a2 = alpha*ones(nr,nc);
glow = cdfgam(alpha,beta*low);
if glow >= 1; glow = 0.99999; endif;
p = rndu(nr,nc).*((1-glow) + glow);
x = gammairi(a2, p)/beta;
```
28 CHAPTER 2. GAUSS LIBRARIES

x = (low - x).*(x < low) + x;
retp(x);
endp;

/*
 **
 * RNDGAMUP.G
 *
 * f(x) \propto I(x < up) x^{alpha-1}exp(-beta*x)
 *
 * INPUT:
 * nr = number of rows
 * nc = number of columns
 * alpha = shape parameters of gamma: vector
 * beta = scale parameter: vector
 * low = lower limit: scalar.
 *
 * OUTPUT
 * truncated gamma
 **
 */
proc rndgamup(nr, nc, alpha,beta,up);
 local gup, p, a2, x;
a2 = alpha.*ones(nr,nc);
gup = cdfgam(alpha,beta*up);
if gup >= 1; gup = 0.99999; endif;
p = rndu(nr,nc).*gup;
x = gammaii(a2, p)./beta;
x = (up - x).*(x > up) + x;
retp(x);
endp;
Chapter 3

Linear Regression
3.1 Data Generation

/*

 * GREG1.GSS
 * Generates data for linear regression

*/
new;
nobs = 30; @ number of observations @
@ Define true regression parameters @
betat = {
 2,
 -1,
 3,
 0
};
@ Enter vector or matrices by rows, separated by commas @
sigmat = 2; @ true error std @
rankx = rows(betat); @ rows(x) = number of rows for x @
xdim = rankx-1; @ number of dependent variables @
xnames = 0 $+ "X" $+ ftocv(seqa(1,1,xdim),1,0);
@ Makes a character string that is X1, X2, ... @
ynames = "Y";
xynames = xnames|ynames;

xdata = rndn(nobs,xdim); @ rndn -> N(0,1) random numbers @
xmat = ones(nobs,1)~xdata; @ design matrix @
@ ~ pastes two matrices side-by-side @

@ Generate dependent observations @
ydata = xmat*betat + sigmat*rndn(nobs,1);
@ rndn(r,c) generates a r x c matrix of N(0,1) random deviates @
xydata = xdata~ydata;

/*

 * Create a Gauss file. f1 is the file handle.
 * The Gauss file will be called "XYDATA."
 * The column will be named by the strings in the character array xyname.
 * ~xyname means use the names in the character string.
 * 0, 8 gives double precision real numbers.

3.1. DATA GENERATION

*/
create f1 = xydata with `xynames, 0, 8;
/

* Next read data into the Gauss file by using the writer command.
* f1 is the file handle defined in previous command.
* xydata is the data matrix that we just created.
* writer returns the number of rows read to f1.
* If it is not rows(xydata), something bad happened.

*/
if writer(f1,xydata) /= rows(xydata);
errorlog "Conversion of XYDATA to Gauss File did not work";
endif;
closeall f1;

@ Plot Y versus X_i @
.pctrl = -1; @ Plot symbols and no lines @
for i0 (1,xdim,1); i = i0;
title(ynames $+ " versus " $+ xnames[i]);
xy(xdata[..,i],ydata); @ Plot y versus x_i @
endfor;
graphset; @ Return to default graphs @
3.2 Bayesian Analysis

/*

 * (C) Copyright 1999, Peter Lenk. All Rights Reserved.
 * LINREG*.GSS
 * Does basic, linear regression model:
 * Y = X*beta + epsilon
 * epsilon is N(0,sigma^2I)
 * beta is N(b0,B0)
 * sigma^2 is IG(r0/2,s0/2)
 *
 * library pgraph, plbam;

 */

new;
inxy = "xydata"; @ Name of Gauss file with X,Y data @
outfile = "results1.dat"; @ Specify output file for saving results @
 @ outfile is a string variable that contains a file name @

/**************************************
 * Initialize parameters for MCMC

 */

smcmc = 1000; @ number of iterations to save for analysis @
skip = 1; @ Save every skip iterations @
nblow = 500; @ Initial transition iterations @
nmcmc = nblow + skip*smcmc; @ total number of iterations @

/**************************************
 * Get data

 */

@ Input Gauss files @
open f1 = ^inxy; @ Get Gauss file for X, Y data @
 @ Opens Gauss file & assigns file handle f1 @
xydata = readr(f1,rows(f1));
 @ readr reads in Gauss file with file handle f1. @
 @ rows(f1) returns the number of rows in the Gauss file. @
 @ readr reads rows(f1) rows, which is the entire dataset. @
ci = close(f1);

xynames = setvars(inxy); @ Get the variable names that accompany X, Y data @
ynames = xynames[rows(xynames)];
xnames = "Constant" | xynames[1:rows(xynames)-1];

xdim = cols(xydata)-1; @ number of x variables @
 @ cols(x) = # of columns of x @
rankx = xdim + 1; @ number of beta parameters @
obs = rows(xydata); @ number of observations @
xdata = ones(nobs,1) ~ xydata[.,1:xdim];
 @ design matrix, includes an intercept @
 @ ~ sticks two matrices side by side @
 @ ones(i,j) = i x j matrix of ones @
 @ x[i,j] is the i,j element of x @
 @ x[..,j] is the column j of x @
 @ x[..,j1:j2] are columns j1 to j2 of x @
 @ x[i,..] is row i of x @
 @ x[i1:i2,..] are rows i1 to i2 of x @

ydata = xydata[.,cols(xydata)];
 @ Sufficient statistics used in MCMC @
xtx = xdata’xdata;
xty = xdata’ydata;
 @ Get MLE @
{bhat, bstd, sighat, rsquare} = regmle(xdata, ydata);

/*
 Initialize Priors
*/

@ Beta is N(eb0, vb0) @
eb0 = zeros(rankx,1); @ prior mean @
vb0 = 100*eye(rankx); @ prior variance @
 @eye(m) = m x m identity matrix @
 @ Generally, use big variance @
vi vb0 = invpd(vb0); @ invpd(x) = inverse of positive definite x @
vieb0 = vib0*eb0; @ used in full conditional of beta @

@ Sigma2 is Inverted Gamma(r0/2, s0/2) @
@ E(1/sigma2) = r0/s0 and Var(1/sigma2) = 2*r0/s0^2 @
@ Usually pick r0 and s0 small and positive @
r0 = 2; s0 = 2;
rn = r0 + obs; @ Posterior shape parameters @

/*
CHAPTER 3. LINEAR REGRESSION

**
* Initialize MCMC
**
*/
@ Initial parameters for MCMC @
@ Could initialize to MLE. @
beta = zeros(rankx,1); @ regression coefficients @
sigma = 1; @ error std @
sigma2 = sigma*sigma; @ error variance @

@ Define matrices for saving MCMC iterations @
betag = zeros(smcmc, rankx);
sigmag = zeros(smcmc,1);

**
* Do MCMC
**
*/
@ Do the initial transition period @
for i1 (1,nblow,1); imcmc = i1;
call getbetasigma;
endfor;

for i1 (1,smcmc,1); imcmc = i1; @ Save smmc iterations @
for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @
call getbetasigma;
endfor;
betag[imcmc,:] = beta'; @ Save regression coefficients @
sigmag[imcmc,:] = sigma; @ Save error std @
endfor;

**
* Analyze Results
**
*/
@ Compute posterior means and std from MCMC iterations @
sigm = meanc(sigmag);
sigstd = stdc(sigmag);
bm = meanc(betag);
bs = stdc(betag);
yhat = xdata*bm;
3.2. BAYESIAN ANALYSIS

cy = corrx(ydata~yhat); % Correlation between Y and Yhat
cy2 = cy[1,2]*cy[1,2];
call outputanal;
% Plot saved iterations against iterations number

t = seqa(nblow+skip,skip,smcmc); % saved iteration number

@ Plot saved iterations against iterations number @
t = seqa(nblow+skip,skip,smcmc);
title("Error STD versus Iteration");
xy(t,sigmag);
title("Coefficients versus Iteration");
xy(t,betag);

@ Compute the posterior density of sigma over a grid @
{sgrid,fs} = pdfsigma;

@ Compute the marginal posterior density of beta_j over a grid @
{bgrid, fb} = pdfbeta;

@ Compute the posterior density of the Error STD @

@ Compute the posterior density of coefficient for " @

for fj (1,rankx,1); j = fj;

@ Plot saved iterations against iterations number @
t = seqa(nblow+skip,skip,smcmc);
title("Error STD versus Iteration");
xy(t,sigmag);
title("Coefficients versus Iteration");
xy(t,betag);

@ Compute the posterior density of sigma over a grid @
{sgrid,fs} = pdfsigma;

@ Compute the marginal posterior density of beta_j over a grid @
{bgrid, fb} = pdfbeta;
title("Posterior Density of the Error STD");

for fj (1,rankx,1); j = fj;
title("Posterior Density of Coefficient for " $+ xnames[j]);

endfor;

graphset; % Return to default graphs @
end;

PROC (4) = regmle(x,y);
local xtx, xtxi, xty, b, yhat, resid, sse, s, sst, r2, bstd;

xtx = x’x;
CHAPTER 3. LINEAR REGRESSION

\[xtxi = \text{invpd}(xtx); \quad \text{@ Inverse of } xtx \]
\[xty = x'y; \quad \text{@ MLE of } \beta \]
\[b = xtxi \times xty; \quad \text{@ Predicted } y \text{ values} \]
\[yhat = x \times b; \quad \text{@ Residuals} \]
\[resid = y - yhat; \quad \text{@ Residuals} \]
\[sse = resid' \times resid; \quad \text{@ Sums of Squares Error} \]
\[s = \sqrt{sse/nobs}; \quad \text{@ Error STD} \]
\[sst = y - \text{meanc}(y); \quad \text{@ SS Total} \]
\[r2 = 1 - sse/sst; \quad \text{@ R-squared} \]
\[bstd = s \times \text{sqrt(diag}(xtxi)); \quad \text{@ Return to main program} \]
\[\text{retp}(b,bstd, s,r2); \]
\[\text{endp}; \]

/***
* GETBETASIGMA
* Generate one MCMC random deviate of beta and sigma
* No input or output.
* Data & values are passed through global variables
***/
PROC (0) = getbetasigma;
local ebn, vibn, vbn, vbn12, sse, sn;

/***
* Generate beta:
* beta is N(ebn, vbn);
* vbn = (X'X/sigma2 + Vb0^-1)^-1 is posterior variance
* ebn = vbn*(X'Y/sigma2 + Vb0^-1*eb0) is posterior mean
***/
ebn = xty/sigma2 + vieb0; \(\text{@ Posterior variance} \)
vibn = xtx/sigma2 + vib0; \(\text{@ Inverse of posterior variance of beta} \)
vbn = invpd(vibn);
vbn12 = chol(vbn);
ebn = vbn*ebn;
beta = ebn + vbn12'rndn(rankx,1);

/***
* Generate sigma2
* sigma2 is IG(rn/2, sn/2)
* rn = r0 + nobs
* sn = s0 + (y - X*beta)'(y - X*beta)
***/
3.2. BAYESIAN ANALYSIS

**
*sse = ydata - xdata*beta;
sse = sse'sse;
sn = s0 + sse;
sigma2 = sn/(2*rndgam(1,1,rn/2));
@ rndgam(i,j,alpha) generates a matrix of gamma random variables with @
@ shape parameters alpha and scale parameter beta = 1 @
@ mean = alpha and variance = alpha @
sigma = sqrt(sigma2); @ Error STD @
endp;

/**
* OUTPUTANAL
* Does analysis of output and save some results
**
*/
PROC (0) = outputanal;
local bout, sout, fmt1, fmt2, fmts1, fmts2;
format 10,5; @ Default format @
let fmt1[1,3] = "*.1f" 10 5; @ Format for printing numeric variable @
let fmt2[1,3] = "*.lf" 10 0; @ Format for numeric variable, no decimal @
let fmts1[1,3] = "-*.s" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.s" 10 9; @ Format for alpha, right justify @
output file = "outfile reset; @ outfile is the file handle for the output file @
@ Route printed output to the defined by outfile @
print "Results from LINREG1A.GAS";
print "Bayesian analysis of linear regression model using MCMC.";
print "Output file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @
print;
print "Model";
print "Y = X*beta + epsilon";
print "Number of observations = " nob;
print "Number of independent variables = " xdim "(excluding the intercept).";
print "Summary Statistics";
call sumstats(xynames,xydata,fmts1,fmts2,fmt1); @ Print summary statistics @
print;
print "-----------------------------";
print "MLE Analysis";
print;
print "Number of observations = " nobs;
print "Number of dependent variables = " xdim;
print;
print "R-Squared = " rsquare;
print "Multiple R = " sqrt(rsquare);
print "MLE Error STD = " sighat;
print;
print "Estimated Regression Coefficients";
sout = {"Variable" "MLE" "StdError"};
call outitle(sout,fmts1,fmtn1);
bout = xnames"bhat"bstd;
call outmat(bout,fmts1,fmtn1);
print "---";
print;
print "MCMC Analysis";
print;
print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;
print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;
print "Number of observations = " nobs;
@ Compute posterior means and std @
print;
print "Bayes R-Square = " cy2;
print "Bayes Multiple R = " cy[1,2];
print;
print "Error Standard Deviation";
print "Posterior mean of sigma = " sigm;
print "Posterior STD of sigma = " sigstd;
print;
print "Regression Coefficients";
sout = {"Variable" "PostMean" "PostSTD"};
call outitle(sout,fmts1,fmtn1);
bout = xnames"bm"bs;
call outmat(bout,fmts1,fmtn1);
output off;
closeall;
endp;
3.2. BAYESIAN ANALYSIS

/*

 * PDFSIGMA
 * Computes posterior density if sigma over a grid.
 * INPUT
 * Uses global variables
 * OUTPUT
 * sgrid = grid for the density
 * fs = posterior pdf on sgrid

*/
PROC (2) = pdfsigma;
local smax, smin, ms, sdelta, sgrid, scon, fs, s2grid, lnsgrid, i0, i,
sse, sn;
@ compute posterior density of sigma over a grid @
smax = maxc(sigmag);
 @ maxc(x) returns maximum of x @
smin = minc(sigmag);
 @ minc(x) returns minimum of x @
@ Get grid for plotting @
ms = 100;
sdelta = (smax-smin)/ms;
sgrid = seqa(smin, sdelta, ms+1);
scon = ln(2) - lnfact(1+rn/2);
fs = zeros(ms+1,1);
s2grid = sgrid.*sgrid;
lnsgrid = ln(sgrid);
for i0 (1,smcmc,1); i = i0;
sse = ydata - xdata*(betag[i, .]’);
sse = sse’*sse;
 sn = s0 + sse;
 fs = fs + exp(scon + rn*ln(sn/2)/2 + (0.5 - rn)*lnsgrid - sn/(2*s2grid));
endfor;
fs = fs/smcmc;
fs = fs/intsim(fs, sdelta); @ intsim is simpson’s integration @
retp(sgrid, fs);
endp;

/*

 * PDFBETA
 * Computes marginal posterior density of beta over a grid.
 * These are marginal, univariate densities.
 * INPUT
 * Uses globals.

CHAPTER 3. LINEAR REGRESSION

* OUTPUT
* bgrid = each row corresponds to grid for beta_j
* fb = each row corresponds to marginal density for beta_j

***/
PROC (2) = pdfbeta;
local mb, bgrid, bmax, bmin, bdelta, fj, j, fb, bcon, sigma, sigma2, vibn, vbn, ebn, vbnd;
@ Plot posterior density for beta @
mb = 100;
bgrid = zeros(mb+1,rankx);
bmax = bm + 5*bs;
bmin = bm - 5*bs;
bdelta = (bmax - bmin)/mb;
for fj (1,rankx,1) ; j = fj;
 bgrid[.,j] = seqa(bmin[j],bdelta[j], mb+1);
endfor;
fb = zeros(mb+1,rankx);
bcon = -ln(2*pi)/2;
for fj (1,smcmc, 1); j = fj;
 sigma = sigmag[j];
sigma2 = sigma^2;
vibn = (xtx/sigma2 + vib0);
vbn = invpd(vibn); @ Posterior variance given beta @
ebn = vbn*(xty/sigma2 + vieb0); @ Posterior mean given beta @
vbnd = diag(vbn); @ diagonal elements @
 fb = fb + exp(bcon - 0.5*ln(vbnd)' - ((bgrid - ebn')^2)./(2*vbnd'));
endfor;
fb = fb/smcmc;
fb = fb./(intsim(fb,bdelta)');
retp(bgrid, fb);
endp;

/*****************************/
* OUTITLE
* Prints header for columns of numbers.
* INPUT
* a = character row vector of column names
* fmts1 = format for first column
* fmts2 = format for second column
3.2. BAYESIAN ANALYSIS

* OUTPUT
* None
***/
PROC (0) = outitle(a,fmt1,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1|(ones(ncols-1,1).*.fmt2);
flag = printfm(a,mask,fmt);
print;
endp;
***/

* OUTMAT
* Outputs a matrix:
* (Character Vector)~(Numeric matrix);
* The entries in the numeric matrix have the same format
* INPUT
* bout = matrix to be printed
* fmts = format for string
* fmtn = format for numeric matrix
* OUTPUT
* None
***/
PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols = cols(bout);
nrows = rows(bout);
fmt = fmts|(ones(ncols-1,1).*.fmtn);
mask = zeros(nrows,1)~ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);
print;
endp;
***/

* SUMSTATS
* Prints summary statistics for a data matrix
* INPUT
* names = character vector of names
* data = data matrix
* fmts1 = format for string
* fmts2 = format for string
* fmtn = format for numbers
* OUTPUT
* None
**
*/
PROC (0) = sumstats(names,data,fmts1,fmts2,fmtn);
local a, bout;
a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outtitle(a,fmts1,fmts2);
bout = names~meanc(data)~stdc(data)~minc(data)~maxc(data);
call outmat(bout,fmts1,fmtn);
endp;
3.3 Autocorrelated Errors

```plaintext
/*
 *****************************************
* ARE1.GSS
* linear regression model + AR Errors
* Y = X*beta + epsilon
* epsilon_t = rho*epsilon_{t-1} + zeta_t
* zeta_t iid N(0,sigma^2);
* Priors
* beta is N(b0,B0)
* sigma^2 is IG(r0/2,s0/2)
* rho is uniform on [-1,1];
* Issue the command:
* library pgraph, plbam;
* before running.
*******************************************
*/
new;
inxy = "xydata";  @ Name of Gauss file with X,Y data @
outfile = "results1.dat";  @ Specify output file for saving results @
  @ outfile is a string variable that contains a file name @
/*
 *****************************************
* Initialize parameters for MCMC
*******************************************
*/
smcmc = 1000;  @ number of iterations to save for analysis @
skip = 1;  @ Save every skip iterations @
nblow = 1000;  @ Initial transition iterations @
nmcmc = nblow + skip*smcmc;  @ total number of iterations @

/*
 *****************************************
* Get data
 *******************************************
*/
xydata = {
    62 1 0 0 9.300964847 ,
    62.25 0 1 0 9.31031088 ,
    ...
};
```
62.5 0 0 1 9.242491685 ,
62.75 0 0 0 9.361520061 ,
63 1 0 0 9.321018155 ,
63.25 0 1 0 9.36917279 ,
63.5 0 0 1 9.246424715 ,
63.75 0 0 0 9.40563659 ,
64 1 0 0 9.383025003 ,
64.25 0 1 0 9.426933948 ,
64.5 0 0 1 9.309481077 ,
64.75 0 0 0 9.405397557 ,
65 1 0 0 9.464221198 ,
65.25 0 1 0 9.489339612 ,
65.5 0 0 1 9.363198131 ,
65.75 0 0 0 9.50936384 ,
66 1 0 0 9.502659228 ,
66.25 0 1 0 9.522691945 ,
66.5 0 0 1 9.371714203 ,
66.75 0 0 0 9.528003453 ,
67 1 0 0 9.457957551 ,
67.25 0 1 0 9.50081259 ,
67.5 0 0 1 9.307902309 ,
67.75 0 0 0 9.388296608 ,
68 1 0 0 9.50930935 ,
68.25 0 1 0 9.569900363 ,
68.5 0 0 0 9.58463648 ,
69 1 0 0 9.554295277 ,
69.25 0 1 0 9.590206284 ,
69.5 0 0 1 9.502208538 ,
69.75 0 0 0 9.612942716 ,
70 1 0 0 9.530839779 ,
70.25 0 1 0 9.5922767 ,
70.5 0 0 1 9.53270342 ,
70.75 0 0 0 9.629857772 ,
71 1 0 0 9.587856805 ,
71.25 0 1 0 9.618832258 ,
71.5 0 0 1 9.584014436 ,
71.75 0 0 0 9.659631012 ,
72 1 0 0 9.685051414 ,
72.25 0 1 0 9.729132192 ,
72.5 0 0 1 9.644655112 ,
72.75 0 0 0 9.746657306 ,
73 1 0 0 9.786942924 ,
73.25 0 1 0 9.797592911 ,
73.5 0 0 1 9.697769625 ,
73.75 0 0 0 9.750624088 ,
<table>
<thead>
<tr>
<th>Time</th>
<th>Error</th>
<th>Error</th>
<th>Error</th>
<th>Error</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.73739145</td>
</tr>
<tr>
<td>74.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9.77625045</td>
</tr>
<tr>
<td>74.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.779899324</td>
</tr>
<tr>
<td>74.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.7895876</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.707033295</td>
</tr>
<tr>
<td>75.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9.798042567</td>
</tr>
<tr>
<td>75.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.784017688</td>
</tr>
<tr>
<td>75.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.779899324</td>
</tr>
<tr>
<td>76</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.816413505</td>
</tr>
<tr>
<td>76.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9.871193346</td>
</tr>
<tr>
<td>76.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.902312947</td>
</tr>
<tr>
<td>76.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.792986685</td>
</tr>
<tr>
<td>77</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.8580496</td>
</tr>
<tr>
<td>77.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9.964438819</td>
</tr>
<tr>
<td>77.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.987259585</td>
</tr>
<tr>
<td>77.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.943959343</td>
</tr>
<tr>
<td>78</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.9986647</td>
</tr>
<tr>
<td>78.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.0549806</td>
</tr>
<tr>
<td>78.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.985574693</td>
</tr>
<tr>
<td>78.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.0509980</td>
</tr>
<tr>
<td>79</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.09973943</td>
</tr>
<tr>
<td>79.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.07600662</td>
</tr>
<tr>
<td>79.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.95504308</td>
</tr>
<tr>
<td>79.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.00015639</td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.982926704</td>
</tr>
<tr>
<td>80.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9.966892296</td>
</tr>
<tr>
<td>80.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.903762747</td>
</tr>
<tr>
<td>80.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.00828505</td>
</tr>
<tr>
<td>81</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.969187596</td>
</tr>
<tr>
<td>81.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.05141121</td>
</tr>
<tr>
<td>81.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.937603098</td>
</tr>
<tr>
<td>81.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.954893558</td>
</tr>
<tr>
<td>82</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.950175009</td>
</tr>
<tr>
<td>82.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.03861225</td>
</tr>
<tr>
<td>82.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9.906060277</td>
</tr>
<tr>
<td>82.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.962198914</td>
</tr>
<tr>
<td>83</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.00157806</td>
</tr>
<tr>
<td>83.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.06937957</td>
</tr>
<tr>
<td>83.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.01226763</td>
</tr>
<tr>
<td>83.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.09340417</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.11423726</td>
</tr>
<tr>
<td>84.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.14908061</td>
</tr>
<tr>
<td>84.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.07350585</td>
</tr>
<tr>
<td>84.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.12767173</td>
</tr>
<tr>
<td>85</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.12208808</td>
</tr>
<tr>
<td>x</td>
<td>z1</td>
<td>z2</td>
<td>z3</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>85.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.13992641</td>
<td></td>
</tr>
<tr>
<td>85.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.06557971</td>
<td></td>
</tr>
<tr>
<td>85.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.14911142</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.16982431</td>
<td></td>
</tr>
<tr>
<td>86.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.23810896</td>
<td></td>
</tr>
<tr>
<td>86.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.15732984</td>
<td></td>
</tr>
<tr>
<td>86.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.2111847</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.25869966</td>
<td></td>
</tr>
<tr>
<td>87.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.28994787</td>
<td></td>
</tr>
<tr>
<td>87.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.18317873</td>
<td></td>
</tr>
<tr>
<td>87.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.27318427</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.3654338</td>
<td></td>
</tr>
<tr>
<td>88.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.39715941</td>
<td></td>
</tr>
<tr>
<td>88.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.30923406</td>
<td></td>
</tr>
<tr>
<td>88.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.37861597</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.41277977</td>
<td></td>
</tr>
<tr>
<td>89.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.41312714</td>
<td></td>
</tr>
<tr>
<td>89.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.30625996</td>
<td></td>
</tr>
<tr>
<td>89.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.38282552</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.37292315</td>
<td></td>
</tr>
<tr>
<td>90.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.42929513</td>
<td></td>
</tr>
<tr>
<td>90.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.36148037</td>
<td></td>
</tr>
<tr>
<td>90.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.38365018</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.32921477</td>
<td></td>
</tr>
<tr>
<td>91.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.37742829</td>
<td></td>
</tr>
<tr>
<td>91.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.32462605</td>
<td></td>
</tr>
<tr>
<td>91.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.34206523</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.39018415</td>
<td></td>
</tr>
<tr>
<td>92.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.4288262</td>
<td></td>
</tr>
<tr>
<td>92.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.36782724</td>
<td></td>
</tr>
<tr>
<td>92.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.40494997</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.42753479</td>
<td></td>
</tr>
<tr>
<td>93.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.46862791</td>
<td></td>
</tr>
<tr>
<td>93.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.38913063</td>
<td></td>
</tr>
<tr>
<td>93.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.44468483</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.48290215</td>
<td></td>
</tr>
<tr>
<td>94.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.52855678</td>
<td></td>
</tr>
<tr>
<td>94.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.48603355</td>
<td></td>
</tr>
<tr>
<td>94.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.52689472</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.54136704</td>
<td></td>
</tr>
<tr>
<td>95.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.56097012</td>
<td></td>
</tr>
<tr>
<td>95.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10.49717854</td>
<td></td>
</tr>
<tr>
<td>95.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.53841034</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.55943978</td>
<td></td>
</tr>
<tr>
<td>96.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.57906298</td>
<td></td>
</tr>
</tbody>
</table>
3.3. AUTOCORRELATED ERRORS

\[
\begin{align*}
96.5 & \quad 0 \quad 0 \quad 1 \quad 10.53096768, \\
96.75 & \quad 0 \quad 0 \quad 0 \quad 10.58920094, \\
97 & \quad 1 \quad 0 \quad 0 \quad 10.55873256, \\
97.25 & \quad 0 \quad 1 \quad 0 \quad 10.6049277, \\
97.5 & \quad 0 \quad 0 \quad 1 \quad 10.55745908, \\
97.75 & \quad 0 \quad 0 \quad 0 \quad 10.61346125, \\
98 & \quad 1 \quad 0 \quad 0 \quad 10.56329119, \\
98.25 & \quad 0 \quad 1 \quad 0 \quad 10.57158074, \\
98.5 & \quad 0 \quad 0 \quad 1 \quad 10.51375015, \\
98.75 & \quad 0 \quad 0 \quad 0 \quad 10.57846729, \\
99 & \quad 1 \quad 0 \quad 0 \quad 10.62615552, \\
99.25 & \quad 0 \quad 1 \quad 0 \quad 10.49607128, \\
99.5 & \quad 0 \quad 0 \quad 1 \quad 10.70802127, \\
100 & \quad 1 \quad 0 \quad 0 \quad 10.55840854 \\
\end{align*}
\]

\{ "Year", "Q1", "Q2", "Q3", "Sales" \};

ynames = xynames[rows(xynames)];

xdim = cols(xydata)-1; // number of x variables
rankx = xdim+1; // number of beta parameters
xnames = "Const"|xynames[1:xdim];

nobss = rows(xydata); // number of observations
xmat = xydata[.,1:xdim];
ndata = ones(nobs,1)~xmat;

ydata = xydata[.,cols(xydata)];

\[Sufficient \ statistics \ used \ in \ MCMC \]

xtx = xdata'xdata;
xty = xdata'ydata;
\[
\begin{align*}
&\text{\@ Get MLE } \{\text{bhat, bstd, sighat, rsquare}\} = \text{regmle(xdata, ydata)}; \\
&\text{/} * \\
&\text{***} \\
&\text{* Initialize Priors} \\
&\text{***} \\
&\text{//} \\
\\
&\text{\@ Beta is N} (\text{eb0, vb0}) \@ \\
&\text{eb0} = \text{zeros} (\text{rankx}, 1); \@ \text{prior mean} \@ \\
&\text{vb0} = 100000 * \text{eye} (\text{rankx}); \@ \text{prior variance} \@ \\
&\text{\@eye(m) = m x m identity matrix \@} \\
&\text{\@ Generally, use big variance \@} \\
&\text{vib0} = \text{invpd} (\text{vb0}); \@ \text{invpd} (x) = \text{inverse of positive definite x} \@ \\
&\text{vieb0} = \text{vib0} * \text{eb0}; \@ \text{used in full conditional of beta} \@ \\
\\
&\text{\@ E} (1/\text{sigma2}) = r0/s0 \text{ and Var} (1/\text{sigma2}) = 2*r0/s0^2 \@ \\
&\text{\@ Usually pick r0 and s0 small and positive} \@ \\
&\text{r0} = 0; s0 = 0; \\
&\text{rn} = r0 + \text{nobs}; \@ \text{Posterior shape parameters: Add one for the epsilon_0} \@ \\
\\
&\text{/} * \\
&\text{***} \\
&\text{* Initialize MCMC} \\
&\text{***} \\
&\text{//} \\
\\
&\text{\@ Initial parameters for MCMC} \@ \\
&\text{\@ Could initialize to MLE.} \@ \\
&\text{beta} = \text{zeros} (\text{rankx}, 1); \@ \text{regression coefficients} \@ \\
&\text{sigma} = 1; \@ \text{error std} \@ \\
&\text{sigma2} = \text{sigma} * \text{sigma}; \@ \text{error variance} \@ \\
&\text{rho} = 0; \\
\\
&\text{\@ Define matrices for saving MCMC iterations} \@ \\
&\text{betag} = \text{zeros} (\text{smcmc}, \text{rankx}); \\
&\text{sigmag} = \text{zeros} (\text{smcmc}, 1); \\
\end{align*}
\]
rhog = zeros(smcmc,1);

/*@**
* Do MCMC
**@
@ Do the initial transition period @
icount = 0;
for i1 (1,nblow,1); imcmc = i1;
call getall;
icount = icount + 1;
endfor;
for i1 (1,smcmc,1); imcmc = i1; @ Save smcmc iterations @
for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @
call getall;
icount = icount + 1;
endfor;
betag[imcmc,.] = beta'; @ Save regression coefficients @
sigmag[imcmc,] = sigma; @ Save error std @
rhog[imcmc,] = rho;
endfor;

/*@**
* Analyze Results
**@
@ Compute posterior means and std from MCMC iterations @
sigm = meanc(sigmag);
sigstd = stdc(sigmag);
rhom = meanc(rhog);
rhos = stdc(rhog);
betam = meanc(betag);
betas = stdc(betag);
yhb = xdata*betam;
cy = corrx(ydata~yhb); @ Correlation between Y and Yhat @
cy2 = cy[1,2]*cy[1,2];
yhat = xdata*bhat; @ MLE prediction @
rhat = ydata[2:nobs] - yhat[2:nobs]; @ One step ahead forecast residuals mle: no AR @
resid = ydata - yhb;
ypred = yhb[2:nobs] + rho*resid[1:nobs-1];
rhbc = ydata[2:nobs] - ypred; @ One step ahead forecast residuals Bayes @

PrmseML = sqrt(rhat'rhat/(nobs-1));
PrmseB = sqrt(resid'resid/(nobs-1));
PrmseBC = sqrt(rhbc'rhbc/(nobs-1));
call outputanal;
@ Plot saved iterations against iterations number @
t = seqa(nblow+skip,skip,smcmc); @ saved iteration number @

@_plctrl = -1;@
_plwidth = 8;
title("Ford's Quarterly Revenue vs Year");
xlabel("Year");
ylabel("Log Revenue");
_pl egctl = { 1 7 62 10 };

/************
[1] X,Y coordinate units: 1=plot coord, 2=inches, 3=Tek pixels
[3] X coordinate of lower left corner of legend box
[4] Y coordinate of lower left corner of legend box
************/
_pl egstr = "Observed
Bayes
AR
ML IID";

title("Forecast Residuals vs Year");
ylabel("Residuals");
xy(xdata[2:nobs,2], rhbc~rhat);

graphset;
title("Posterior Distribution of rho");

xlabel("rho");
{f,m,p} = hist(rhog,25);
graphset;
3.3. AUTOCORRELATED ERRORS

end;

PROC (4) = regmle(x,y);
local xtx, xtxi, xty, b, yhat, resid, sse, s, sst, r2, bstd;
 xtx = x'x;
 xtxi = invpd(xtx); @ Inverse of xtx @
 xty = x'y;
 b = xtxi*xty; @ MLE of beta @
 yhat = x*b; @ Predicted y values @
 resid = y - yhat; @ Residuals @
 sse = resid'resid; @Sums of Squares Error @
 s = sqrt(sse/nobs); @ Error STD @
 sst = y - meanc(y);
 r2 = 1 - sse/sst; @ R-squared @
 bstd = s*sqrt(diag(xtxi));
retp(b,bstd, s,r2); @ Return to main program @
endp;

PROC (0) = getall;
local b, bstd, s, r2;
 b = ;
 bstd = ;
 s = ;
 r2 = ;
retp(b,bstd, s,r2); @ Return to main program @
endp;
local simr, ystar, xstar, vibn, vibn12, ebn,
resid, rstar, sn, v2, rhotop, rhobot, arho, brho, rv, rm;

simr = sqrt(1 - rho^2);

/*@

* Generate beta:
* Do adjustment for AR Errors.
* beta is N(ebn, vbn);
* vbn = (X'X/sigma2 + Vb0^{-1})^{-1} is posterior variance
* ebn = vbn*(X'Y/sigma2 + Vb0^{-1}*eb0) is posterior mean

*/
ystar = ydata - rho*(0|ydata[1:nobs-1]);
xstar = xdata - rho*(zeros(1,rankx) | xdata[1:nobs-1,:]);
xstar[1,.] = simr*xstar[1,.;];
ystar[1] = simr*ystar[1];
vibn = xstar'xstar/sigma2 + vib0;
vibn12 = chol(vibn);
ebn = xstar'ystar/sigma2 + vieb0;
beta = cholsol(ebn+vibn12'rndn(rankx,1), vibn12);

/*@ cholsol is efficient method of solving linear equations if you have chol decomposition
@ Suppose C'C = A
@ Need to find x to solve A*x = b
@ x = cholsol(b, C) does it
*/

/*@

* Generate sigma2
* sigma2 is IG(rn/2, sn/2)
* rn = r0 + nobs
* sn = s0 + (y - X*beta)'(y - X*beta)

*/
resid = ydata - xdata*beta;
rstar = resid - rho*(0|resid[1:nobs-1]);
rstar[1] = rstar[1]*simr;

sn = s0 + rstar'rstar;
sigma2 = sn/(2*rndgam(1,1,rn/2));
3.3. AUTOCORRELATED ERRORS

\[
\sigma = \sqrt{\sigma^2}; \quad \text{@ Error STD @}
\]

/*
**
* Generate rho
* Use Damien's method to handle the determinant factor.
* Truncated normal on -1 to 1
* (See program TEST2.GSS to test the following identities.)
* Smat = \sigma^2*cor/(1-\rho^2) where
* cor is Toeplitz with (i,j) element \rho^{|i-j|}.
* Det|Smat|^{-1/2} = \sqrt{(1 - \rho^2))/(\sigma^2)^{n/2}}
**
*/

/*
**
* To include the determinate:
* V < \sqrt{1 - \rho^2}
* - \sqrt{1 - V^2} < \rho < \sqrt{1 + V^2}
**
*/

v2 = (1 - rho^2)*rndu(1,1);
rhotop = sqrt(1 - v2);
rhobot = - rhotop;
@ Keep rho between -1 and 1 @
rhobot = maxc(rhobot|-1);
rhotop = minc(rhotop|1);

arho = resid[2:nobs-1]'resid[2:nobs-1];
brho = resid[2:nobs]'resid[1:nobs-1];
rv = sigma2/arho;
rm = brho/arho;
rho = rndnab(1,1,rm,rv,rhobot,rhotop); @ truncated normal from -1 to 1 @
CHAPTER 3. LINEAR REGRESSION

endp;

/*
 * OUTPUTANAL
 * Does analysis of output and save some results
 */
PROC (O) = outputanal;

local bout, sout, fmtn1, fmtn2, fmts1, fmts2;
format 10,5; @ Default format @
let fmtn1[1,3] = ".*lf" 10 5; @ Format for printing numeric variable @
let fmtn2[1,3] = "*.lf" 10 0; @ Format for numeric variable, no decimal @
let fmts1[1,3] = "-*.*s" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*s" 10 9; @ Format for alpha, right justify @
output file = "outfile reset"; @ outfile is the file handle for the output file @

print "Results from ARE1.GSS";
print "Bayesian analysis of linear regression model using MCMC.";
print "AR Error Terms.");
print "Output file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @
print;
print "Model";
print "Y = X*beta + epsilon";
print "epsilon_t = rho*epsilon_{t-1} + z_t";
print "Var(Z_t) = sigma^2";
print;
print "Number of observations = " nobs;
print "Number of independent variables = " xdim "(excluding the intercept).";
print "Summary Statistics";
call sumstats(xynames,xydata,fmts1,fmts2,fmtn1); @ Print summary statistics @
print;
print "-----------------------------";
print "MLE Analysis";
print;
print "Number of observations = " nobs;
print "Number of dependent variables = " xdim;
print;
3.3. AUTOCORRELATED ERRORS

```
print "R-Squared = " rsquare;
print "Multiple R = " sqrt(rsquare);
print "One-Step Ahead Predictive RMSE = " PrmseML;
print;
print "MLE Error STD = " sighat;
print;
print "Estimated Regression Coefficients";
sout = {"Variable" "MLE" "StdError"};
call outitle(sout,fmst1,fmst2);
bout = xnames"bhat"bstd;
call outmat(bout,fmst1,fmstn1);

print "-------------------------------------------";
print;
print "MCMC Analysis";
print;
print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;
print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;
print "Number of observations = " nobs;
print "Number of dependent variables = " xdim " (excluding the intercept)";
@ Compute posterior means and std @
print;
print "Bayes R-Square = " cy2;
print "Bayes Multiple R = " cy[1,2];
print "One-Step Ahead Predictive RMS without AR Correction = " PrmseB;
print "One-Step Ahead Predictive RMSE Corrected for AR Errors = " PrmseBC;
print;

print "Error Standard Deviation";
print "Posterior mean of sigma = " sigm;
print "Posterior STD of sigma = " sigstd;
print;
print "Error Correlation";
print "Posterior mean of rho = " rhom;
print "Posterior STD of rho = " rhos;
print;
print "Regression Coefficients";
sout = {"Variable" "PostMean" "PostSTD"};
call outitle(sout,fmst1,fmst2);

bou = xnames"betam"betas;
call outmat(bout,fmst1,fmstn1);
```
output off;
closeall;
endp;

;/*

* OUTITLE
* Prints header for columns of numbers.
* INPUT
* a = character row vector of column names
* fmt1 = format for first column
* fmt2 = format for second column
* OUTPUT
* None
***/
PROC (0) = outitle(a,fmt1,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1|(ones(ncols-1,1).*fmt2);
flag = printfm(a,mask,fmt);
print;
endp;

;/*

* OUTMAT
* Outputs a matrix:
* (Character Vector)~(Numeric matrix);
* The entries in the numeric matrix have the same format
* INPUT
* bout = matrix to be printed
* fmts = format for string
* fmtn = format for numeric matrix
* OUTPUT
* None
***/
PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols = cols(bout);
mask = zeros(1,ncols);
fmt = fmt1|(ones(ncols-1,1).*fmt2);
flag = printfm(bout,mask,fmt);
print;
endp;
3.3. AUTOCORRELATED ERRORS

fmt = fmts\|\{\text{ones(ncols-1,1)}.*.fmtn\};
mask = zeros(nrows,1)~ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);
print;
endp;

/*

* SUMSTATS
* Prints summary statistics for a data matrix
* INPUT
* names = character vector of names
* data = data matrix
* fmts1 = format for string
* fmts2 = format for string
* fmtn = format for numbers
* OUTPUT
* None
***/
PROC (0) = sumstats(names,data,fmts1,fmts2,fmtn);
local a, bout;
a = \{"Variable" "Mean" "STD" "MIN" "MAX"\};
call outitle(a,fmts1,fmts2);
call outmat(bout,fmts1,fmtn);
endp;
Chapter 4

Multivariate Regression
4.1 Data Generation

/*
 **
* GMULREG.GSS
* Genenerates data for multiple regression analysis:
* Y = X*B + U
* Y is a nobs by mvar matrix
* Rows of Y correspond to subjects.
* Columns of Y correspond to variables.
* X is a nobs by rankx design matrix
* Rows of X correspond to subjects.
* Columns of X corresponds to variables.
* B is a rankx by mvar matrix of regression coefficients.
* U is matrix normal.
* The mean of U is zero.
* The rows of U are independent of each other.
* Each row of U has the same covariance matrix Sigma.
* Y has a matrix normal distribution.
* Write Y as row vectors:
 Y = \{ Y_1', ..., Y_n' \}
 so that Y_i is a mvar vector of observations for subject i.
* Define yv = vec(Y') = \{Y_1, Y_2, ..., Y_n\}
 yv is a nobs*mvar vector that stacks the observations for
 each individual.
* Then yv = vec(B'*X') + vec(U').
* One can verify that
 vec(B'*X') = (X.*.I)*vec(B')
 where .* is Kroneck product and
 I is a mvar by mvar identity matrix.
* Define beta = vec(B'), which is a rankx*mvar vector.
* Put epsilon = vec(U').
* Then epsilon is a nobs*mvar vector.
* It has a normal distribution with mean 0 and covariance matrix
 Var(epsilon) = I.*.Sigma
* where I is a nobs by nobs identity matrix.
* */
4.1. DATA GENERATION

* Then, we can write
 * $yv = (X.*.I)\beta + \epsilon$.
 *
 * It has density:
 * $(2\pi)^{nobs*mvar/2}|\Sigma|^{-nobs/2}$
 * $\exp\left(-0.5*(yv - (X.*.I)\beta)'(I.*.Sigma^{-1})(yv - (X.*.I)\beta)\right)$
 *
 * Another way to write this is:
 *
 * $(2\pi)^{nobs*mvar/2}|\Sigma|^{-nobs/2}$
 * $\exp(-0.5*tr(\Sigma^{-1}(Y - X\beta)'(Y-X\beta)))$
 *
 * where "tr" is the trace of a matrix (sum of the diagonal elements).

**

new;
flagplot = 1; @ 1 -> do a bunch of plots @
nobs = 100; @ Number of subjects @
mvar = 4; @ Y_{ij} is mvar vector. Eg: mvar brands @
rankx = 3; @ Rank of the design matrix @
xdim = rankx - 1; @ Number of X variables excluding the intercept @
pardim = nobs|mvar|rankx;
@ Define some variable names for Gauss file @
@ Use string arrays @
a = seqa(1,1,mvar);
ynames = 0 $+ "Y" $+ ftocv(a,1,0);
@ ftocv converts a number to the corresponding character @
a = seqa(1,1,xdim);
xnames = 0 $+ "X" $+ ftocv(a,1,0);
xynames = xnames|ynames;

@ Generate X data. @
xdata = rndn(nobs,xdim); @ xdata does not have an intercept @
xmat = ones(nobs,1)~xdata;

@ Define true error variance Sigma @

@ First do chol decomposition (Gauss does upper triangular) @
sig12 = {
3 -2 1 4 ,
0 .5 3 -2 ,
0 0 2 -4 ,
0 0 0 1
};
sigmat = sig12' sig12;
@ Define true bmatt @
bmatt = {
 1 2 -1 4,
 -3 0 4 2,
 2 .5 -4 6
};

@ Generate ydata @
ydata = xmat*bmatt + rndn(nobs,mvar)*sig12;
@ Wasn't that simple! @

xydata = xdata*ydata;

@ Create a Gauss file. f1 is the file handle. @
create f1 = xydata with ^xynames, 0, 8;
if writer(f1,xydata) /= rows(xydata);
 errorlog "Conversion of XYDATA to Gauss File did not work";
endif;
closeall f1;
save pardim = pardim;

save sigmat = sigmat;
save bmatt = bmatt;

if flagplot == 1;
 _plctrl = -1; @ plot with symbols only @
 for i0 (1,mvar,1); i = i0;
 for fj (1,xdim,1); j = fj;
 title(" "$+ ynames[i] "$ versus "$+ xnames[j]);
 xy(xdata[.,j],ydata[.,i]);
 endfor;
 endif;
graphset;
endif;

end;
4.2 Bayesian Analysis

/*
 **
 * MULREG.GSS
 * Analyzes data form multivariate regression model:
 * Y = X*B + U
 * Y is a nobs by mvar matrix
 * Rows of Y correspond to subjects.
 * Columns of Y correspond to variables.
 * X is a nobs by rankx design matrix
 * Rows of X correspond to subjects.
 * Columns of X corresponds to variables.
 * B is a rankx by mvar matrix of regression coefficients.
 * U is matrix normal.
 * The mean of U is zero.
 * The rows of U are independent of each other.
 * Each row of U has the same covariance matrix Sigma.
 * Prior:
 * vec(B') is N(u0,v0);
 * Sigma is Inverted Wishart(f0,g0)
 * f0 is prior df.
 * g0 is prior scale matrix.
 *
 * NOTES:
 * Y has a matrix normal distribution.
 * Write Y as row vectors:
 * Y = \{ Y_1', \ldots, Y_n' \}
 * so that Y_i is a mvar vector of observations for subject i.
 * Define yv = vec(Y') = \{Y_1, Y_2, \ldots, Y_n\}
 * yv is a nobs*mvar vector that stacks the observations for
 * each individual.
 * Then yv = vec(B'*X') + vec(U').
 * One can verify that
 * vec(B'*X') = (X.*.I)*vec(B')
 * where .* is Kroneck product and
CHAPTER 4. MULTIVARIATE REGRESSION

* I is a mvar by mvar identity matrix.
* Define beta = vec(B'), which is a rankx*mvar vector.
* Put epsilon = vec(U').
* Then epsilon is a nobs*mvar vector.
* It has a normal distribution with mean 0 and covariance matrix
 Var(epsilon) = I.*.Sigma
 where I is a nobs by nobs identity matrix.
* Then, we can write
 yv = (X.*.I)*beta + epsilon.
* It has density:
 *(2*pi)^(nobs*mvar/2)|Sigma|^{-nobs/2}*
 exp(-0.5(yv - (X.*.I)*beta)'(I.*.Sigma^{-1})(yv - (X.*.I)*beta)) *
* Another way to write this is:
* *(2*pi)^(nobs*mvar/2)|Sigma|^{-nobs/2}*
 *exp(-0.5*tr(Sigma^{-1}(Y - X*B)'(Y-X*B))) *
where "tr" is the trace of a matrix (sum of the diagonal elements).

* MATRIX Fun Fact
 * vec(B*C) = (I.*.B)*vec(C)
 * = (C'.*.I)*vec(B)
 * = (C'.*.B)*vec(I)
***/

new;
outfile = "results1.dat"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @

new;
outfile = "results1.dat"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @

/*

* Initialize parameters for MCMC
*******************************/

/*

* Initialize parameters for MCMC
*******************************/

smcmc = 500; @ number of iterations to save for analysis @
skip = 1; @ Save every skip iterations @
nblow = 500; @ Initial transition iterations @
nmcmc = nblow + skip*smcmc; @ total number of iterations @
4.2. BAYESIAN ANALYSIS

/*
**
* Get data
**
*/
load pardim = pardim; @ pardim give nobs, mvar, rankx @
nobs = pardim[1];
mvar = pardim[2];
rankx = pardim[3]; @ rank of the design matrix @
xdim = rankx - 1; @ does not include intercept @
@ Input Gauss files @
open f1 = ^inxy; @ Get Gauss file for X, Y data @
@ Opens Gauss file & assigns file handle f1 @
xydata = readr(f1,rowsf(f1));
@ readr reads in Gauss file with file handle f1. @
@ rowsf(f1) returns the number of rows in the Gauss file. @
@ readr reads rowsf(f1) rows, which is the entir dataset. @
ci = close(f1);
if not nobs == rows(xydata);
errorlog "Rows of data matrix are wrong: Check pardim.";
endif;
@ First xdim columns of xydata are the independent variables @
@ Columns xdim+1 to xdim+mvar are the dependent variables @
if not xdim+mvar == cols(xydata);
errorlog "Columns of data matrix are wrong: Check pardim.";
endif;
xdata = ones(nobs,1)~xydata[.,1:xdim];
ydata = xydata[.,xdim+1:xdim+mvar];
yv = vecr(ydata);
@ Get the variable names that accompnay X, Y data @
xynames = setvars(inxy);
xnames = xynames[1:xdim];
xnames = "Constant"|xnames;
ynames = xynames[xdim+1:xdim+mvar];

/*
**
* Compute MLE
**
*/
xtx = xdata’xdata;
xtxi = invpd(xtx);
xty = xdata’ydata;
bhat = xtxi*xyt; @ bhat = (X’X)^{-1}X’Y @
CHAPTER 4. MULTIVARIATE REGRESSION

resid = ydata - xdata*bhat;
sighat = resid'*resid/nobs;
@ Define betah = vec(bhat') @
@ The betah = [(X'X)^{-1}X' .* vec(Y') @
@ Var(betah) = (X'X)^{-1} .* Sigma @
bhatvar = xtxi .* sighat;
bstderr = sqrt(reshape(diag(bhatvar),rankx,mvar));

/*
 **
 * Initialize Priors
 **
 */

@ Prior bmat is N(u0,v0) @
@ put beta = vec(bmat') @
bdim = rankx*mvar;
u0 = zeros(bdim,1);
v0 = 100*eye(bdim); @ thdim = rankx*parz @
v0i = invpd(v0); @ used in updating theta @
v0iu0 = v0i*u0; @ used in updating theta @

@ Prior for sigma is IW(f0, g0) @
f0 = mvar+2; f0n = f0 + nobs;
g0i = eye(mvar);

/*
 **
 * Initialize MCMC
 **
 */
bmat = zeros(rankx,mvar);
beta = vecr(bmat);
sigma = eye(mvar);
sigmai = invpd(sigma);

@ Define data structures for saving iterates & computing posterior means & std @
betag = zeros(smcmc,bdim);
c = mvar*(mvar+1)/2;
simag = zeros(smcmc,c); @ save iterations for sigma @

/*
 **
4.2. BAYESIAN ANALYSIS

* Do MCMC
***/
@ Do the initial transition period @
for i1 (1,nblow,1); imcmc = i1;
{bmat, sigma, sigmai} = getmulreg(ydata,xdata,xtx,bmat,sigma,sigmai,v0i,v0iu0,f0n,g0i);
endfor;

for i1 (1,smcmc,1); imcmc = i1; @ Save smcmc iterations @
for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @
{bmat, sigma, sigmai} = getmulreg(ydata,xdata,xtx,bmat,sigma,sigmai,v0i,v0iu0,f0n,g0i);
endfor;
@ Save the random deviate. @
betag[imcmc,:] = vecr(bmat)';
sigmag[imcmc,:] = vech(sigma)';
@ vech({1 2 3, 4 5 6, 7 8 9}) = {1, 4 5 6, 7 8 9} @
@ xpnd is the inverse operator of vech @
endfor;

/***/
* Compute Posterior Means and STD
***/
betam = meanc(betag);
bmatm = reshape(betam,rankx,mvar);
sigmam = xpnd(meanc(sigmag)); @ xpnd reconstructs symmetric matrix @
betas = stdc(betag);
bmats = reshape(betas,rankx,mvar);
sigmas = xpnd(stdc(sigmag));

@ Compute predictive value of Y_{ij} @
yhat = xdata*bmatm;
resid = ydata - yhat;
stderr = sqrt(diag(resid' * resid/nobs));
@ Pick out each dimension of Y_{ij} and compute fit statistics @
multir = zeros(mvar,1);
square = zeros(mvar,1);
for fm (1,mvar,1); m = fm;
cm = corrx(ydata[.,m]~yhat[.,m]);
multir[m] = cm[1,2];
square[m] = cm[1,2]'^2;
endfor;
CHAPTER 4. MULTIVARIATE REGRESSION

/*
 **
 * Do some output
 **
*/
call outputanal;

@ Plot saved iterations against iterations number @
t = seqa(nblow+skip,skip,smcmc); @ saved iteration number @
title("beta = vec(B') versus Iteration");
xy(t,betag);
title("Error Variance versus Iteration");
xy(t,sigmag);
graphset;
end;

/*
 **
 * GETMULREG
 * Generate multivariate regression parameters.
 * Ydata = Xdata*bmat + epsilon
 *
 * INPUT
 * ydata = dependent variables
 * xdata = independent variables
 * xtx = xdata'xdata
 *
 * bmat = current value of coefficient matrix
 * sigma = current value of covariance matrix
 * sigmai = its inverse
 * vOi = prior precisions for bmat
 * vOiui0 = prior precision*prior mean for bmat
 * fOn = posterior df for sigma
 * gOi = prior scaling matrix inverse for sigma
 *
 * OUTPUT
 * bmat = updated rankx x mvar coefficient matrix
 * sigma = updated variance
 * sigmai = updated inverse of sigma
 *
4.2. BAYESIAN ANALYSIS

* Calling Statement:
{bmat, sigma, sigmai} = getmulreg(ydata, xdata, xtx, bmat, sigma, sigmai, v0i, v0iu0, f0n, g0i);
**
/*
PROC (3) = getmulreg(ydata, xdata, xtx, bmat, sigma, sigmai, v0i, v0iu0, f0n, g0i);
local vb12, ubn, beta, bdim, resid, gni, gn, rankx, mvar;

rankx = rows(bmat);
mvar = cols(ydata);
bdim = rankx*mvar;

/*
**
* Generate bmat from N_{rankx x mvar}(M,v)
* beta = vec(bmat')
* beta is N(u,V) whee u = vec(M');
* V = (X'X.*.Sigma^{-1} + V_0^{-1})^{-1}
* u = V*((X'.*Sigma^{-1})*vec(Y') + V_0^{-1}u_0)
**

vb12 = chol(xtx.*.sigmai + v0i);
ubn = ((xdata').*.sigmai)*vecr(ydata) + v0iu0;
beta = cholsol(ubn + vb12'rndn(bdim,1), vb12);
bmat = reshape(beta, rankx, mvar);

/*
**
* Generate Sigma
* Sigma^{-1} is Wishart df = f0n, scale matrix = gn
**
*/
resid = ydata - xdata*bmat;
gni = g0i + resid'*resid;
gn = invpd(gni);
{sigmai, sigma} = wishart(mvar, f0n, gn);
retp(bmat, sigma, sigmai);
endp;

/*
**
* OUTPUTANAL
* Does analysis of output and save some results
**
CHAPTER 4. MULTIVARIATE REGRESSION

PROC (O) = outputanal;
format 10,5;
local bout, sout, ebeta, sbeta, cb, rmse, fmtn1, fmtn2, fmts1, fmts2, a, b,
bmat, sigmat;

if flagtrue == 1; @ Did a simulation. Get true parameters @
load bmat = bmat;
load sigmat = sigmat;
endif;

let fmtn1[1,3] = "*.*lf" 10 5; @ Format for printing numeric variable @
let fmtn2[1,3] = "*.*lf" 10 0; @ Format for numeric variable, no decimal @

let fmts1[1,3] = "*.*s" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*s" 10 9; @ Format for alpha, right justify @
format 10,5; @ Default print format @

output file = ^outfile reset; @ outfile is the file handle for the output file @
@ Route printed output to the defined by outfile @
print "Results from MULReg1.GSS";
print "Bayesian Multivariate Regression using MCMC."
print "Y = X*B + U"
print "U is matrix normal, mean 0, Var(U) = I .*. Sigma"
print;
print "Ouput file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @
print;
print;
print "---"
print;
print "MCMC Analysis"
print;
print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;
print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;
print "---";
print "Number of observations = " nobs;
print "Number of dependent variables = " mvar;
print "Number of independnet variables = " rankx " (including intercept)";
4.2. BAYESIAN ANALYSIS

print;
print;
print "Y = X*B + U";
print;
print " Summary Statistics for Y";
call sumstats(ynames,ydata,fmts1,fmts2,fmtn1);
print;
print " Summary Statistics for X";
call sumstats(xnames[2:rankx],xdata[,2:rankx],fmts1,fmts2,fmtn1);
print;
print;
print "---";
print "Statistics of Fit Measures for each Dimension";
sout = {"Variable" "Multi-R" "R-Sqr" "ErrorSTD"};
call outitle(sout,fmts1,fmtn1);
bout = ynames~multir~rsquare~stderr;
call outmat(bout,fmts1,fmtn1);
print;
print "---";
print;
print "Estimated Regression Coefficients";
sout = " "(ynames');
if flagtrue == 1;
print "True B";
call outitle(sout,fmts1,fmtn1);
bout = xnames~bmatt;
call outmat(bout,fmts1,fmtn1);
print; endif;
print "ML Estimates of B";
call outitle(sout,fmts1,fmtn1);
bout = xnames~bhat;
call outmat(bout,fmts1,fmtn1);
print;
print "STD Error of MLE of B";
call outitle(sout,fmts1,fmtn1);
bout = xnames~bstderr;
call outmat(bout,fmts1,fmtn1);
print;
if flagtrue == 1;
print "True B";
call outitle(sout,fmts1,fmtn1);
bout = xnames~bmatt;
call outmat(bout,fmts1,fmtn1);
print;
endif;
print "Bayes Estimates of B";
print "Posterior Mean of B";
print outitle(sout,fmts1,fmts2);
bout = xnames"bmatsm;
call outmat(bout,fmts1,fmtn1);
print;
print "Posterior STD of B";
call outitle(sout,fmts1,fmtn2);
bout = xnames"bmats;
call outmat(bout,fmts1,fmtn1);
print;
print;
print "---";
print "Estimation of the error covariance Sigam";
sout = " ~"(ynames');
if flagtrue == 1;
print "True Sigma";
call outitle(sout,fmts1,fmtn2);
bout = ynames"sigmat;
call outmat(bout,fmts1,fmtn1);
print; endif;
print "ML Estimate of Sigma";
call outitle(sout,fmts1,fmtn2);
bout = ynames"sighat;
call outmat(bout,fmts1,fmtn1);
print; print "Bayes Estimates of Sigma";
print "Posterior Mean of Sigma";
call outitle(sout,fmts1,fmtn2);
bout = ynames"sigmam;
call outmat(bout,fmts1,fmtn1);
print; print "Posterior STD of Sigma";
call outitle(sout,fmts1,fmtn2);
bout = ynames"sigmas;
call outmat(bout,fmts1,fmtn1);
print;
print "===";
4.2. BAYESIAN ANALYSIS

output off;
closeall;
endp;

/*

* OUTITLE
* Prints header for columns of numbers.
* INPUT
* a = character row vector of column names
* fmts1 = format for first column
* fmts2 = format for second column
* OUTPUT
* None

*/
PROC (0) = outitle(a,fmt1,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1|(ones(ncols-1,1).*.fmt2);
flag = printfm(a,mask,fmt);
print;
endp;

/***
* OUTMAT
* Outputs a matrix:
* (Character Vector)~(Numeric matrix);
* The entries in the numeric matrix have the same format
* INPUT
* bout = matrix to be printed
* fmts = format for string
* fmtn = format for numeric matrix
* OUTPUT
* None

*/
PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols = cols(bout);
mask = zeros(1,ncols);
fmt = fmt1|(ones(ncols-1,1).*.fmt2);
flag = printfm(a,mask,fmt);
print;
endp;
CHAPTER 4. MULTIVARIATE REGRESSION

fmt = fmts|(ones(ncols-1,1).*.fmtn);
mask = zeros(nrows,1)~ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);
print;
endp;

/*---
* SUMSTATS
* Prints summary statistics for a data matrix
* INPUT
* names = character vector of names
* data = data matrix
* fmts1 = format for string
* fmts2 = format for string
* fmtn = format for numbers
* OUTPUT
* None
---*/
PROC (0) = sumstats(names,data,fmts1,fmts2,fmtn);
local a, bout;
a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outitle(a,fmts1,fmts2);
call outmat(bout,fmts1,fmtn);
endp;
Chapter 5

HB Regression: Interaction Model
5.1 Data Generation

/*

 * GHBREG2.GSS
 * Generates data for HB Regression Model
 * \(Y_i = X_i \beta_i + \epsilon_i \)
 * \(\beta_i = \Theta'Z_i + \delta_i \)
 * \(B = Z\Theta + D \)
 * \(\epsilon_i \) is \(\mathcal{N}(0,\sigma^2 I) \)
 * \(\delta_i \) is \(\mathcal{N}(0,\Lambda) \)
 * Different Design Matrices

*/

new;

nobs = 100; \(\text{\# Number of subjects} \)
yrows = 5 + floor(10*rnud(nobs,1)); \(\text{\# Number of observations per subject} \)
ntot = sumc(yrows);
sigmat = 5; \(\text{\# True error STD} \)

lbd12 = {
 5 .5 -1 .1,
 0 4 -2 0,
 0 0 3 2,
 0 0 0 1
};
lbd12 = lbd12/2;
lambdat = lbd12'\text{lbd12};

thetat = {
 2 -1 -3 4,
 -1 0 2 -3,
 3 2 1 0
};

rankx = rows(lambdat);
rankz = rows(thetat);

b = cumsumc(yrows);
a = 1|(1+b[1:nobs-1]);

iptxy = a\text{-b};

xdim = rankx - 1;
zdim = rankz - 1;

a = seqa(1,1,xdim);
xnames = 0 $+ "X " $+ ftocv(a,1,0);
5.1. DATA GENERATION

```plaintext
a = seqa(1,1,zdim);
znames = 0 $+ "Z " $+ ftocv(a,1,0);
xynames = xnames|"Y ";

xdata = rndn(ntot,xdim);
xmat = ones(ntot,1)~xdata;
zdata = rndn(nobs,zdim);
zmat = ones(nobs,1)~zdata;
betat = zmat*thetat + rndn(nobs,rankx)*lbd12;
ydata = zeros(ntot,1);
@ Generate and store y data @
for i0 (1,nobs,1); i = i0;
  xi = xmat[iptxy[i,1]:iptxy[i,2],.];
  yi = xi*(betat[i,.]') + sigmat*rndn(yrows[i],1);
  ydata[iptxy[i,1]:iptxy[i,2],.] = yi;
endfor;
xydata = xdata~ydata;
/*
******************************************************************************************
* Create & Read a Gauss file. f1 is the file handle.
*******************************************************************************************/
create f1 = xydata with ^xynames, 0, 8;
if writer(f1,xydata) /= rows(xydata);
  errorlog "Conversion of XYDATA to Gauss File did not work";
endif;
closeall f1;
create f1 = zdata with ^znames, 0, 8;
if writer(f1,zdata) /= rows(zdata);
  errorlog "Conversion of ZDATA to GAUSS File did not work";
endif;
closeall f1;
save yrows = yrows;
save sigmat = sigmat;
save betat = betat;
save thetat = thetat;
save lambdat = lambdat;
```

5.2 Bayesian Analysis

/*

* HBREG2.GSS
* HB Linear Regression Model.
* Allows for subject level design matrices.
* Y_i = X_i*beta_i + epsilon_i for i = 1,..., nsub
* epsilon_i is N(0,sigma^2 I)
* beta_i = Theta'z_i + delta_i
* delta_i is N(0,Lambda)
* B = Z*Theta + Delta
* PRIORS
* sigma^2 is Inverted Gamma(r0/2,s0/2)
* Theta is matrix normal(u0,v0).
* That is, vec(Theta) is N(vec(u0),v0).
* vec(theta) stacks the columns of theta.
* Lambda is Inverted Wishart(f0, g0)

*/

new;
outfile = "result.res"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
inz = "zdata"; @ Name of Gauss file with Z data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @

new;
outfile = "result.res"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
inz = "zdata"; @ Name of Gauss file with Z data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @

smcmc = 100; @ number of iterations to save for analysis @
skip = 1; @ Save every skip iterations @
nblow = 100; @ Initial transition iterations @
nmcmc = nblow + skip*smcmc; @ total number of iterations @

new;
outfile = "result.res"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
inz = "zdata"; @ Name of Gauss file with Z data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @

smcmc = 100; @ number of iterations to save for analysis @
skip = 1; @ Save every skip iterations @
nblow = 100; @ Initial transition iterations @
nmcmc = nblow + skip*smcmc; @ total number of iterations @

/*
**
* Initialize parameters for MCMC
**
*/

new;
outfile = "result.res"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
inz = "zdata"; @ Name of Gauss file with Z data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @

new;
outfile = "result.res"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
inz = "zdata"; @ Name of Gauss file with Z data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @

smcmc = 100; @ number of iterations to save for analysis @
skip = 1; @ Save every skip iterations @
nblow = 100; @ Initial transition iterations @
nmcmc = nblow + skip*smcmc; @ total number of iterations @

/*
**
* Get data
**
*/
5.2. BAYESIAN ANALYSIS

@ Input Gauss files @
open f1 = ^inxy; @ Get Gauss file for X, Y data @
@ Opens Gauss file & assigns file handle f1 @
xydata = readr(f1,rows(f1)); @ readr reads in Gauss file with file handle f1. @
@ rows(f1) returns the number of rows in the Gauss file. @
@ readr reads rows(f1) rows, which is the entire dataset. @
ci = close(f1);
xynames = setvars(inxy); @ Get the variable names that accompany X, Y data @
ynames = xynames[rows(xynames)];
xnames = "CS"|xynames[1:rows(xynames)-1];

@ Last row of xydata is Y. @
xdata = xydata[.,1:cols(xydata)-1]; @ Get independent variables @
ydata = xydata[.,cols(xydata)]; @ Get dependent variable @

open f1 = ^inz;
zdata = readr(f1,rows(f1)); @ readr reads in Gauss file with file handle f1. @
ci = close(f1);
znames = setvars(inz);
znames = "CS"|znames;

loadm yrows = yrows; @ yrows gives the number of observations per subject @
nsub = rows(yrows); @ Number of subjects. @
tot = sumc(yrows); @ Total number of observations. @
@ Create pointer based on yrows to access xdata and ydata @
b = cumsumc(yrows); @ cumsumc is the cumulative sum of yrows @
a = 1\(1+b[1:nsub-1])

iptxy = a~b;
@ To use iptxy to get the design matrix and data for subject i: @
@ x_i = xdata[iptxy[i,1]:iptxy[i,2],.] @
@ y_i = ydata[iptxy[i,1]:iptxy[i,2]] @

xdim = cols(xdata);
zdim = cols(zdata);
@ add intercepts to xdata and zdata @
xdata = ones(nsub,1)xdata;
zdata = ones(nsub,1)zdata;
rankx = cols(xdata);
rankz = cols(zdata);
thdim = rankx*rankz; @ dimension of vec(theta) @

@ Compute some sufficient statistics @
@ Get point to access stacked matrices of xtx, xtxi, and xty @
b = seqa(rankx,rankx,nsub);
\begin{verbatim}
a = 1/(1+b[1:nsub-1]);
iptxt = a~b;
bpool = invpd(xdata'xdata)*xdata'ydata;
xtx = zeros(rankx*nsub,rankx);
xy = zeros(rankx*nsub,1);
bhat = zeros(nsub,rankx); @ MLE of beta_i @
sse = 0;
for i0 (1,nsub,1); i = i0;
 xi = xdata[iptxy[i,1]:iptxy[i,2],.];
 yi = ydata[iptxy[i,1]:iptxy[i,2],.];
 xitxi = xi'xi;
 xityi = xi'yi;
 xtx[iptxt[i,1]:iptxt[i,2],.] = xitxi;
 xty[iptxt[i,1]:iptxt[i,2],.] = xityi;
 if rank(xitxi) >= rankx; @ Got an inverse @
 xitxii = invpd(xitxi);
 bhat[i,.] = (xitxii*xityi)';
 else; @ Use the pooled estimate @
 bhat[i,.] = bpool';
 endif;
 resid = yi - xi*(bhat[i,.]');
 sse = sse + resid' resid;
endfor;
s2hat = sse/ntot; @ MLE of sigma2 @
sighat = sqrt(s2hat);
ztz = zdata'zdata;

**
* Initialize Priors
**
/*
@ Prior for sigma2 is IG(r0/2, s0/2) @
r0 = 2; s0 = 2;
n = r0 + ntot;

@ Prior for theta is N(u0,v0) @

u0 = zeros(thdim,1); v0 = 100*eye(thdim); @ thdim = rankx*rankz @
v0i = invpd(v0); @ used in updating theta @
\end{verbatim}
5.2. BAYESIAN ANALYSIS

v0iu0 = v0i*vec(u0); @ used in updating theta @

@ Lambda^{-1} is W_{rankx}(f0,g0) @
@ f0 = prior df, g0 = prior scale matrix @
f0 = rankx+2; f0n = f0 + nsub;
g0i = eye(rankx); @ g0^{-1} @

/*
**
* Initialize MCMC
**
*/

beta = zeros(nsub, rankx);
sigma = 1;
sigma2 = s2hat;
theta = zeros(rankz,rankx);
lambda = eye(rankx);
lambdai = invpd(lambda);

@ Define data structures for saving iterates & computing posterior means & std @
betam = zeros(nsub,rankx); @ posterior mean of beta @
betas = zeros(nsub,rankx); @ posterior std of beta @
sigmag = zeros(smcmc,1);
thetaq = zeros(smcmc,thdim);
c = rankx*(rankx+1)/2;
lambdag = zeros(smcmc,c); @ save unique elements of lambda @

/*
**
* Do MCMC
**
*/
@ Do the initial transition period @
for i1 (1,nblow,1); imcmc = i1;
call gethbreg;
endfor;

for i1 (1,smcmc,1); imcmc = i1; @ Save smcmc iterations @
for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @
call gethbreg;
endfor;
sigmag[imcmc] = sigma;
thetaq[imcmc,.] = vecr(theta)';
betam = betam + beta;
betas = betas + beta^2;
lambdag[imcmc,.] = vech(lambda)'; % vech gets unique elements of symmetric matrix
endfor;

/*
***/
* Compute Posterior Means and STD
***/

@ Compute Posterior Means @
betam = betam/smcmc;
sigmam = meanc(sigmag);
thetam = meanc(thetag);
thetam = reshape(thetam, rankz, rankx);
lambdam = xpnd(meanc(lambdag)); % xpnd is opposite of vech

@ Compute Posterior STD @
betas = sqrt(abs(betas - smcmc*betam^2)/smcmc);
sigmas = stdc(sigmag);
thetas = stdc(thetag);
thetas = reshape(thetas, rankz, rankx);
lambdas = xpnd(stdc(lambdag));

@ Predict yi @
yhhb = zeros(ntot,1);
yhml = yhhb;
for i0 (1, nsub, 1); i = i0;
 xi = xdata[iptxy[i,1]:iptxy[i,2],.];
 yhhb[iptxy[i,1]:iptxy[i,2]] = xi*(betam[i,.]');
 yhml[iptxy[i,1]:iptxy[i,2]] = xi*(bhat[i,.]');
endfor;
cr = corrx(ydata~yhhb);
hr = cr[1,2];
estd = ydata - yhhb;
estd = sqrt(estd'estd/ntot);
cr = corrx(ydata~yhml);
mlr = cr[1,2];
estdml = ydata - yhml;
estdml = sqrt(estdml'estdml/ntot);

/*
***/
5.2. BAYESIAN ANALYSIS

* Do some output
**
*/
call outputanal;

@ Plot saved iterations against iterations number @
t = seqa(nblow+skip,skip,smcmc); @ saved iteration number @
title("Error STD versus Iteration");
xy(t,sigmag);
title("Theta versus Iteration");
xy(t,thetag);
title("Lambda versus Iteration");
xy(t,lambdag);
title("MLE & HB for " $xnames[2]$+ " versus " $xnames[1]$);
_plctrl1 = -1;
xy(bhat[,1]~betam[.,1],bhat[,2]~betam[.,2]);
graphset; @ Return to default settings @
end;

/**
* GETHBREG
* Does one iteration of the HB regression model.
* INPUT
* Global Variables
* OUTPUT
* Global Variables
**
*/
PROC (0) = gethbreg;
local vibn, vibn12, ebin, yhat, sse, sn, resid, gni, gn, gn12, w, i0, i, limub, yhati, betai;

limub = zdata*theta*lambdai; @ Used in posterior mean of beta @

/**
* Generate beta
* beta_i is N(mbin, vbn)
* vbn = (X_i'X_i/sigma2 + Lambda^{-1})^{-1}
* mbin = vbn*(X_i'Y_i/sigma2 + Lambda^{-1}Theta*Z_i)
**
*/
sse = 0;
for i0 = 1,nsub,1; i = i0;
 xi = xdata[iptxy[i,1]:iptxy[i,2],.];
 yi = ydata[iptxy[i,1]:iptxy[i,2],.];
 xitxi = xtx[iptxt[i,1]:iptxt[i,2],.];
 xityi = xty[iptxt[i,1]:iptxt[i,2],.];
 vibn = xitxi/sigma2 + lambdai;
 vibn12 = chol(vibn);
 ebin = xityi/sigma2 + limub[i,.]';
 betai = cholsol(ebin + vibn12'rndn(rankx,1), vibn12);
 beta[i,.] = betai';
 yhati = xi*betai;
 resid = yi - yhati;
 sse = sse + resid'*resid;
endfor;

/*******************
* Generate sigma2
* sigma2 is IG(rn/2, sn/2)
* rn = r0 + ntot
* sn = s0 + sum_{i=1}^{nsub} (Y_i - X*beta_i)'(Y_i - X*beta_i)
*******************/
sn = s0 + sse;
sigma2 = sn/(2*rdngam(1,1,rn/2));
sigma = sqrt(sigma2);

/******************
* Generate Theta and Lambda from multivariate model:
* B = Z*Theta + N(0,Lambda)
*****************/
{theta, lambda, lambdai} =
getmulreg(beta,zdata,ztz,theta,lambda,lambdai,v0i,v0iu0,f0n,g0i);
endp;

/************
* GETMULREG
* Generate multivariate regression parameters.
 * \(Y_d = X_d \cdot \text{parmat} + \epsilon \)
* INPUT
 * \(y_d \) = dependent variables
 * \(x_d \) = independent variables
 * \(x_d^t x_d \) = \(x_d' x_d \)
* parmat = current value of coefficient matrix
 * var = current value of covariance matrix
 * vari = its inverse
 * \(v_{0i} \) = prior precisions for bmat
 * \(v_{0iu0} \) = prior precision*prior mean for bmat
 * \(f_{0n} \) = posterior df for sigma
 * \(g_{0i} \) = prior scaling matrix inverse for sigma
* OUTPUT
 * parmat = updated rankx mvar coefficient matrix
 * var = updated variance
 * vari = updated inverse of sigma
* Calling Statement:

```
{parmat, var, vari} = getmulreg(yd, xd, xdtxd, parmat, var, vari, v0i, v0iu0, f0n, g0i);
```

```
PROC (3) = getmulreg(yd, xd, xdtxd, parmat, var, vari, v0i, v0iu0, f0n, g0i);
local vb12, ubn, par, pdim, resid, gni, gn, rp, cp;

rp = rows(parmat);
cp = cols(parmat);
pdim = rp*cp;
/
******************************************************************************
* Generate parmat from \( N_{(rp \times cp)}(M, V) \)
* par = vecr(parmat)
* par is \( N(u, V) \) whee u = vec(M');
* V = (X_d'X_d.*.Var^{-1} + V_0^{-1})^{-1}
* u = V*( (X_d'.*Var^{-1})*vec(Y_d') + V_0^{-1}u_0 )
******************************************************************************

vb12 = chol(xdtxd.*.vari + v0i);
ubn = ( (xd').*vari )*vecr(yd) + v0iu0;
par = cholxol(ubn + vb12'rndn(pdim,1), vb12);
parmat = reshape(par,rp,cp);

POSITORY
Generate Var
* Var^{-1} is Wishart df = f0n, scale matrix = gn
POSITORY

resid = yd - xd*parmat;
gni = g0i + resid'resid;
gn = invpd(gni);
{vari, var} = wishart(cp,f0n,gn);
retp(parmat,var,vari);
endp;

POSITORY
OUTPUTANAL
* Does analysis of output and save some results
POSITORY

PROC (O) = outputanal;
local bout, sout, ebeta, sbeta, cb, rmse, fmt1, fmt2, fmts1, fmts2, a, b,
betat, sigmat, thetat, lambdat, bratio;

if flagtrue == 1; @ Did a simulation @
load betat = betat;
load sigmat = sigmat;
load thetat = thetat;
load lambdat = lambdat;
endif;

@ Define formats for fancy printing @
@ Used to print a matrix of alpha & numeric variables @
format 10,5; @ Default pring format @
let fmt1[1,3] = "*.*lf" 10 5; @ Format for printing numeric variable @
let fmt2[1,3] = "*.*lf" 10 0; @ Format for numeric variable, no decimal @
let fmts1[1,3] = "-*.*s" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*s" 10 9; @ Format for alpha, right justify @
5.2.  BAYESIAN ANALYSIS

output file = ^outfile reset; @ outfile is the file handle for the output file @
@ Route printed output to the defined by outfile @
print "Results from HBReg2.GSS";
print "Hierarchical Bayesian linear regression model using MCMC.";
print "Different design matrices for each subject";
print "Y_i = X_i*beta_i + epsilon_i";
print "beta_i = Theta'z_i + delta_i";
print "or";
print "B = Z*Theta + Delta";
print;
print "epsilon_i is N(0,sigma2*I)"
print "delta_i is N(0, Lambda)"
print;
print "Ouput file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @
print;
print;
print "---------------------------------------------";
print;
print "MCMC Analysis";
print;
print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;
print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;
print "Number of subjects = " nsub;
print "Mean # of observations per subject = " meanc(yrows);
print "STD # of observations per subject = " stdc(yrows);
print "MIN # of observations per subject = " minc(yrows);
print "MAX # of observations per subject = " maxc(yrows);
print "Total number of observations = " ntot;
print "Number of dependent variables X = " xdim " (excluding intercept)";
print "Number of dependent variables Z = " zdim " (excluding intercept)";
print;
print "Dependent variable is " $ynames;
print;
print "Independent variables in first level equation: Y_i = X_i*beta_i + epsilon_i";
print " Summary Statistics for X";
call sumstats(xnames,xdata,fmts1,fmts2,fmtn1);
print;
print "Independent variables in second level equation: beta_i = Theta*z_i + delta_i";
print " Summary Statistics for Z";
print sumstats(znames,zdata,fmts1,fmts2,fmtn1);
print "---------------------------------------------";
print; print "Fit Statistics for ML";
print "Muptilpe R = " mlr;
print "R-Squared = " mlr^2;
print "Error STD DEV = " estdml;
print; print "Fit Statistics for HB";
print "Muptilpe R = " hbr;
print "R-Squared = " hbr^2;
print "Error STD DEV = " estd;
print;
print "---------------------------------------------";
print "Estimation of the error STD sigma";
if flagtrue == 1; 
print "True Sigma = " sigmat;
endif;
print "MLE = " sighat;
print "Posterior Mean = " sigmam;
print "Posterior STD = " sigmas;
print;
print "---------------------------------------------";
print; print "ML Pooled Estimate of Beta";
bout = xnames~bpool;
call outmat(bout,fmts1,fmtn1);
print; print "---------------------------------------------";
print; print "Statistics for Individual-Level Regression Coefficients";
if flagtrue == 1; ebeta = meanc(betat);
sbeta = stdc(betat);
print "True Beta";
sout = {"Variable" "Mean" "STD"};
call outitle(sout,fmts1,fmts2);
bout = xnames~ebeta~sbeta;
call outmat(bout,fmts1,fmtn1);
endif;

print "MLE of Beta";
sout = {"Variable" "MeanMLE" "StdMLE" };
call outitle(sout,fmts1,fmts2);
bout = xnames~meanc(bhat)~stdc(bhat);
call outmat(bout,fmts1,fmtn1);
print "HB Estimates of Beta";
ebeta = meanc(betam);
sbeta = sqrt( meanc( (betas^2)) + stdc( betam)^2);
sout = {
"Variable" "PostMean" "PostSTD" 
};
call outitle(sout,fmtn1,fmtn2);
bout = xnames~ebeta~sbeta;
call outmat(bout,fmtn1,fmtn1);
print;
print;
print "Proportion of times that |Post Mean Beta|/(Post STD) > 2.";
bratio = betam./betas;
b = bratio > 2;
bout = xnames~(meanc(b));
call outmat(bout,fmtn1,fmtn1);
print;
print "---------------------------------------------";
print;
if flagtrue == 1;
print "Comparison of True Beta to Individual Level Estimates"
for i0 (1,rankx,1); i = i0;
print "Component " i;
cb = corrx( betat[,i]~betam[,i] );
rmse = betat[,i] - betam[,i];
rmse = rmse'rmse;
rmse = sqrt(rmse/nsub);
print "Correlation between true and HB = " cb[1,2];
print "RMSE between true and HB = " rmse;
print;

endfor;
endif;
print "---------------------------------------------";
print;
print "HB Estimates of Theta"
if flagtrue == 1;
sout = "~(xnames');
print "True Theta"
call outitle(sout,fmtn1,fmtn2);
bout = znames`thetat;
call outmat(bout,fmts1,fmtn1);
print;
endif;
print "Posterior Mean of Theta";
print outitle(sout,fmts1,fmtn1);
bout = znames`thetam;
call outmat(bout,fmts1,fmtn1);
print;
print "Posterior STD of Theta";
call outtitle(sout,fmts1,fmtn1);
bout = znames`thetas;
call outmat(bout,fmtn1);
print;
print "Post Mean/Post STD";
call outtitle(sout,fmtn1);
bout = znames`thetam./thetas;
call outmat(bout,fmtn1);
print;
print "---------------------------------------------";

sout = " ~(xnames');
print "HB Estimate of Lambda";
if flagtrue == 1;
print "True Lambda";
call outtitle(sout,fmtn1);
bout = xnames`lambdat;
call outmat(bout,fmtn1);
print;
endif;
print "Posterior Mean of Lambda";
call outtitle(sout,fmtn1);
bout = xnames`lambdam;
call outmat(bout,fmtn1);
print;
print "Posterior STD of Lambda";
call outtitle(sout,fmtn1);
bout = xnames`lambdas;
call outmat(bout,fmtn1);
print;
print "========================================";

output off;
closeall;
endp;
5.2. BAYESIAN ANALYSIS

/*

*****************************************************************
* OUTITLE
* Prints header for columns of numbers.
* INPUT
* a = character row vector of column names
* fmts1 = format for first column
* fmts2 = format for second column
* OUTPUT
* None
*******************************************************************/
PROC (0) = outitle(a,fmt1,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1|(ones(ncols-1,1).*.fmt2);
flag = printfm(a,mask,fmt);
print;
endp;

/*

***************************************************************
* OUTMAT
* Outputs a matrix:
* (Character Vector)~(Numeric matrix);
* The entries in the numeric matrix have the same format
* INPUT
* bout = matrix to be printed
* fmts = format for string
* fmtn = format for numeric matrix
* OUTPUT
* None
***************************************************************
*/
PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols = cols(bout);
nrows = rows(bout);
fmt = fmts1|(ones(ncols-1,1).*.fmtn);
flag = printfm(bout,mask,fmt);
print;
endp;

/*
*****************************************************************
* SUMSTATS
* Prints summary statistics for a data matrix
* INPUT
* names = character vector of names
* data = data matrix
* fmts1 = format for string
* fmts2 = format for string
* fmtn = format for numbers
* OUTPUT
* None
******************************************************************
*/
PROC (0) = sumstats(names, data, fmts1, fmts2, fmtn);
local a, bout;
a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outitle(a, fmts1, fmts2);
bout = names`meanc(data)`stdc(data)`minc(data)`maxc(data);
call outmat(bout, fmts1, fmtn);
endp;
Chapter 6

HB Regression: Mixture Model
6.1 Data Generation

/*
 ************************************
 * GMIXREG.GSS
 * Generates data for HB Regression Model
 * Y_i = X_i*beta_i + epsilon_i
 * beta_i = sum_{k=1}^K N(beta_i|theta_k,Lambda_k)
 * epsilon_i is N(0,sigma2*I)
 * Different Design Matrices
 ************************************
 */

new;
nsub = 200; /* Number of subjects */
yrows = 3 + ceil(7*rndu(nsub,1)); /* Number of observations per subject */
ntot = sumc(yrows);
sigmat = 5; /* True error STD */
rankx = 2; /* rank(X_i) */
mmodt = 3; /* Three mixture components */
theta = { 0 -10 7,
    0 7 5,
    25 9,
    9 4,
    9 -5,
    -5 5
};
lambdat = { 1 0,
    0 1,
    25 9,
    9 4,
    9 -5,
    -5 5
};

@ Get pointer into stacked xy matrices @
b = cumsumc(yrows);
a = 1|(1+b[1:nsub-1]);
iptxy = a~b;

@ Get pointer into sacked lambdat @
b = seqa(rankx,rankx,mmodt);
a = 1|(1+b[1:mmodt-1]);
iptgp = a~b;

xdim = rankx - 1;
a = seqa(1,1,xdim);
6.1. DATA GENERATION

xnames = 0 $+ "X " $+ ftocv(a,1,0);
xnames = xnames"Y ";

xdata = rndn(ntot,xdim);
xmat = ones(ntot,1)~xdata;
psit = { 0.2, 0.3, 0.5 }; @ Mixture probabilities @
zprob = ones(nsub,1).*.(psit');
z = rndzmn(zprob); @ Z gives class membership @

@ Compute Chol of lambdat @
lmbd12 = lambdat;
for i0 (1,mmodt,1); i = i0;
lmbd12[iptgp[i,1]:iptgp[i,2],.] = chol(lambdat[iptgp[i,1]:iptgp[i,2],.]);
endfor;

@ Generate Beta and Ydata @
betat = zeros(rankx,nsub);
ydata = zeros(ntot,1);
for i0 (1,nsub,1); i = i0;
betai = thetat[.,z[i]] + lmbd12[iptgp[z[i],1]:iptgp[z[i],2],.]'rndn(rankx,1);
betat[.,i] = betai;
xi = xmat[iptxy[i,1]:iptxy[i,2],.];
yi = xi*betai + sigmat*rndn(yrows[i],1);
ydata[iptxy[i,1]:iptxy[i,2],.] = yi;
endfor;
xydata = xdata~ydata;
/
* Create a Gauss file. f1 is the file handle. * The Gauss file will be called "XYDATA." * The column will be named by the strings in the character array xname. * "xname" means use the names in the character string. * 0, 8 gives double precision real numbers. *******************************************************************/
create f1 = xydata with ^xynames, 0, 8;
*/
**********************************************************************
* Next read data into the Gauss file by using the writer command. * f1 is the file handle defined in previous command. * xydata is the data matrix that we just created. * writer returns the number of rows read to f1. * If it is not rows(xydata), something bad happened. **********************************************************************
/*
if writer(f1,xydata) /= rows(xydata);
errorlog "Conversion of XYDATA to Gauss File did not work";
endif;
closeall f1;
save yrows = yrows;
save classt = z; @ true classifications @
save sigmat = sigmat;
save betat = betat;
save thetat = thetat;
save lambdat = lambdat;
save psit = psit;

@ Compute individual level MLEs @

bhat = zeros(rankx,nsub);
sse = 0;
for i0 (1,nsub,1); i = i0;
  xi = xmat[iptxy[i,1]:iptxy[i,2],.];
  yi = ydata[iptxy[i,1]:iptxy[i,2],.];
  xitxi = xi'xi;
  xitxi = invpd(xitxi);
  xityi = xi*yi;
  bhat[.,i] = xitxi*xityi;
  resid = yi - xi*bhat[.,i];
  sse = sse + resid'*(resid);
endfor;
s2hat = sse/ntot; @ MLE of sigma2 @
sighat = sqrt(s2hat);

@ Do some plots @
_plctrl = -1;
title("Y versus X");
xy(xydata[.,1],xydata[.,cols(xydata)]);
title("True Slope versus Intercept");
xy(betat[1,].',betat[2,].');
title("True & MLE Slope versus Intercept");
xy(betat[1,].'~bhat[1,].',betat[2,].'~bhat[2,].');
graphset;
6.2 Bayesian Analysis

`/*
 ***********************
 * MixReg.GSS
 * HB Linear Regression Model.
 * Heterogeneity for subject level parameters have a mixture of normals
 * Allows for subject level design matrices.
 *  
 * Y_i = X_i*beta_i + epsilon_i for i = 1,..., nsub
 * epsilon_i is N(0,sigma^2 I)
 * beta_i = sum_{m=1}^M psi_m N(beta_i|theta_m,Lambda_n)
 * 0 < psi_1 < psi_2 .. < psi_M and sum_{m=1}^M psi_m = 1.
 * delta_i is N(0,Lambda)
 *
 * PRIORS
 * sigma^2 is Inverted Gamma(r0/2,s0/2)
 * theta_m is normal(u0,v0).
 * Lambda_m is Inverted Wishart(f0, g0)
 *
 *---->Note:
 * This program saves subject-level beta_i as columns, not rows.
 * beta is a nsub by rankx matrix
 *
 ***********************
 */

new;

mmod = 3; @ mmod = number of mixture components @
outfile = "results1.dat"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @
@ where n_j = number of subjects in each group. @
pcount = 5; @ max number of times that assignments of subjects @
@ to groups can conflict with ordering: n_1 <= ... <= n_k @
pflag = 0; @ flag for runs in viloations @
@ pflag = 0 -> last iterations not violation @
pflag = 1 -> last iteration is a violation @

/*
 ***********************
 * Initialize parameters for MCMC
 */
**CHAPTER 6. HB REGRESSION: Mixture Model**

---

```plaintext
smcmc = 100; @ number of iterations to save for analysis @
skip = 1; @ save every skip iterations @
nblop = 100; @ initial transition iterations @
nmcmc = nblop + skip*smcmc; @ total number of iterations @

mint = seqa(1,1,mmod);
```

---

**Get data**

```plaintext
@ Input Gauss files @
open f1 = ^inxy; @ Get Gauss file for X, Y data @
@ opens Gauss file & assigns file handle f1 @
xydata = readr(f1,rowsf(f1));
@ readr reads in Gauss file with file handle f1. @
@ rowsf(f1) returns the number of rows in the Gauss file. @
@ readr reads rowsf(f1) rows, which is the entire dataset. @
ci = close(f1);
xynames = setvars(inxy); @ Get the variable names that accompany X, Y data @
ynames = xynames[rows(xynames)];
xnames = "Constant"|xynames[rows(xynames)-1];

@ last row of xydata is Y. @
xdata = xydata[.,1:cols(xydata)-1]; @ Get independent variables @
ydata = xydata[.,cols(xydata)]; @ Get dependent variable @

loadm yrows = yrows; @ yrows gives the number of observations per subject @
nsub = rows(yrows); @ number of subjects. @
ntot = sumc(yrows); @ number of observations. @
@ creates pointer based on yrows to access xdata and ydata @
b = cumsumc(yrows); @ cumsumc is the cumulative sum of yrows @
a = 1|(1+b[1:nsub-1]);
iptxy = a~b;
@ to use iptxy to get the design matrix and data for subject i: @
@ x_i = xdata[iptxy[i,1]:iptxy[i,2],.] @
@ y_i = ydata[iptxy[i,1]:iptxy[i,2]] @

xdim = cols(xdata);
@ add intercepts to xdata @
xdata = ones(ntot,1)~xdata;
```
6.2. BAYESIAN ANALYSIS

rankx = xdim+1;
@ Create pointer to get into stacked lambda matrix @
if mmod > 1;
b = seqa(rankx,rankx,mmod);  @ {rankx, 2*rankx, ..., mmod*rankx } @
a = 1|(1+b[1:mmod-1]); @ {1, rankx+1, 2*rankx+1, ..., (mmod-1)*rankx+1} @
iptgp = a"b;
else;
iptgp = 1"rankx;
endif;

@ Compute some sufficient statistics @
@ Get point to access stacked matrices of xtx, xtxi, and xty @
b = seqa(rankx,rankx,nsub);
a = 1|(1+b[1:nsub-1]);
iptxt = a"b;
xtx = zeros(rankx*nsub,rankx);
xy = zeros(rankx*nsub,1);
bhat = zeros(rankx,nsub); @ MLE of beta_i @
sse = 0;
for i0 (1,nsub,1); i = i0;
xi = xdata[iptxy[i,1]:iptxy[i,2],.];
yi = ydata[iptxy[i,1]:iptxy[i,2],.];
xitxi = xi'xi;
xitxii = invpd(xitxi);
xtx[iptxt[i,1]:iptxt[i,2],.] = xitxi;
xy[iptxt[i,1]:iptxt[i,2],.] = xityi;
bhat[.,i] = xitxii*xityi;
resid = yi - xi*bhat[.,i];
sse = sse + resid'resid;
endfor;
s2hat = sse/ntot; @ MLE of sigma2 @
sighat = sqrt(s2hat);

/*
******************************************************************************
* Initialize Priors
*******************************************************************************/
@ Prior for sigma2 is IG(r0/2, s0/2) @
\[ r_0 = 2; \quad s_0 = 2; \]
\[ r_n = r_0 + n_{tot}; \]

@ \{\psi_m\}, the mixture probabilities, have ordered Dirichlet prior. @
\[ w_0 = \text{ones}(m_{mod},1); \]
\[ x_{gam} = \text{seqa}(1,1,m_{mod})'; @ \text{used in generating ordered dirichlet} @ \]

@ Prior for \( \theta_i \) is \( N(u_0,v_0) @ \)
\[ u_0 = \text{zeros}(\text{rank}_x,1); \]
\[ v_0 = 100*\text{eye}(\text{rank}_x); \]
\[ v_{0i} = \text{invpd}(v_0); @ \text{used in updating} \theta @ \]
\[ v_{0iu0} = v_{0i}*\text{vec}(u_0); @ \text{used in updating} \theta @ \]

@ \( \Lambda^{-1} \) is \( \text{W}_{\text{rank}_x}(f_0,g_0) @ \)
@ \( f_0 = \text{prior} \text{ df}, g_0 = \text{prior scale matrix} @ \)
\[ f_0 = \text{rank}_x+2; \]
\[ g_{0i} = \text{eye}(\text{rank}_x); @ g_0^{-1} @ \]

\[
/*
************************************************************
* Initialize MCMC
************************************************************
*/
\[ \psi = \text{mint}/\text{sumc}(\text{mint}); @ \text{Class probabilities} @ \]
@ Assign membership based on random start @
\[ z_{prob} = \text{ones}(n_{sub},1).*\psi'; @ \text{Individual level prob.} .*.' @ \text{is Kronecker product} @ \]
\[ z = \text{rndzmn}(z_{prob}); @ \text{Generate multinomials} @ \]
\[ \text{classn} = \text{sumc}(z .== \text{mint'}); @ \text{number in each of the mmod classes} @ \]
\[ r_{class} = \text{rankindx}(\text{classn},1); \]

beta = hhat;
theta = zeros(\text{rank}_x,m_{mod});
lambda = zeros(\text{rank}_x*m_{mod},\text{rank}_x);
lambdai = lambda;
bvars = zeros(\text{rank}_x*m_{mod},1);
for i0 (1,m_{mod},1); i = i0;
if \text{classn}[i] > \text{rank}_x+1; @We have some observations in this class@
\[ z_i = z .== i; \]
\[ b_i = \text{selif}(\text{beta}',z_i'); @ \text{Get beta for subjects assigned to group} i @ \]
\[ mbi = \text{meanc}(b_i'); \]
\[ \text{resid} = b_i - mbi; \]
\[ \text{lbdai} = \text{resid}.*\text{resid}'/\text{classn}[i]; \]
else;
\[ mbi = \text{zeros}(\text{rank}_x,1); \]
6.2. BAYESIAN ANALYSIS

\[
\begin{align*}
\text{ldai} & = \text{eye}(\text{rankx}); \\
\text{theta}[,i] & = \text{mbi}; \\
\text{lambda}[\text{iptgp}[i,1]:\text{iptgp}[i,2],] & = \text{ldai}; \\
\text{lbda} & = \text{invpd}(\text{ldai}); \\
\text{lambda}[\text{iptgp}[i,1]:\text{iptgp}[i,2],] & = \text{lbda}; \\
\text{bvars}[\text{iptgp}[i,1]:\text{iptgp}[i,2]] & = \text{diag}(\text{lbda}); \\
& \text{endfor;} \\
\text{sigma2} & = \text{s2hat}; \\
\text{sigma} & = \text{sqrt}(\text{sigma2}); \\
/* \\
\text{betam} & = \text{zeros}(\text{rankx},\text{nsub}); @ \text{posterior mean of beta} @ \\
\text{betas} & = \text{zeros}(\text{rankx},\text{nsub}); @ \text{posterior std of beta} @ \\
\text{sigmag} & = \text{zeros}(\text{smcmc},1); @ \text{MCMC iterations for error std} @ \\
\text{psig} & = \text{zeros}(\text{smcmc},\text{mmod}); \\
\text{zprobm} & = \text{zeros}(\text{nsub},\text{mmod}); @ \text{Individual level class membership probabilities} @ \\
\text{thdim} & = \text{rankx}\times\text{mmod}; \\
\text{thetag} & = \text{zeros}(\text{smcmc},\text{thdim}); \\
\text{lambdag} & = \text{zeros}(\text{smcmc},\text{mmod}\times\text{rankx}); @ \text{MCMC iterations for hetergeniety variance} @ \\
\text{lambdam} & = \text{zeros}(\text{rankx}\times\text{mmod},\text{rankx}); \\
\text{lambdas} & = \text{lambdam}; \\
\text{loglikeg} & = \text{zeros}(\text{smcmc},1); \\
\text{loglike} & = 0; \\
/* \\
\text{Do MCMC} \\
*************** \\
\text{Do the initial transition period} @ \\
\text{nmcmc} & = 0; @ \text{Just a counter} @ \\
\text{ipcount} & = 0; @ \text{Counter of order restriction violations} @ \\
\text{for i1} (1,\text{nblow},1); \text{imcmc} = \text{i1}; \\
\text{nmcmc} & = \text{nmcmc} + 1; \\
\text{call getmixreg}; \\
& \text{endfor;} \\
\text{for i1} (1,\text{smcmc},1); \text{imcmc} = \text{i1}; @ \text{Save smcmc iterations} @ \\
\text{for i2} (1,\text{skip},1); \text{jmcmc} = \text{i2}; @ \text{Save every skip iterations} @ \\
\text{nmcmc} & = \text{nmcmc} + 1;
\end{align*}
\]
call getmixreg;
endfor;
sigmag[imcmc] = sigma;
thetag[imcmc,.] = vec(theta)’;
psig[imcmc,.] = psi’;
betam = betam + beta;
betas = betas + beta^2;
zprobm = zprobm + zprob;
lambdam = lambdam + lambda;
lambdas = lambdas + lambda^2;
lambdag[imcmc,.] = bvars’;
loglikeg[imcmc,.] = loglike;
endfor;

/*
 ********************************************
 * Compute Posterior Means and STD
 ********************************************
 */
@ Compute Posterior Means @
betam = betam/smcmc;
zprobm = zprobm/smcmc;
sigmam = meanc(sigmag);
psim = meanc(psig);
thetam = meanc(thetag);

@ Compute Posterior STD @
betas = sqrt( abs(betas - smcmc*betam^2)/smcmc);
sigmas = stdc(sigmag);
psis = stdc(psig);

@ Predict yi @
yhat = zeros(ntot,1);
br = zeros(nsub,1); @ multiple R for each subject @
estd = br; @ error std @
for i0 (1, nsub, 1); i = i0;
xi = xdata[iptxy[i,1]:iptxy[i,2],.];
yi = ydata[iptxy[i,1]:iptxy[i,2]];
yhati = xi*betam[.,i];
yhat[iptxy[i,1]:iptxy[i,2]] = yhati;
cy = corrx(yi~yhati); /* correlation matrix of yi and yhati */
br[i] = cy[1,2];
resid = yi - yhati;
estd[i] = sqrt(resid’resid/yrows[i]);
endfor;

/*@ 
* Do some output
*/
call outputanal;

@ Plot saved iterations against iterations number @
t = seqa(nblow+skip,skip,smcmc); /* saved iteration number @
title("Error STD versus Iteration");
xy(t,sigmag);
title("Mixture Probabilities versus Iteration");
xy(t,psig);
title("Heterogeneity Means versus Iteration");
xy(t,thetag);
title("Heterogeneity VARS versus Iteration");
xy(t,lambdag);
_plctrl = -1;
if flagtrue == 1;
load betat = betat;
load sigmat = sigmat;
load psit = psit;
load thetat = thetat;
load lambdat = lambdat;
title("True & HB Slope vs Intercept");
xy(betat[1,]’~betam[1,],betat[2,]’~betam[2,]);
endif;
title("HB & ML Slope vs Intercept");
xy(betam[1,]’~bhat[1,],betam[2,]’~bhat[2,]);
graphset;
end;
/*
 * GETMIXREG
 * Does one iteration of the HB regression model.
 * INPUT
 * Global Variables
 * OUTPUT
 * Global Variables
 */
PROC (0) = getmixreg;
local
sse, i0,i,thetak,lambdai,iptgp,yi,yhati,resid,sn,
fk,k,betak,mbetak,c,bfnk,gnk,gnk12,w,lambdak,resid2,dlambik, zmaxp,
rclass, pflag, lamb0,lamb2,

zprob = zeros(nsub,mmod); @ used in computing the P(z[i] = k) @

/*
 * Generate beta_i
 * If Y_i belongs to class k, then
 * beta_i is N(mbin, vbn)
 * vbn = ( X_i'X_i/sigma2 + Lambda_k^{-1} )^{-1}
 * mbin = vbn*( X_i'Y_i/sigma2 + Lambda_k^{-1}*Theta_k)
 */

sse = 0;
for i0 (1,nsub,1); i = i0;
    thetak = thetak[.,z[i]];
    lambdai = lambdai[iptgp[z[i],1]:iptgp[z[i],2],.];
    xi = xdata[iptxy[i,1]:iptxy[i,2],.];
    yi = ydata[iptxy[i,1]:iptxy[i,2],.];
    xitxi = xtx[iptxt[i,1]:iptxt[i,2],.];
    xityi = xty[iptxt[i,1]:iptxt[i,2],.];
    vibn = xitxi/sigma2 + lambdai;
    vibn12 = chol(vibn);
    ebin = xityi/sigma2 + lambdai*thetak;
    betai[.,i] = cholsol(ebin + vibn12'rmdn(rankx,1), vibn12);
    yhati = xi*betai[.,i];
    resid = yi - yhati;
    sse = sse + resid'resid;
endfor;
/*
 * Generate sigma2
 * sigma2 is IG(rn/2, sn/2)
 * rn = r0 + ntot
 * sn = s0 + sum_{i=1}^{nsub} (Y_i - X*beta_i)'(Y_i - X*beta_i)
 */
sn = s0 + sse;
sigma2 = sn/(2*rndgam(1,1,rn/2));
sigma = sqrt(sigma2);

@ Compute log likelihood @
loglike = -(ntot*ln(sigma2) + sse/sigma2)/2;
/

******************************************************************************
* Generate theta_k and lambda_k
******************************************************************************
/
for fk (1,mmod,1); k = fk;
@ do we have observations in class k? @
if classn[k] > 0.5;
betak = (selif(beta', z .== k))';
mbetak = meanc(betak');
else;
mbetak = zeros(rankx,1);
endif;
lambdaik = lambdai[iptgp[k,1]:iptgp[k,2],.];
/
******************************************************************************
* Generate theta_k given z, beta etc.
* theta_k is N(u_nk,v_nk)
* v_n,k = (n_k lambda_k^{-1} + v_0,k^{-1})
* u_n,k = v_n,k(n_k lambda_k^{-1} meanc(beta_k) + v_0,k^{-1} u_0,k
******************************************************************************
/
c = chol(classn[k]*lambdaik + v0i);
b = classn[k]*lambdaik*mbetak + v0iu0;
thetaik = cholsol(b+c'rndn(rankx,1),c);
theta[.,k] = thetaik;
/
******************************************************************************
* Generate Lambda_k from IW_p(fnk, Gnk)
* fnk = f0k + classn_k
* Gnk =
* (G0k^{-1} + \sum I(z_i=k)(beta_i-theta_k)(beta_i-theta_k)')^{-1}

if classn[k] > 0.5; @ observations in class k @
fnk = f0 + classn[k];
resid = betak - thetak;[.,k];
gnki = g0i + resid*resid';
else; @ no observations, no updating of prior @
fnk = f0;
gnki = g0i;
endif;
gnk = invpd(gnki);
{lambdaik, lambdak} = wishart(rankx,fnk,gnk);

dlambik = det(lambdaik); @ determinant of lambdaik @
@ store lambda's @
lambdaik[iptgp[k,1]:iptgp[k,2],.] = lambdaik;
lambdak[iptgp[k,1]:iptgp[k,2],.] = lambdak;
bvars[iptgp[k,1]:iptgp[k,2]] = diag(lambdak); @ Save diagonals for plotting @

@ Compute the probability of class k for all subjects @
if mmod > 1;
@ Start computing P(z[i] = k) @
zprob[.,k] = 0.5*ln(dlambik)*ones(nsub,1); 
resid = beta - thetak;
resid2 = lambdaik*resid;
for i0 (1,nsub,1); i = i0;
zprob[i,k] = zprob[i,k] - 0.5*resid[.,i]'resid2[.,i];
endfor;
endif;
endfor;

@ Normalize zprob to avoid overflow @
zmaxp = maxc(zprob');
zprob = exp(zprob - zmaxp + 3).* (psi');
zprob = zprob./sumc(zprob');

*******************************************************************************
* Generate the z's
* z[i] is MN(1,p_i)
* p_ik propto det(lambda_k)^{-0.5}
* \*exp(-0.5(betaki-thetak)'lambda_k^{-1}(betaki-thetak))
* *psi_k
* Only accept a new psi, if they generate
* a ordering of psi_1 <= psi_2 <= ....
********************************************************************
*/
if mmod > 1;
    z = rndzmn(zprob);
    classn = sumc( z .== mint' ); @ Number of subjects assigned to the classes @
/*
********************************************************************
* DIRORD is ordered dirichlet. See /gauss/src/plbam.src
* {psi, xgam} = dirord(alpha, xgam);
* alpha = k x 1 vector of parameters.
* xgam = n x k matrix of ordered gamma random deviates.
* psi = n x k matrix of ordered dirichlet probs.
********************************************************************
*/
    {psi, xgam } = dirord(w0+classn,xgam);
    psi = psi';

@ Enforce order restrictions on classn. @
@ Allow run of pcount violations before reorder @
    rclass = rankindx(classn,1);
    if not rclass == mint; @ counts violate order restrictions @
        pflag = 1; @ set flag for next iteration @
        ipcount = ipcount + 1;
        if ipcount >= pcount; @ let labels switch @
            pflag = 0;
            ipcount = 0;
        if nmcmc <= nblow;
            @ permute the assignments @
            classn = sortc(classn,1);
                z = recode(z, z.== mint', rclass);
                classn[rclass] = psi; @ reorder psi @
                xgam[1, rclass] = xgam;
                theta[., rclass] = theta;
                j = 1;
                lamb0 = lambda;
                lamb2 = lambdai;
                do while j <= mmod;
                    lamb0[iptgp[rclass[j],1]:iptgp[rclass[j],2],.] = 
                        lamb0[iptgp[j,1]:iptgp[j,2],.];
                    lambdai[iptgp[rclass[j],1]:iptgp[rclass[j],2],.] = 
                        lambdai[iptgp[j,1]:iptgp[j,2],.];
                    j = j + 1;
                endo;
            endif; @ if igibbs <= nblow @
endif; @ if ipcount >= pcount @
else; @ rclass .== mint -> reset counter & flag @
  ipcount  = 0;
pflag    = 0;
endif; @ if not rclass == mint @
endif; @ if mmod > 1 @
endp;

/*
*****************************************************************************************************************************************/
* OUTPUTANAL
* Does analysis of output and save some results
*****************************************************************************************************************************************/
PROC (0) = outputanal;
local bout, sout, ebeta, sbeta, cb, rmse, fmtn1, fmtn2, fmts1, fmts2,
knames,knames2,mmod2,a, a1,b1,iptgpt,
lambdatk,lambdamk,lambdask,fk,k, clrate, hbclass, hbclassk,
betat, sigmat, classt, psit, thetat, lambdat, mmodt;

if flagtrue == 1; @ Know true paramaters from simulation @
  load betat  = betat;
  load sigmat = sigmat;
  load classt = classt;
  load psit   = psit;
  load thetat = thetat;
  load lambdat = lambdat;
  mmodt = maxc(classt); @ True number of mixture components @
endif;

knames = 0 $+ "Group " $+ ftocv(mint,1,0);
if flagtrue == 1;
  mmodt = maxc(classt);
knames2 = 0 $+ "Group " $+ ftocv(seqa(1,1,mmodt),1,0);
endif;
@ Define formats for fancy printing @
@ Used to print a matrix of alpha & numeric variables @
let fmtn1[1,3] = "*.*lf" 10 5; @ Format for printing numeric variable @
let fmtn2[1,3] = "*.*lf" 10 0; @ Format for numeric variable, no decimal @
6.2. BAYESIAN ANALYSIS

let fmts1[1,3] = "-*.*s" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*s" 10 9; @ Format for alpha, right justify @
format 10,5; @ Default print format @

output file = `outfile reset; @ outfile is the file handle for the output file @
@ Route printed output to the defined by outfile @
print "Results from MIXREG.GSS";
print "Hierarchical Bayesian linear regression model using MCMC.";
print "Use mixture distribution for heterogeneity";
print "Different design matrices for each subject";
print "Y_i = X_i*beta_i + epsilon_i";
print "beta_i = sum_k psi_k N(beta_i | theta_k, lambda_k)";
print "epsilon_i is N(0,sigma2*I)";
print;
print "Number of components is fixed at: " mmod;
print;
print "Output file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @
print;
print;
print "-------------------------------------------------------------"; 
print;
print "MCMC Analysis";
print;
print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;

print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;
print "Number of subjects = " nsub;
print "Mean # of observations per subject = " meanc(yrows);
print "STD # of observations per subject = " stdc(yrows);
print "MIN # of observations per subject = " minc(yrows);
print "MAX # of observations per subject = " maxc(yrows);
print "Total number of observations = " ntot;
print "Number of independent variables X = " xdim " (excluding intercept)";

print;
print "Dependent variable is " $ynames;
print;
print "Independent variables in first level equation: Y_i = X_i*beta_i + epsilon_i";
call sumstats(xnames,xdata,fmts1,fmts2,fmtn1); @ Print summary statistics @
print;
print "Loglikelihood form MCMC:";
print "Number of mixture components = " mmod;
print "Posterior mean = " loglikem;
CHAPTER 6. HB REGRESSION: MIXTURE MODEL

print "Posterior STD = " loglikes;
print;
print "-------------------------------------------------------------";
print;
print "Statistics of Fit Measures for each Subject";
print "Average Predictive Correlation (Muptiple R) = " meanc(br);
print "STD of Predictive Correlations = " stdc(br);
print "Average R-Squared = " meanc(br^2);
print "STD of R-Squared = " stdc(br^2);
print "Average Error Standard Deviation = " meanc(estd);
print "STD of Error Standard Deviation = " stdc(estd);
print;
print "-------------------------------------------------------------";
print "Estimation of the error STD sigma";
if flagtrue == 1;
print "True Sigma = " sigmat;
endif;
print "MLE = " sighat;
print "Posterior Mean = " sigmam;
print "Posterior STD = " sigmas;
print;
print "-------------------------------------------------------------";
print "Statistics for Individual-Level Regression Coefficients";
if flagtrue == 1;
ebeta = meanc(betat');
sbeta = stdc(betat');
print "True Beta";
a = {"Variable" "Mean" "STD" };  
call outitle(a,fmts1,fmtns2);
bout = xnames~ebeta~sbeta;
call outmat(bout,fmts1,fmtn1);
endif;

print "MLE Coefficients ";
a = {"Variable" "MeanMLE" "STDMLE"};
call outitle(a,fmts1,fmtns2);
bout = xnames~meanc(bhat')~stdc(bhat');
call outmat(bout,fmtn1,fmtn1);

print "HB Coefficients ";
a = {"Variable" "PostMean" "PostSTD"};
call outitle(a,fmtn1,fmtn2);
6.2. BAYESIAN ANALYSIS

\[ \text{ebeta} = \text{meanc}(\text{betam}'); \]
\[ \text{sbeta} = \sqrt{\text{mean}(\text{betas}^2') + \text{stdc}(\text{betam}')^2}; \]

\[ \text{bout} = \text{xnames}''\text{ebeta}''\text{sbeta}; \]
\[ \text{call outmat(bout,fmts1,fmt1);} \]

if flagtrue == 1;
print "Comparison of True Beta to Individual Level Estimates";
for i0 (1,rankx,1); i = i0;
print "Variable is $ xnames[i];
\[ \text{cb} = \text{corrx}(\text{betat}[i,.]'~\text{betam}[i,.]'); \]
\[ \text{rmse} = \text{betat}[i,.] - \text{betam}[i,.]; \]
\[ \text{rmse} = \text{sqrt}(\text{rmse}/nsub); \]
print "Correlation between true and HB = " cb[1,2];
print "RMSE between true and HB = " rmse;
\]
\[ \text{cb} = \text{corrx}(\text{betat}[i,.]'~\text{bhat}[i,.]'); \]
\[ \text{rmse} = \text{betat}[i,.] - \text{bhat}[i,.]; \]
\[ \text{rmse} = \text{sqrt}(\text{rmse}/nsub); \]
print "Correlation between true and MLE = " cb[1,2];
print "RMSE between true and MLE = " rmse;
endfor;
endif;
print "-------------------------------------------------------------"; 
if mmod > 1;
print "Estimated Group Probabilities psi";
if flagtrue == 1;
\[ a = " ~(\text{knames2}'); \]
call outitle(a,fmts1,fmts2);
bout = "True"~(psit');
call outmat(bout,fmts1,fmt1);
endif;
a = " ~(\text{knames}');
call outitle(a,fmts1,fmts2);
bout = "HB Mean"~(psim');
bout = bout!("HB STD"~(psis'));
call outmat(bout,fmts1,fmt1);
endif;
if flagtrue == 1; @ Do Misclassification @
print "-------------------------------------------------------------"

clrate = zeros(mmod,mmodt);  
hbclass = maxindc(zprobm'); @ Get index that correponds to the maximum @
for fk (1,mmodt,1); k =fk;
hbclassk = selif(hbclass, classt .== k);
if rows(hbclassk) > 0;
clrate[.,k] = sumc( hbclassk .== mint');
endif;
endfor;

print "Classification Rates: True versus Maximum HB Posterior Probability";
a = 0 $+ "HB Groups ";
a = a|(0 $+ "True " $+ ftocv(seqa(1,1,mmodt),1,0));
a = a|"Total";
a = a';
call outitle(a,fmts1,fmts2);

a = knames|"Total";
bout = clrate"(sumc(clrate'));
bout = bout|(sumc(bout'));
bout = a"bout;
call outmat(bout,fmts1,fmtn2);
print;
endif;
print "-------------------------------------------------------------";
print "HB Estimates of Theta";

if flagtrue == 1;
print "True Theta";
a = "Variable""(knames2');
call outitle(a,fmts1,fmts2);
bout = xnames"thetat;
call outmat(bout,fmts1,fmtn1);
endif;
print "Posterior Mean of Theta";
a = "Variable""(knames');
call outitle(a,fmts1,fmts2);
bout = xnames"thetam;
call outmat(bout,fmts1,fmtn1);
endif;
print "Posterior STD of Theta";
call outitle(a,fmts1,fmts2);
bout = xnames"thetas;
call outmat(bout,fmts1,fmtn1);
print "-------------------------------------------------------------";
a = "Variable"(xnames');

print "HB Estimate of Lambda";
if flagtrue == 1;
b1 = seqa(rankx,rankx,mmodt);
a1 = 1|1+b1[1:mmodt-1]);
iptgpt = a1"b1;
for fk (1,mmodt,1); k = fk;
lambdatk = lambdat[iptgpt[k,1]:iptgpt[k,2],.];
print "True Lambda for group " k;
call outitle(a,fmts1,fmts2);
bout = xnames"lambdatk;
call outmat(bout,fmts1,fmtn1);
endif;
print "-------------------------------------------------------------";
for fk (1,mmod,1); k = fk;
print "Posterior Mean of Lambda for group " k;
lambdamk = lambdam[iptgp[k,1]:iptgp[k,2],.];
call outitle(a,fmts1,fmts2);
bout = xnames"lambdamk;
call outmat(bout,fmts1,fmtn1);
print "Posterior STD of Lambda for group " k;
lambdask = lambdas[iptgp[k,1]:iptgp[k,2],.];
call outitle(a,fmts1,fmts2);
bout = xnames"lambdask;
call outmat(bout,fmts1,fmtn1);
print "-------------------------------------------------------------";
endfor;
print "-------------------------------------------------------------";
output off;
closeall;
endp;

/*
*******************************************************************************/
* OUTITLE
* Prints header for columns of numbers.
* INPUT
* a = character row vector of column names
* fmts1 = format for first column
* fmts2 = format for second column
* OUTPUT
* None
*******************************************************************************/
PROC (0) = outtitle(a,fmt1,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1|(ones(ncols-1,1).*.fmt2);
flag = printfm(a,mask,fmt);
print;
endp;
/*******************************************************************************/
* OUTMAT
* Outputs a matrix:
* (Character Vector)~(Numeric matrix);
* The entries in the numeric matrix have the same format
* INPUT
* bout = matrix to be printed
* fmts = format for string
* fmtn = format for numeric matrix
* OUTPUT
* None
*******************************************************************************/
PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols = cols(bout);
nrows = rows(bout);
fmt = fmts|(ones(ncols-1,1).*.fmtn);
mask = zeros(nrows,1)~ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);
print;
endp;
/*******************************************************************************/
* SUMSTATS
* Prints summary statistics for a data matrix
* INPUT
* names = character vector of names
* data = data matrix
* fmts1 = format for string

*/
PROC (0) = sumstats(names, data, fmts1, fmts2, fmtn);
local a, bout;
a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outitle(a, fmts1, fmts2);
bout = names~meanc(data)~stdc(data)~minc(data)~maxc(data);
call outmat(bout, fmts1, fmtn);
endp;
Chapter 7

Probit Model
7.1 Data Generation

/*
 *****************
 * (C) Copyright 1999, Peter Lenk. All Rights Reserved.
 * GProbit2.GSS
 *-->GProbit1.GSS assumes common design matrix for all subjects
 *-->GProbit2.GSS allows for different design matrices.
 * Generates data for HB PROBIT Regression Model
 * Select one of mvar+1 alternatives where the last alternative is
 * the base brand.
 *
 * Y_{ij} = X_{ij}*beta_i + epsilon_{ij}
 * for i = 1, ..., I and j = 1, ..., n_i
 * Y_{ij} is mvar vector
 * Y_{ijk} is the utility from subject i, choice set j, and alternative k
 * for i = 1, ..., nsub
 * j = 1, ..., yrows[i]
 * k = 1, ..., mvar
 * Alternative mvar+1 is the base vector.
 *
 * Select alternative k if:
 * Y_{ijk} > max( Y_{ijl}, 0} for l \neq mvar+1
 * Select mvar+1 if max(Y) < 0.
 *
 * beta_i is rankx vector
 * epsilon_{ij} is N(0,Sigma)
 * Identification:
 * sigma[mvar,mvar] = 1
 *
 * X_{ij} is mvar x rankx
 * X will have brand intercepts for the first mvar-1 brands,
 * and coefficients for price and advertising.
 * To identify the model, we fix the intercept for the last brand to zero.
 *
 * beta_i = Theta'Z_i + delta_i
 * delta_i is N(0,Lambda)
 * Z1 is ln(income) and z2 = family size.
 */
new;
flagplot = 0;  @ 1 -> do a bunch of plots  @
nsub = 100;  @ Number of subjects  @
mvar = 3;  @ Y_{ij} is mvar vector. Eg: mvar+1 brands  @
  @ Choice mvar+1 is the base brand  @
yrows = 10 + ceil(10*rndu(nsub,1));  @ Gives the number of observations per subject  @
ntot = sumc(yrows);  @ total number of observations  @

rankx = mvar + 2;  @ Brand 1, Brand 2, Brand 3, Price, Advert  @
  @ Intercept for Brand 4 = 0  @
rankz = 3;  @ # rows of Z_i  @
  @ intercept, ln(income), and family size  @

@ Define some variable names for Gauss file @
@ Use string arrays @
a = seqa(1,1,mvar);
brands = 0 $+ "Brand " $+ ftocv(a,1,0);
brands2 = brands|"Brand 4";

@ ftocv converts a numeric variable to alpha and $+ is character addition  @
@ so brands is Brand 1, Brand 2, ..., Brand mvar  @

xname = brands|"Price"|"Advert"|"Choice";  @ | stacks matrices on top of each other @
zname = {"Constant", "lnIncome", "HH Size" };  @
@ To print a character string use: print $ zname; @

@ define two pointers to access xdata matrix @
@ xdata = { x_{1l}, ... x_{1n_1}, x_{2l}, ..., x_{2,n_2}, ... , x_{nsub,1} ... x_{nsub,n_{nsub}} } @
@ xij = xdata[lxy[i,j]:uxy[i,j]],  @
lx = zeros(nsub,maxc(yrows));  @ gives lower subscript @
ux = lxy;  @ gives upper subscript @
s1 = 0;
for i0 (1,nsub,1); i = i0;
  for fj (1,yrows[i],1); j = fj;
    uxy[i,j] = mvar*(s1+j);
  endfor;
  s1 = s1 + yrows[i];
endfor;

lx = uxy - mvar + 1;
lx = (0-lx).*(lx .< 0) + lx;
@ zero-out the negative entries. @
@ Generate error variance Sigma @

```
sigmat = [.2 .1 -.1,
.1 .3 -.05,
-.1 -.05 1
];
sigt12 = chol(sigmat);
```

@ Generate error variance Lambda @

```
@ b1 b2 b3 Price Advert @
lambdat = {
 1 .3 -.1 0 0 , @ b1 @
 .3 .8 -.05 0 0 , @ b2 @
 -.1 -.05 .5 0 0 , @ b3 @
 0 0 0 .2 .1 , @ price @
 0 0 0 .1 .5 @ advert @
};
lambdat = 0.01*lambdat;
lbd12 = chol(lambdat);
```

@ generate Z variables @

@Z1 is ln(income) @
```
m = ln(40000);
s = (ln(120000) - m)/1.96;
z1 = m + s*rndn(nsub,1);
@ Mean center z1@
z1 = z1 - meanc(z1);
```

@Z2 is family size @
```
z2 = floor(rndnab(nsub,1,3,4,1,10));
@rndnab is my truncated normal(rows, cols, mean, std, a, b)@
ndata = z1"(z2-meanc(z2));
data = ones(nsub,1)"ndata;
```

@ Generate theta @
7.1. DATA GENERATION

@ B1 - B4 B2-B4 B3-B4 Price Advertising @

```plaintext
@ Generate partworths beta @
betat = zdata*thetat + rndn(nsub,rankx)*lbd12;
```

@ Generate X & Y data @
```plaintext
ydata = zeros(ntot*mvar,1); @ 0/1 choice @
ydatat = ydata; @ true utilities of Brand j - Brand mvar+1 @
xdata = zeros(ntot*mvar,rankx);
ipick = zeros(mvar+1,1); @ keep track of the number of choices @
for i0 (1,nsub,1); i = i0;
 for fj (1,yrows[i],1); j = fj;
 @ Do subject i, purchase j @
 @ xij = brands, price, advertising @
 xij = eye(mvar); @ Brand Intercepts @
 @ Generate Prices @
 @ Regular Price Price Promotion @
 p1 = 5.5 + .1*rndn(1,1) - (rndu(1,1) < .4)*.3;
 p2 = 5.5 + .1*rndn(1,1) - (rndu(1,1) < .4)*.3;
 p3 = 5.2 + .1*rndn(1,1) - (rndu(1,1) < .2)*.2;
 p4 = 5.0 + .05*rndn(1,1);
 price = p1-p4|p2-p4|p3-p4;
 xij = xij~price;
 @ Do advertising @
 @ Brand 1 heavily advertises, followed by the other four @
 a1 = rndu(1,1) < .4;
 a2 = rndu(1,1) < .4;
 a3 = rndu(1,1) < .2;
 a4 = rndu(1,1) < .1;
 advert = a1-a4|a2-a4|a3-a4;
 xij = xij~advert;

@ Generate utility for the four brands @
bi = betat[i,.;]';
yij = xij*bi + sigt12'rndn(mvar,1);
choice = zeros(mvar,1);
ib = maxindc(yij|0);
if ib <= mvar;
```
choice[ib] = 1;
endif;

ipick[ib] = ipick[ib] + 1;

@ Save it in the data matrix @
ydata[lxy[i,j]:uxy[i,j],..] = choice;
ydatat[lxy[i,j]:uxy[i,j],..] = yij;
xdata[lxy[i,j]:uxy[i,j],..] = xij;
@ rows of ydata2 are purchase occasions and columns are brands @
@ ydata2 will be used for computing summary statistics for utilities @
if i == 1 and j == 1;
ydata2 = yij';
else;
ydata2 = ydata2|(yij');
endif;
endfor;
endfor;

xydata = xdata~ydata;

mixed arrays

@ rows of ydata2 are purchase occasions and columns are brands @
@ ydata2 will be used for computing summary statistics for utilities @
if i == 1 and j == 1;
ydata2 = yij';
else;
ydata2 = ydata2|(yij');
endif;
endfor;
endfor;

xydata = xdata~ydata;

/*
***********************************************************************
* Output to a Gauss file.
* Gauss files are faster to read, and they assign variable names to
* the columns. Also, Gauss has a number of special commands that operate
* on Gauss files, such as file merges, variable recoding, and summary statistics.
* *
* First, create a Gauss file. f1 is the file handle.
* The Gauss file will be called "XPDATA."
* The column will be named by the strings in the character array xyname.
* "xyname means use the names in the character string.
* 0, 8 gives double precision real numbers.
***********************************************************************
*/

create f1 = xpdata with ^xyname, 0, 8;

/*
***********************************************************************
* Next read data into the Gauss file by using the writer command.
* f1 is the file handle defined in previous command.
* xydata is the data matrix that we just created.
* writer returns the number of rows read to f1.
* If it is not rows(xydata), something bad happened.
***********************************************************************
7.1. DATA GENERATION

if writer(f1, xydata) /= rows(xydata);
    errorlog "Conversion of XYDATA to Gauss File did not work";
endif;
closeall f1;
@ We do not need f1 anymore, so close it up. @
@ Do the same for zdata @
create f1 = zdata with `zname, 0, 8;
if writer(f1, zdata) /= rows(zdata);
    errorlog "Conversion of ZDATA to Gauss File did not work";
endif;
closeall f1;

save yrows = yrows;
save lxy = lxy;
save uxy = uxy;

save ydatat = ydatat;
save sigmat = sigmat;
save betat = betat;
save thetat = thetat;
save lambdat = lambdat;

@ Define formats for fancy printing @
@ Used to print a matrix of alpha & numeric variables @
let fmt1a[1,3] = "*.*lf" 10 5;  @ Format for printing numeric variable  @
let fmtsb[1,3] = "*.*s" 8 8;  @ Format for printing character variable  @
mask = zeros(mvar+1,1)~ones(mvar+1,1);  @ 0 for alpha, and 1 for numeric  @
fmt1 = fmtsb|fmt1a;  @ Format for columns of output  @
bout = brands2~(ipick/ntot*100);
print " Brand Market Shares";
print " Brand Market Share (%)";
flag = printfm(bout, mask, fmt1); @ Formated print. @
print;
mask = zeros(mvar,1)~ones(mvar,4);
fmt2 = fmtsb|fmt1a|fmt1a|fmt1a|fmt1a;
bout = brands~mean(ydata2)~stdc(ydata2)~minc(ydata2)~maxc(ydata2);
print " Summary Statistics for Brand by Purchase Occasion Utilities";
print " Brand Mean STD MIN MAX";
flag = printfm(bout, mask, fmt2);

if flagplot == 1;
    _plctrl = -1;  @ use symbols only in plots @
@ plot beta versus ln(income) and family size @
for fj (mvar, rankx, 1); j = fj;
   atitle = "Partworth for " $+ xyname[j] $+ " versus " $+ zname[2];
   title(atitle);
   xy(zdata[..,2], betat[.,j]);
   atitle = "Partworth for " $+ xyname[j] $+ " versus " $+ zname[3];
   title(atitle);
   xy(zdata[..,3], betat[.,j]);
   wait;  @ Hit any key to continue @
endfor;

@ plot y versus price for the mvar brands @
for fj (1, mvar-1, 1); j = fj;
   @ create a vector to select brands from data matrices @
   b = zeros(mvar,1); b[j] = 1;
   bd = ones(ntot,1) .*. b;  @ .*. is Kronecker product. bd is a vector of 0 & 1 @
   xj = selif(xdata, bd);  @ selif extracts the rows where bd = 1 @
   yj = selif(ydatat, bd);
   atitle = "Utility for " $+ brands[j] $+ " versus " $+ xyname[mvar];
   title(atitle);
   xy(xj[..,mvar], yj);
   atitle = "Utility for " $+ brands[j] $+ " versus " $+ xyname[mvar+1];
   title(atitle);
   xy(xj[..,mvar+1], yj);
   wait;
endfor;

graphset;  @ Set plots back to default values @
endif;
end;
7.2 Bayesian Analysis

/*
 ********************************************
 * (C) Copyright 1999, Peter Lenk. All Rights Reserved.
 * PROBIT2.GSS
 * HB Probit Regression Model.
 * -->PROBIT1.GSS has common design matrix for all subjects
 * -->PROBIT2.GSS allows different design matrices.
 * Uses McCulloch & Rossi's method for handling identification.
 *
 * Select one of mvar+1 alternatives.
 *
 * \[ Y_{ij} = \mathbf{X}_{ij} \boldsymbol{\beta}_i + \epsilon_{ij} \]
 * for \( i = 1, \ldots, I \) and \( j = 1, \ldots, n_i \)
 * \( Y_{ij} \) is mvar vector
 * \( Y_{ijk} \) is the utility from subject \( i \), choice set \( j \), and alternative \( k \)
 * for \( i = 1, \ldots, nsub \)
 * \( j = 1, \ldots, yrows[i] \)
 * \( k = 1, \ldots, mvar \)
 * Alternative mvar+1 is the base vector.
 *
 * Select alternative \( k \) if:
 * \[ Y_{ijk} > \max(Y_{ijl}) \text{ for } l \neq k < mvar+1. \]
 * Select base brand if \( \max(Y) < 0 \).
 *
 * Observe the choices, not the utilities \( Y_{ij} \).
 * Pick_{ij} is a mvar vector of 0/1.
 *
 * \( \beta_i \) is rankx vector
 * \( \epsilon_{ij} \) is \( N(0,\Sigma) \)
 * \( \Sigma \) is full
 * Divide by last element after MCMC to identify coefficients.
 *
 * \( \mathbf{X}_{ij} \) is mvar x rankx
 * \( \mathbf{X} \) will have brand intercepts,
 * and coefficients for price and advertising relative to the base brand.
 *
 * \( \beta_i = \Theta'\mathbf{Z}_i + \delta_i \)
CHAPTER 7. PROBIT MODEL

* delta_i is N(0, Lambda)
* Z1 is ln(income) and z2 = family size.
* PRIORS
* Sigma is Inverted Wishart(sf0, sg0)
* Theta is matrix normal(u0, v0).
* That is, vec(Theta) is N(vec(u0), v0).
* vec(theta) stacks the columns of theta.
* Lambda is Inverted Wishart(f0, g0)

*****************************************************************************
new;
outfile = "results1.dat";  /* Specify output file for saving results */
ponible xdata";  /* Name of Gauss file with X, Choice data */
inz = "zdata";  /* Name of Gauss file with Z data */
flagtrue = 1;  /* 1 -> knows true parameters from simulation */

*****************************************************************************
/* Initialize parameters for MCMC
*****************************************************************************

smcmc = 200;  /* number of iterations to save for analysis */
skip = 1;  /* Save every skip iterations */
nblow = 100;  /* Initial transition iterations */
nmcmc = nblow + skip*smcmc;  /* total number of iterations */
nygen = 1;  /* Do nygen generations of Y for each MCMC iteration. */

*****************************************************************************
/* Get data
*****************************************************************************

@ Get dimensions and pointers @
load yrows = yrows;  /* Number of observations per subject */
load lxy = lxy;  /* xij = xdata[lxy[i,j]:uxy[i,j],.] */
load uxy = uxy;

nsub = rows(yrows);  /* number of subjects */
mvar = uxy[1,2] - uxy[1,1];  /* Y_{ij} is a mvar vector. */
ntot = sumc(yrows);

@ Input Gauss files @
open f1 = "inxy";  /* Get Gauss file for X, Y data */
7.2. BAYESIAN ANALYSIS

@ Opens Gauss file & assigns file handle f1 @
xpdata = readr(f1,rowsf(f1)); @ "p" for picks
@ readr reads in Gauss file with file handle f1. @
@ rowsf(f1) returns the number of rows in the Gauss file. @
@ readr reads rowsf(f1) rows, which is the entire dataset. @
ci = close(f1);

xnames = setvars(inxy); @ Get the variable names that accompany X, Y data @
ynames = xpnames[1:mvar]; @ Use names of intercepts for names of components of Y @
ynames2 = ynames" Base ";
rankxp = cols(xpdata);
rankx = rankxp - 1; @ # of X variables (includes intercept) @
xnames = xpnames[1:rankx];
@ Last row of xpdata is the choice vector. @

open f1 = "inz;
zdata = readr(f1,rowsf(f1)); @ First column of zdata is a vector of ones @
ci = close(f1);
znames = setvars(inz);
rankz = cols(zdata); @ # of Z variables (includes intercept) @
thdim = rankx*rankz; @ dimension of vec(theta) @

@ Compute some sufficient statistics @
ztz = zdata'zdata;
/
******************************************************************************
* Initialize Priors
******************************************************************************
/

@ Prior for theta is N(u0,v0) @
u0 = zeros(thdim,1);
v0 = 100*eye(thdim); @ thdim = rankx*rankz @
v0i = invpd(v0); @ used in updating theta @
v0iu0 = v0i*u0; @ used in updating theta @

@ Prior for sigma is IW(sf0, gs0) @
sf0 = mvar+2; sfn = sf0 + ntot;
sg0i = eye(mvar);

@ Lambda^{-1} is W_{rankx}(f0, g0) @
@ f0 = prior df, g0 = prior scale matrix @
f0 = rankx+2; f0n = f0 + nsub;
g0 = eye(rankx);  @ g0^{-1} @

/*
******************************
* Initialize MCMC
*******************************/
ydata = xpdata[.,rankxp];  @ latent y variables @
beta = zeros(nsub,rankx);
sigma = eye(mvar);
sigmas = invpd(sigma);

theta = zeros(rankz,rankx);
lambda = eye(rankx);
lambdas = invpd(lambda);

@ Define data structures for saving iterates & computing posterior means & std @
betam = zeros(nsub,rankx);  @ posterior mean of beta @
betas = zeros(nsub,rankx);  @ posterior std of beta @
c = mvar*(mvar+1)/2;
sigmas = zeros(smcmc,c);  @ save iterations for sigma @
thermas = zeros(smcmc,thdim);
c = rankx*(rankx+1)/2;
lambdas = zeros(smcmc,c);  @ save iterations for lambda @
ydatam = zeros(mvar*ntot,1);  @ posterior mean utilities @
ydatas = ydatam;  @ posterior std utilities @

/*
******************************
* Do MCMC
*******************************/
etime = hsec;
for i1 (1,nblow,1); imcmc = i1;
    call getprobit;
    if imcmc == 100*floor(imcmc/100);
        dtime = (hsec -etime)/(60*100);
        print "TP Iteration = " imcmc " D.time = " dtime;
        etime = hsec;
    endif;
endfor;

etime = hsec;
for i1 (1,smcmc,1); imcmc = i1;  % Save smcmc iterations  
     for i2 (1,skip,1); jmcmc = i2;  % Save every skip iterations  
          call getprobit;
     endfor;
if imcmc == (100/skip)*floor(skip*imcmc/100);
     dtime = (hsec - etime)/(60*100);
     tit = nblow + skip*imcmc;
     print "Iteration = " tit " D.time = " dtime;
     etime = hsec;
endif;
     % When saving parameter, divide by sqrt(sigma[mvar,mvar]) or sigma[mvar,mvar]  
     sqrtsiglast = sqrt(sigma[mvar,mvar]);  
     sigmag[imcmc,] = vech(sigma/sigma[mvar,mvar])';  
         % vech([1 2 3, 4 5 6, 7 8 9]) = [1, 4 5, 7 8 9]  
         % xpnd is the inverse operator of vech  
     thetag[imcmc,] = vecr(theta/sqrsiglast)';  
     betam = betam + beta/sqrsiglast;  
     betas = betas + (beta/sqrsiglast)^2;  
     lambdag[imcmc,] = vech(lambda/sigma[mvar,mvar])';  
     ydatam = ydatam + ydata/sqrsiglast;  
     ydatas = ydatas + (ydata/sqrsiglast)^2;
endfor;

/*
* Compute Posterior Means and STD
* *****************************************/

ydatam = ydatam/smcmc;
betam = betam/smcmc;
thetam = reshape(mean(thetag),rankz,rankx);
sigmam = xpnd(mean(sigmag));  % xpnd reconstructs symmetric matrix  
lambdam = xpnd(mean(lambdag));
ydatas = sqrt( abs(ydatas - smcmc*ydatam^2)/smcmc);
betas = sqrt( abs(betas - smcmc*betam^2)/smcmc);
thetas = reshape(stdc(thetag),rankz,rankx);
sigmases = xpnd(stdc(sigmag));
lambdas = xpnd(stdc(lambdag));
if flagtrue == 1;    @ Did a simulation, so we have the true utilities. @
    @ Get true parameters if simulation @
    load ydatat  = ydatat;
    load betat   = betat;
    load sigmat  = sigmat;
    load thetat  = thetat;
    load lambdat = lambdat;

    @ Pick out each dimension of Y_{ij} and compute fit statistics @
    multir = zeros(mvar,1);
    rsquare = zeros(mvar,1);
    stderr = zeros(mvar,1);
    for fm (1,mvar,1); m = fm;
        b    = zeros(mvar,1); b[m] = 1;
        bn   = ones(ntot,1).*b;
        ym   = selif(ydatat,bn);
        yhatm = selif(ydatam, bn);
        cm    = corrxy(ym,yhatm);
        multir[m] = cm[1,2];
        rsquare[m] = cm[1,2]^2;
        resid   = ym - yhatm;
        stderr[m] = sqrt(resid'resid/ntot);
    endfor;
endif;

/*
************************************
* Do some output
************************************
*/
call outputanal;

@ Plot saved iterations against iterations number @
t   = seqa(nblow+skip,skip,smcmc);   @ saved iteration number @
title("Latent Error Cov vs Iteration");
xy(t,sigmag);
title("Theta vs Iteration");
xy(t,thetag);
title("Lambda vs Iteration");
7.2. BAYESIAN ANALYSIS

\[ xy(t, \lambda_{d}); \]
\[ \text{graphset;} \]
\[ \text{end;} \]

/*
**************
* GETPROBIT
* Does one iteration of the HB regression model.
* INPUT
* Global Variables
* OUTPUT
* Global Variables
**************
*/
PROC (0) = getprobit;
local zbl, bi, vbin, vbin12, ebin, yhat, sse, sn, resid, gni, gn, gn12, w, sum1, sum2,
i0, i, fj, j, xij, yij, sgni, sgn, sgn12, muij, cij, ic, 
v, sig11, sig1li, smgni, signi;

/*/  
**************
* Compute quantities used in conditional normal distribution.
* Need to run cndcov(sigma) before generating the random utilities.
**************
*/
{smgni, signi} = cndcov(sigma);

/*/  
**************
* smgni is a mvar x (mvar-1) matrix and
* used in the conditional mean of \( Y_{ij} \) given \( Y_{not i} \):
* smgni[i,.] = sigma_{i, not i}*sigma_{not i, not i}^{-1}
* signi is a mvar matrix and
* signi[i] = STD(Y_{i}| Y_{not i})
* = sqrt(sigma_{ii} - sigma_{i,not i}*sigma_{not i, not i}^{-1} sigma_{not i,i})
**************
*/

/*/  
**************
* Generate \( Y_{ij} \), the utility.
*
If alternative k (k = 1, .., mvar) was selected, then
* Y_{ij} is N(X_{ij}*beta_i, Sigma) and Y_{ij}[k] >= max(Y_{ij})

Do multiple loops of generating the Utilities for each MCMC Iteration

for i0 (1, nsub, 1); i = i0;
    for fj (1,yrows[i],1); j = fj;
        xij = xpdata[lxy[i,j]:uxy[i,j],1:rankx];
        cij = xpdata[lxy[i,j]:uxy[i,j],rankxp];  @ Choice vector @
        yij = ydata[lxy[i,j]:uxy[i,j]];
        muij = xij*(beta[i,.]');  @ Mean for y_{ij} @
        if maxc(cij) == 0;  @ selected base brand mvar + 1 @
            ic = mvar+1;
        else;  @ selected one of brand 1 to mvar @
            ic = maxindc(cij);
        endif;
        yij = rndnigtj(yij, ic, muij, smigni, signi, nygen);
        ydata[lxy[i,j]:uxy[i,j]] = yij;  @ store the utility @
    endfor;
endfor;

Generate beta
* beta_i is N(mbin, vbn)
* vbn = ( sum_{j=1}^{n_i} X_{ij}'Sigma^{-1} X_{ij} + Lambda^{-1} )^{-1}
* mbin = vbn*( sum_{j=1}^{n_i} X_{ij}'Sigma^{-1}Y_{ij} + Lambda^{-1}*Theta*Z_i)

zbl = zdata*theta*lambdai;
for i0 (1, nsub,1); i = i0;
    sum1 = 0;
    sum2 = 0;
    for fj (1,yrows[i],1); j = fj;
        xij = xpdata[lxy[i,j]:uxy[i,j],1:rankx];
        yij = ydata[lxy[i,j]:uxy[i,j]];
        sum1 = sum1 + xij'sigmai*xij;
        sum2 = sum2 + xij'sigmai*yij;
    endfor;
    vibn = sum1 + lambdai;
    vibn2 = chol(vibn);
    ebin = sum2 + zbl[i,.]';
    bi = cholsol(ebin + vibn2'rndn(rankx,1), vibn2);
7.2. BAYESIAN ANALYSIS

\[
\text{beta}[i,.] = \text{bi}'
\]

endfor;

/*
*******************************************************************************
* Generate sigma
*******************************************************************************
*/
@end Compute SSE
sse = zeros(mvar,mvar);
for i0 (1, nsub,1); i = i0;
    for fj (1, yrows[i],1); j = fj;
        xij = xpdata[lxy[i,j]:uxy[i,j],1:rankx];
        yij = ydata[lxy[i,j]:uxy[i,j]];
        resid = yij - xij*(beta[i,.]');
        sse = sse + resid*resid';
    endfor;
endfor;
sgni = sg0i + sse;
sgn = invpd(sgni);
{sigmai, sigma} = wishart(mvar,sfn,sgn);

/*
*******************************************************************************
* Generate Theta and Lambda from multivariate model:
* B = Z*Theta + N(0,Lambda)
*******************************************************************************
*/
{theta, lambda, lambdai} = getmulreg(beta,zdata,ztz,theta,lambda,lambdai,v0i,v0iu0,f0n,g0i);
endp;

/*
*******************************************************************************
* GETMULREG
* Generate multivariate regression parameters.
* Yd = Xd*parmat + epsilon
* INPUT
* yd = dependent variables
CHAPTER 7. PROBIT MODEL

* xd = independent variables
* xdx = xd’xd
* parmat = current value of coefficient matrix
* var = current value of covariance matrix
* vari = its inverse
* v0i = prior precisions for bmat
* v0iu0 = prior precision*prior mean for bmat
* f0n = posterior df for sigma
* g0i = prior scaling matrix inverse for sigma

* OUTPUT
* parmat = updated rankx mvar coefficient matrix
* var = updated variance
* vari = updated inverse of sigma
*
* Calling Statement:
{parmat, var, vari} = getmulreg(yd,xd,xdt,parmat,parmat,parmat,vari,vari,v0i,v0iu0,f0n,g0i);
*******************************
*** PROC (3) = getmulreg(yd,xd,xdt,parmat,parmat,parmat,vari,vari,v0i,v0iu0,f0n,g0i);
local vb12, ubn, par, pdim, resid, gni, gn, rp, cp;

 rp = rows(parmat);
cp = cols(parmat);
pdim = rp*cp;

******************************************************************************
* Generate parmat from N_{rp x cp}(M,v)
* par = vecr(parmat)
* par is N(u,V) whee u = vec(M');
* V = (Xd’Xd.*.Var^{-1} + V_0^{-1})^{-1}
* u = V*( (Xd’.*.Var^{-1})*vec(Yd') + V_0^{-1}u_0 )
******************************************************************************

vb12 = chol(xdtxd.*.vari + v0i);
ubn = ( (xd’).*vari)*vecr(yd) + v0iu0;
par = cholsol(ubn + vb12’rndn(pdim,1), vb12);
parmat = reshape(par,rp,cp);

******************************************************************************
7.2. BAYESIAN ANALYSIS

* Generate Var
* Var^{-1} is Wishart df = f0n, scale matrix = gn
****************************************************

resid = yd - xd*parmat;
gni = goi + resid'*resid;
gn = invpd(gni);
{vari, var} = wishart(cp,f0n,gn);
retp(parmat,var,vari);
endp;

/*
****************************************************
* CNDCOV
* Generates some quantities used in computing conditional normal distributions.
* INPUT:
* sigma = Cov(Y)
*
* OUPUT:
* smigni = used in E(Y_i|Y_{not i}).
* signi = STD(Y_i |Y_{not i}).
*
* smigni is a mvar x mvar-1 matrix and
* smigni[i,.] = sigma_{i, not i}*sigma_{not i, not i}^{-1}
* signi is a mvar vector and
* signi[i] =
* sqrt(sigma_{ii} - sigma_{i,not i}*sigma_{not i, not i}^{-1} sigma_{not i,i})
****************************************************
*/
PROC (2) = cndcov(sigma);
local smigni, signi, sqmvar, ei, einot, s2noti, sinoti, s2notii, i0, i;

sqmvar = seqa(1,1,mvar); smigni = zeros(mvar,mvar-1);  @ Sigma_{ij}*Sigma_{jj}^{-1}  @
@ smuigj is used in computing mean of i given not i  @
signi = zeros(mvar,1);  @ sigma_{ii} - sigma_{ij}*Sigma_{jj}^{-1}*sigma_{ji}  @
@ signi is STD of Y[i] given not i @
for i0 (1,mvar,1); i = i0;
edi = sqmvar .== i;  @ ei[i] = 1, and ei[j] = 0 for j /= i @
einot = 1 - edi;  @ einot[i] = 0, and einot[j] = 1 for j /= i @
@ selif(x,e) selects rows of x with e[j] = 1 @
s2noti = selif( selif(sigma,einot)',einot)';
@ s2noti = sigma[j,k] with j /= i and k /= i @
s2notii = selif( selif(sigma,s2noti),einot)';
sinoti = selif( selif(sigma',ei)',einot);
@ sinoti is the ith column of sigma with the ith row removed @

s2notii = invpd(s2noti);
smigni[i,..] = sinoti's2notii;
signi[i] = sqrt(sigma[i,i] - smigni[i,..]*sinoti);
endfor;
retp(smigni, signi);
endp;

/*@
*********************
* RNDNIGTJ.GSS
* Generate a vector normal where the ith element is greater than
* the rest.
* INPUT
*   Y   = current value of  Y form MCMC Iterations
*   IPICK = which component is greater than the rest, and zero
*   mu   = mean vector
*   smigni = used in computing mean of y[i] given not y[i].
*   signi = std of y[i] given not y[i].
*   nygen = number of generations before returning random utility.
* OUTPUT
*   Y   = mvar vector where Y[i] > max( Y[j] for j not equal to i )
*********************/
PROC rndnigtj(y,ipick,mu, smigni, signi, nygen);
local mvar, sqmvar, ei,einot,munoti,ynoti,
    mui, sii, ybot,ytop,yi, i, fori, j, fj ;

mvar = rows(mu); @ Dimension of problem @
sqmvar = seqa(1,1,mvar);

for fj (1, nygen, 1); j = fj; @ Do multiple loops of generating Y @
for fori (1,mvar,1); i = fori;
  ei = sqmvar .== i; @ ei[i] = 1, and ei[j] = 0 for j /= i @
  einot = 1 - ei; @ einot[i] = 0, and einot[j] = 1 for j /= i @

  @ selif(x,e) selects rows of x with e[j] = 1 @
  ynoti = selif(y,einot); @ mvar - 1 vector that does not have y[i] @
  munoti = selif(mu,einot); @ munoti is mvar-1 vector that does not have mu[i] @

  mui = mu[i] + smigni[i,..]*(ynoti - munoti);
  sii = signi[i]; @ STD of y[i] given rest @
  */
if i == ipick;  /* i is the selected choice, yi > max(yj,0) */
ybot = maxc(ynoti|0);
y[i] = rndtnb(mui,sii,ybot);
    /* generates a random normal, truncated below (in plrand.src) */
    /* rndtnb(mu,std,bot): mu = vector of means, std = vector of STD, bot = lower limit */
else;
    /* i was not selected */
    if ipick <= mvar;
        ytop = y[ipick];  /* Maximum element */
    else;  /* Base brand mvar+1 selected, so y < 0 */
        ytop = 0;
    endif;
y[i] = rndtna(mui,sii,ytop);
    /* generates a random normal, truncated above (in plrand.src) */
    /* rndtna(mu,std,top): mu = vector of mean, std = vector of STD, top = upper limit */
endif;
endfor;  /* End loop over generating one Y vector */
endfor;  /* End loop over generating nygen Y vectors */
retp(y);
endp;

/*
*******************************************************************************
* OUTPUTANAL
* Does analysis of output and save some results
*******************************************************************************
*/
PROC (0) = outputanal;
format 10,5;
localbout, sout, ebeta, sbeta, cb, rmse, fmts1, fmts2, fmtn1, fmtn2, a, b, flag, i0, i;

let fmtn1[1,3] = "*.*lf" 10 5;  /* Format for printing numeric variable */
let fmts1[1,3] = "*.*lf" 10 0;   /* Format for numeric variable, no decimal */
let fmts2[1,3] = "*.*s" 10 9;   /* Format for alpha, left justify */
let fmts2[1,3] = "*.*s" 10 9;   /* Format for alpha, right justify */
format 10,5;
output file = ^outfile reset;  /* outfile is the file handle for the output file */
    /* Route printed output to the defined by outfile */
print "Results from PROBIT1.GSS";
print "Hierarchical Bayes Multivariate Probit";
print;
print "Select one of mvar+1 alternatives.";
print "Alternative mvar+1 is the base alternative.";
print "Observe choice k if Y_{ij}[k] >= max(Y_{ij},0)."
print "Choose base if all the y's < 0.";
print;
print "Latent Utility Model:";
print "Y_{ij} = X_{ij}*beta_i + epsilon_{ij}\";
print "Y_{ij}\" is a mvar vector";
print "epsilon_{ij} is N(0, Sigma).\";
print "Assumes that Sigma[1,1] = 1";
print;
print "beta_i = Theta'z_i + delta_i";
print "delta_i is N(0, Lambda)\";
print;
print "Output file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @
print;
print;
print "-------------------------------------------";
print;
print "MCMC Analysis";
print;
print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;
print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;
print "-------------------------------------------";
print "Number of subjects = " nsub;
print "Number of observations per subject:";
print " Average = " meanc(yrows);
print " STD = " stdc(yrows);
print " MIN = " minc(yrows);
print " MAX = " maxc(yrows);
print;
print "Total number of Y observations = " ntot;
print "Dimension of Y_{ij} = " mvar;
print "Number of alternatives = " mvar+1;
print "Number of dependent variables X = " rankx " (including intercept)";
print "Number of dependent variables Z = " rankz " (including intercept)";
print;
7.2. BAYESIAN ANALYSIS

print "Dependent variables are " $xpnames[rankxp];
print " Summary Statistics for Choices";
call sumstats(ynames,reshape(xpdata[.,rankxp],ntot,mvar),fmts1,fmts2,fmtn1);
print;
print "First level equation for Latent Utilities";
print "Y_{ij} = X_{ij}*beta_i + epsilon_{ij}";
print;
print " Summary Statistics for X";
call sumstats(xnames,xpdata[.,1:rankx],fmts1,fmts2,fmtn1);
print;
print "Second level equation:";
print "beta_i = Theta'z_i + delta_i";
print;
print " Summary Statistis for Z:";
call sumstats(znames,zdata,fmts1,fmts2,fmtn1);
print;

if flagtrue == 1; @ Print some fit for utilities @
    print "-------------------------------------------";
    print "Fit between true and estimated utilities for each dimension."
    sout = {"Variable" "Multi-R" "R-Sqr" "ErrorSTD"};
call outitle(sout,fmts1,fmts2);
bout = ynames~multir~rsquare~stderr;
call outmat(bout,fmts1,fmtn1);
endif;
print "-------------------------------------------";
print;
print "Statistics for Individual-Level Regression Coefficients";
if flagtrue == 1;
    ebeta = meanc(betat);
sbeta = stdc(betat);
    print "True Beta";
    sout = {"Variable" "Mean" "STD"};
call outitle(sout,fmts1,fmts2);
bout = xnames~ebeta~sbeta;
call outmat(bout,fmts1,fmtn1);
endif;

print "HB Estimates of Beta";
sout = {"Variable" "PostMean" "PostSTD" };
call outitle(sout,fmts1,fmts2);
    ebeta = meanc(betam);
sbeta = sqrt( meanc( betas^2)) + stdc( betam)^2;
bout = xnames~ebeta~sbeta;
call outmat(bout,fmtn1);
print;
print "-------------------------------------------";

if flagtrue == 1;
    print "Comparison of True Beta to Individual Level Estimates";
    for i0 (1,rankx,1); i = i0;
        print "Variable " $ xnames[i];
        cb = corrx( betat[.,i] betam[.,i] );
        rmse = betat[.,i] - betam[.,i];
        rmse = rmse'rmse;
        rmse = sqrt(rmse/nsub);
        print "Correlation between true and HB = " cb[1,2];
        print "RMSE between true and HB = " rmse;
        print;
    endfor;
endif;
print "-------------------------------------------";

if flagtrue == 1;
    print "True Sigma";
    call outitle(sout,fmtn1);
    bout = ynames"sigmat; 
    call outmat(bout,fmtn1);
    print;
endif;

print "Posterior Mean of Sigma";
call outitle(sout,fmtn1);
bout = ynames"sigmam; 
call outmat(bout,fmtn1);
print;

print "Posterior STD of Sigma";
call outitle(sout,fmtn1);
bout = ynames"sigmas; 
call outmat(bout,fmtn1);
print;

print "HB Estimates of Theta";
sout = " "(xnames");
if flagtrue == 1;
    print "True Theta";
    call outitle(sout,fmts1,fmts2);
    bout = znames~thetat;
    call outmat(bout,fmts1,fmtn1);
    print;
endif;
print "Posterior Mean of Theta";
print outitle(sout,fmts1,fmtn1);
bout = znames~thetam;
call outmat(bout,fmts1,fmtn1);
print;
print "Posterior STD of Theta";
call outitle(sout,fmts1,fmtn1);
bout = znames~thetas;
call outmat(bout,fmts1,fmtn1);
print;
print "-------------------------------------------";
print;
sout = " ~(xnames');
print "HB Estimate of Lambda";
if flagtrue == 1;
    print "True Lambda";
    call outitle(sout,fmts1,fmtn2);
    bout = xnames~lambdat;
    call outmat(bout,fmts1,fmtn1);
    print;
endif;
print "Posterior Mean of Lambda";
call outitle(sout,fmts1,fmtn2);
bout = xnames~lambdam;
call outmat(bout,fmts1,fmtn1);
print;
print "Posterior STD of Lambda";
call outitle(sout,fmtn2,fmtn1);
bout = xnames~lambdas;
call outmat(bout,fmtn1);
print;
print "===========================================";
output off;
closeall;
endp;
\/*

*************************************************
* OUTITLE
* Prints header for columns of numbers.
* INPUT
*   a    = character row vector of column names
*   fmts1 = format for first column
*   fmts2 = format for second column
* OUTPUT
*   None
*************************************************
\*/
PROC (0) = outitle(a,fmt1,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1|ones(ncols-1,1).*fmt2;
flag = printfm(a,mask,fmt);
print;
endp;

\/*

******************************************************************************
* OUTMAT
* Outputs a matrix:
* (Character Vector)\-(Numeric matrix);
* The entries in the numeric matrix have the same format
* INPUT
*   bout    = matrix to be printed
*   fmts    = format for string
*   fmtm    = format for numeric matrix
* OUTPUT
*   None
******************************************************************************
7.2. BAYESIAN ANALYSIS

\[
\text{PROC (0) = outmat(bout,fmts,fmtn);}
\]
\[
\text{local fmt,mask,flag,ncols, nrows;}
\]
\[
\text{ncols = cols(bout);} \quad \text{nrows = rows(bout);} \quad \text{fmt = fmts|(ones(ncols-1,1).*.fmtn);} \quad \text{mask = zeros(nrows,1)^ones(nrows,ncols-1);} \quad \text{flag = printfm(bout,mask,fmt);}
\]
\[
\text{print;} \quad \text{print;} \quad \text{print;} \quad \text{print; endp;}
\]

\[
*/
\]

\[
\text{**************************************************}
\]

\[
\text{SUMSTATS}
\]

\[
\text{Prints summary statistics for a data matrix}
\]

\[
\text{INPUT}
\]

\[
\text{names = character vector of names}
\]
\[
\text{data = data matrix}
\]
\[
\text{fmts1 = format for string}
\]
\[
\text{fmts2 = format for string}
\]
\[
\text{fmtn = format for numbers}
\]

\[
\text{OUTPUT}
\]

\[
\text{None}
\]

\[
\text{**************************************************}
\]

\[
*/
\]

\[
\text{PROC (0) = sumstats(names,data,fmts1,fmts2,fmtn);}
\]
\[
\text{local a, bout;}
\]
\[
\text{a = {"Variable" "Mean" "STD" "MIN" "MAX"};}
\]
\[
\text{call outitle(a,fmts1,fmts2);} \quad \text{bou} \quad \text{t = names~meanc(data)~stdc(data)~minc(data)~maxc(data);} \quad \text{c} \quad \text{all outmat(bout,fmts1,fmtn);} \quad \text{endp;}
\]
Chapter 8

Logit Model
8.1 Data Generation

/*
****************************
* (C) Copyright 1999, Peter Lenk. All Rights Reserved.
* GLOGIT2.GSS
* Generates data for HB LOGIT Regression Model
*---------> Different choice matrices.
* * Select one of mvar+1 alternatives where the last alternative is
* the base brand.
* * \[ P(\text{C}_{ij} = k|X_{ij}) = \exp(X_{ij}[k]'\beta_i)/(1 + \sum \exp(X_{ij}[l]'\beta_i)) \]
* for \( i = 1, \ldots, \text{nsub} \)
* \( j = 1, \ldots, \text{yrows}[i] \)
* \( k = 1, \ldots, \text{mvar+1} \)
* Alternative mvar is the base vector.
* *
* beta_i is rankx vector
*
* X_{ij} is mvar x rankx
* X will have brand intercepts for the first mvar-1 brands,
* and coefficients for price and advertising.
* To identify the model, we fix the intercept for the last brand to zero.
*
* beta_i = \Theta'Z_i + \delta_i
* delta_i is \( N(0,\Lambda) \)
* Z1 is \( \ln(\text{income}) \) and z2 = family size.
* *
*****************************/
new;
flagplot = 1; @ 1 -> do a bunch of plots @
nsub = 100; @ Number of subjects @
mvar = 3; @ mvar+1 brands @
yrows = 20 + ceil(10*rndu(nsub,1)); @ Gives the number of observations per subject @
ntot = sumc(yrows); @ total number of observations @
rankx = mvar + 2; @ Brand 1, Brand 2, Brand 3, Price, Advert @
8.1. DATA GENERATION

rankz = 3;  @ # rows of Z_i  
@ intercept, ln(income), and family size  

@ Define some variable names for Gauss file @  
@ Use string arrays @  
a = seqa(1,1,mvar);  
brands = 0 $+ "Brand " $+ ftovc(a,1,0);  
brands2 = brands|"Base";

xyname = brands|"Price"|"Advert"|"Choice";  @ | stacks matrices on top of each other @  
zname = {"Constant", "lnIncome", "HH Size" };  
@ To print a character string use: print $ zname; @

@ define two pointers to access xdata matrix @  
@ xdata = { x_{11}, ... x_{1n_1}, x_{21}, ..., x_{2,n_2}, ..., x_{nsub,1} ... x_{nsub,n_{nsub}} } @  
@ xij = xdata[lxy[i,j]:uxy[i,j],.] @  
@ lxy = zeros(nsub,maxc(yrows)); @ gives lower subscript @  
@ uxy = lxy; @ gives upper subscript @  
s1 = 0;  
@ for i0 (1,nsub,1); i = i0; @  
@ for fj (1,yrows[i,1],1); j = fj; @  
@ uxy[i,j] = mvar*(s1+j); @  
@ endfor; @  
@ s1 = s1 + yrows[i]; @  
endfor;  
@ lxy = uxy - mvar + 1; @  
@ lxy = (0-lxy).*(lxy .< 0) + lxy; @ zero-out the negative entries. @

@ Generate error variance Lambda @  

@ Generate error variance Lambda @

@ b1   b2   b3   | Price   | Advert @  
@\hline  
@ b1 = {  
1   .3  -.1   | 0 0   ,  @ b1   @  
.3   .8  -.05  | 0 0   ,  @ b2   @  
-.1  -.05   .5  | 0 0   ,  @ b3   @  


\[ \begin{align*} 
0 & 0 & 0 & .2 & .1 & \text{\@ price \@} \\
0 & 0 & 0 & .1 & .5 & \text{\@ advert \@} 
\end{align*} \]

\[
\lambda_{\text{dat}} = 0.01 \lambda_{\text{dat}};
\]

\[
\lambda_{\text{d}2} = \text{chol}(\lambda_{\text{dat}});
\]

\@ generate Z variables @
\@Z1 is ln(income) @
\begin{align*}
m & = \ln(40000); \\
s & = (\ln(120000) - m)/1.96; \\
z1 & = m + s \times \text{rndn}(nsub,1);
\end{align*}

\@Z2 is family size @
\[
z2 = \text{floor}(\text{rndnab}(nsub,1,3,4,1,10)); \quad \text{\@rndnab is my truncated normal(rows, cols, mean, std, a, b)@}
\]
\[
zdata = (z1-\text{mean}(z1))^\top(z2-\text{mean}(z2));
\]
\[
zdata = \text{ones}(nsub,1)^\top zdata;
\]

\@ Generate theta @
\@ beta_i = Theta'z_i + delta_i @
\[
\begin{align*}
\theta_{\text{dat}} & = \{ \\
.5 & .3 & 0 & -2 & 1, \quad \text{\@ Intercept \@} \\
.8 & .3 & -.3 & .8 & -.2, \quad \text{\@ Ln(Income) \@} \\
-.2 & -.2 & 0 & -.3 & .5, \quad \text{\@ Family Size \@}
\}
\end{align*}
\]

\@ Generate partworths beta @
\[
\beta_{\text{dat}} = zdata \times \theta_{\text{dat}} + \text{rndn}(nsub,rankx) \times \lambda_{\text{d}2};
\]

\@ generate X & Y data @
\[
ydata = \text{zeros(ntot\times mvar,1); \quad \text{\@ 0/1 choice \@} \\
ydatat = ydata; \quad \text{\@ true utilities of Brand j - Brand mvar+1 \@} \\
xdata = \text{zeros(ntot\times mvar,rankxx)};
\]
\[
ipick = \text{zeros(mvar+1,1); \quad \text{\@ keep track of the number of choices \@} 
\]
for i0 (1,nsub,1); i = i0;
    for fj (1,yrows[i],1); j = fj;
        @ Do subject i, purchase j @
        @ xij = brands, price, advertising @
        xij = eye(mvar);  @ Brand Intercepts @
        @ Generate Prices @
        @ Regular Price Price Promotion @
        p1 = 5.5 + .1*randn(1,1) - (randu(1,1) < .4)*.3;
        p2 = 5.5 + .1*randn(1,1) - (randu(1,1) < .4)*.5;
        p3 = 5.2 + .1*randn(1,1) - (randu(1,1) < .2)*.2;
        p4 = 5.0 + .05*randn(1,1);
        price = (p1-p4)|(p2-p4)|(p3-p4);
        xij = xij~price;
        @ Do advertising @
        @ Brand 1 heavily advertises, followed by the other four @
        a1 = randu(1,1) < .4;
        a2 = randu(1,1) < .3;
        a3 = randu(1,1) < .2;
        a4 = randu(1,1) < .1;
        advert = (a1-a4)|(a2-a4)|(a3-a4);
        xij = xij~advert;
        @ Generate utility for brands @
        uij = xij*(betat[i, .]');
        uij = uij|0;  @ utility for last brand is 0 @
        pij = exp(uij);
        zij = randzm(pij);  @ zij takes values 1 to mvar+1 @
        choice = zeros(mvar,1);  @ all zeros indicates last choice @
        if zij <= mvar;
            choice[zij] = 1;
        endif;
        ipick[zij] = ipick[zij] + 1;

        @ Save it in the data matrix @
        ydata[lxy[i,j]:uxy[i,j],.] = choice;
        xdata[lxy[i,j]:uxy[i,j],.] = xij;
    endif;
endfor;

endfor;

xydata = xdata~ydata;
create f1 = xpdata with ^xyname, 0, 8;
if writer(f1,xydata) /= rows(xydata);
    errorlog "Conversion of XYDATA to Gauss File did not work";
endif;
closeall f1;

create f1 = zdata with ^zname, 0, 8;
if writer(f1,zdata) /= rows(zdata);
    errorlog "Conversion of ZDATA to Gauss File did not work";
endif;
closeall f1;
save yrows = yrows;
save lxy = lxy;
save uxy = uxy;
save betat = betat;
save thetat = thetat;
save lambdat = lambdat;

@ Define formats for fancy printing @
@ Used to print a matrix of alpha & numeric variables @
let fmt1a[1,3] = "*.*lf" 10 5; @ Format for printing numeric variable @
let fmtsb[1,3] = "*.*s" 8 8; @ Format for printing character variable @
mask = zeros(mvar+1,1)~ones(mvar+1,1); @ 0 for alpha, and 1 for numeric @
fmt1 = fmtsb|fmt1a; @ Format for columns of output @
bout = brands2'(ipick/ntot*100);
print " Brand Market Share (%)";
flag = printfm(bout,mask,fmt1); @ Formated print. @
print;
if flagplot == 1;
    _plctrl = -1; @ use symbols only in plots @
@ plot beta versus ln(income) and family size @
for fj (mvar,rankx,1); j = fj;
    atitle = "Partworth for " $xyname[j] $" versus " $zname[2];
title(atitle);
    xy(zdata[.,2], betat[.,j]);
    atitle = "Partworth for " $xyname[j] $" versus " $zname[3];
title(atitle);
    xy(zdata[.,3], betat[.,j]);
endfor;
8.1. DATA GENERATION

graphset;  % Set plots back to default values %
endif;
end;
8.2 Bayesian Analysis

/*
****************************************************************************
* (C) Copyright 1999, Peter Lenk. All Rights Reserved.
* LOGIT2.GSS
* Select one of mvar+1 alternatives where the last alternative is
* the base brand.
*--------> Different choice matrices.
* P(C_{ij} = k|X_{ij}) = exp(X_{ij}[k]'beta_i)/(1 + sum exp(X_{ij}[l]'beta_i))
* for i = 1, ..., nsub
* j = 1, ..., yrows[i]
* k = 1, ..., mvar+1
* Alternative mvar is the base vector.
* beta_i is rankx vector
* X_{ij} is mvar x rankx
* X will have brand intercepts for the first mvar brands,
* and coefficients for price and advertising.
* To identify the model, we fix the intercept for the last brand to zero.
* beta_i = Theta'Z_i + delta_i
* delta_i is N(0,Lambda)
* Priors:
* Theta is maxtrix normal(u0,v0).
* That is, vec(Theta) is N(vec(u0),v0).
* vec(theta) stacks the columns of theta.
* Lambda is Inverted Wishart(f0, g0)
*****************************************************************************/

new;
outfile = "results1.dat"; /* Specify output file for saving results */
inxy = "xpdata"; /* Name of Gauss file with X, Choice data */
inz = "zdata"; /* Name of Gauss file with Z data */
flagtrue = 1; /* 1 -> knows true parameters from simulation */
8.2. BAYESIAN ANALYSIS

* Initialize parameters for MCMC
***********************************************************************
*/
smcmc   = 10000; @ number of iterations to save for analysis  @
skip    = 1;    @ Save every skip iterations  @
nblow   = 10000; @ Initial transition iterations  @
nmcmc   = nblow + skip*smcmc; @ total number of iterations  @
metstd  = 0.3;  @ STD for random walk metropolis  @

/**
***********************************************************************
* Get data
***********************************************************************
*/
@ Get dimensions and pointers @
load yrows = yrows; @ Number of observations per subject  @
load lxy = lxy;    @ xij = xdata[lxy[i,j]:uxy[i,j],.]  @
load uxy = uxy;

nsub   = rows(yrows); @ number of subjects  @
mvar   = uxy[1,2] - uxy[1,1]; @ Y_{ij} is a mvar vector.  @
ntot   = sumc(yrows);

@ Input Gauss files @
open f1 = ^inxy; @ Get Gauss file for X, Y data  @
expdata = readr(f1,rowsf(f1)); @ "p" for picks  @
            @ readr reads in Gauss file with file handle f1  @
            @ rowsf(f1) returns the number of rows in the Gauss file.  @
            @ readr reads rowsf(f1) rows, which is the entire dataset.  @
ci     = close(f1);
xpnames = setvars(inxy); @ Get the variable names that accompany X, Y data  @
ynames = xpnames[1:mvar]; @ Use names of intercepts for names of components of Y  @

rankxp = cols(xpdata); @
rankx  = rankxp - 1;    @ # of X variables (includes intercept)  @
xnames = xnames[1:rankx]; @
@ Last row of xpdata is the choice vector.  @

open f1 = ^inz;
zdata = readr(f1,rowsf(f1)); @ First column of zdata is a vector of ones  @
ci     = close(f1);
znames = setvars(inz);

rankz  = cols(zdata); @ # of Z variables (includes intercept)  @
thdim = rankx*rankz;  \( \theta \) dimension of vec(\( \theta \))

@ Compute some sufficient statistics @
ztz = zdata'zdata;

/*
   ******************************************************************************
   * Initialize Priors
   ******************************************************************************
   */

@ Prior for \( \theta \) is N(\( u_0, v_0 \)) @
u0 = zeros(thdim,1);
v0 = 100*eye(thdim);  \( \text{thdim} = \text{rankx} \times \text{rankz} \) @
v0i = invpd(v0);  \( \text{v0i} \) used in updating \( \theta \) @
v0iu0 = v0i*u0;  \( \text{v0i} \) used in updating \( \theta \) @

@ Lambda\(^{-1}\) is W\(_{\text{rankx}}\)(\( f_0, g_0 \)) @
@ \( f_0 = \text{prior df}, \ g_0 = \text{prior scale matrix} \) @
f0 = rankx+2;  \( \text{f0n} = \text{f0} + \text{nsub} \)
g0i = eye(rankx);  \( \text{g0i} \) @

/*
   ******************************************************************************
   * Initialize MCMC
   ******************************************************************************
   */

beta = zeros(nsub,rankx);
llbeta = loglike(beta);  \( \text{llbeta} \) used in metropolis @
theta = zeros(rankz,rankx);
lambda = eye(rankx);
lambdai = invpd(lambda);

@ Define data structures for saving iterates & computing posterior means & std @
betam = zeros(nsub,rankx);  \( \text{betam} \) posterior mean of beta @
betas = zeros(nsub,rankx);  \( \text{betas} \) posterior std of beta @
thetag = zeros(smcmc,thdim);  \( \text{thetag} \) @
c = rankx*(rankx+1)/2;
lambdag = zeros(smcmc,c);  \( \text{lambdag} \) save iterations for \( \lambda \) @
/*
* **************************************
* Do MCMC
* **************************************
*/
mixp  = 0;
@ Do the initial transition period @
for i1 (1,nblow,1); imcmc = i1;
   call getlogit;
endfor;

for i1 (1,smcmc,1); imcmc = i1; @ Save smcmc iterations @
 for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @
    call getlogit;
endfor;
@ Save the random deviates @
thetag[imcmc,..] = vecr(theta)’;
betam = betam + beta;
betas = betas + beta^2;
lambdag[imcmc,..]= vech(lambda)’;
endfor;

/*
* ************************************
* Compute Posterior Means and STD
* ************************************
*/
mixp = mixp/(nmcmc*nsub);
betam = betam/smcnc;
thetam = reshape(mean(c(thetag),rankz,rankx);
lambdam = xpnd(mean(c(lambdag));

betas = sqrt(abs(betas - smcmc*betam^2)/smcmc);
thetas = reshape(stdc(thetag),rankz,rankx);
lambdas = xpnd(stdc(lambdag));
/*
   **********************************
   * Do some output
   **********************************
*/
call outputanal;

@ Plot saved iterations against iterations number @
t = seqa(nblow+skip,skip,smcmc); @ saved iteration number @
title("Theta versus Iteration");
xy(t,thetag);
title("Lambda versus Iteration");
xy(t,lambdag);
graphset;
end;

/*
   **********************************
   * GETLOGIT
   * Does one iteration of the HB regression model.
   * INPUT
   *    Global Variables
   * OUTPUT
   *    Global Variables
   **********************************
*/
PROC (0) = getlogit;
local   
   thz,bnew,llbnew,i0,i,mui,testp,vibn12,ebin,resid,gni,gn,gn12,w, u;

   thz = zdata*theta;
   /*
      **********************************
      * Generate beta
      * Use symmetric random walk metropolis
      **********************************
   */
   bnew = beta + metstd*rndn(nsub,rankx);
   llbnew = loglike(bnew); @ Get log likelihood at new beta @
   u = ln(rndu(nsub,1));  @ Do metropolis step @
   for i0 (1,nsub, 1); i = i0;
8.2. BAYESIAN ANALYSIS

\[ \text{mui } = \text{thz}[i, .]'; \]
\[ \text{testp } = \text{llbnew}[i] - \text{llbeta}[i] \quad @ \text{log Likelihood} \]
\[ - ( \text{bnew}[i, .]' - \text{mui } )'\lambda_{i}( \text{bnew}[i, .]' - \text{mui } )/2 \quad @ \text{"Priors"} \]
\[ + ( \text{beta}[i, .]' - \text{mui } )'\lambda_{i}( \text{beta}[i, .]' - \text{mui } )/2; \]

\[ \text{if } u[i] < \text{testp}; \quad @ \text{Accept Candidate} \]
\[ \quad \text{mixp } = \text{mixp } + 1; \]
\[ \quad \text{beta}[i, .] = \text{bnew}[i, .]; \]
\[ \quad \text{llbeta}[i] = \text{llbnew}[i]; \]
\[ \text{endif}; \quad @ \text{else reject candidate & stay pat} \]
\[ \text{endfor;} \]

/*@ 
 ***********************
 * Generate Theta and Lambda from multivariate model:
 * B = Z*Theta + N(0, Lambda)
 ***********************
 */
\{\text{theta}, \text{lambda}, \lambda_{i}\} =
\text{getmulreg(beta, zdata, ztz, theta, lambda, lambda, v0i, v0iu0, f0n, g0i)};
\text{endp;}

/*@ 
 ***********************
 * GETMULREG
 * Generate multivariate regression parameters.
 * \text{Yd} = \text{Xd} \cdot \text{parmat} + \text{epsilon}
 *
 * INPUT
 * \text{yd} = dependent variables
 * \text{xd} = independent variables
 * \text{xdtxd} = \text{xd}' \cdot \text{xd}
 * \text{parmat} = current value of coefficient matrix
 * \text{var} = current value of covariance matrix
 * \text{vari} = its inverse
 * \text{v0i} = prior precisions for bmat
 * \text{v0iu0} = prior precision*prior mean for bmat
 * \text{f0n} = posterior df for sigma
 * \text{g0i} = prior scaling matrix inverse for sigma
 *
 * OUTPUT
* parmat = updated rank x mvar coefficient matrix
* var = updated variance
* vari = updated inverse of sigma
*
* Calling Statement:
{parmat, var, vari} = getmulreg(yd, xd, xdtxd, parmat, var, vari, v0i, v0iu0, f0n, g0i);
*****************************************************************************/
PROC (3) = getmulreg(yd, xd, xdtxd, parmat, var, vari, v0i, v0iu0, f0n, g0i);
local vb12, ubn, par, pdim, resid, gni, gn, rp, cp;

rp = rows(parmat);
cp = cols(parmat);
pdim = rp*cp;

/**
*****************************************************************************/
* Generate parmat from \(N_{(rp \times cp)}(M,v)\)
* par = vecr(parmat)
* par is \(N(u,V)\) whee \(u = \text{vec}(M')\);
* \(V = (Xd'Xd' \times \text{Var}^{-1}) + V_0^{-1}\)^{-1}
* \(u = V*( (Xd' \times \text{Var}^{-1})*\text{vec}(Yd') + V_0^{-1}u_0 )\)
*****************************************************************************/

vb12 = chol(xdtxd.*.vari + v0i);
ubn = ( (xd').* .vari )*vecr(yd) + v0iu0;
par = cholsol(ubn + vb12'rndn(pdim,1), vb12);
parmat = reshape(par,rp,cp);

/**
*****************************************************************************/
* Generate Var
* \(\text{Var}^{-1}\) is Wishart \(\text{df} = f0n\), scale matrix = gn
*****************************************************************************/

resid = yd - xd*parmat;
gni = g0i + resid'*resid;
gn = invpd(gni);
{vari, var} = wishart(cp,f0n,gn);
retp(parmat, var, vari);
endp;
8.2. BAYESIAN ANALYSIS

/*
 ********************************************
 * LOGLIKE
 * Computes multinomial-logit log-likelihood at parameter beta
 * INPUT:
 * beta
 * OUTPUT:
 * Log likelihood
 *
 *********************************************/

PROC (1) = loglike(beta);
local llbeta,i0,i,fj,j,xij,cij,zij,muij,emuij;
llbeta = zeros(nsub,1); @ ln(Likelihood x prior) of beta for each subject @
for i0 (1, nsub, 1); i = i0; @ loop over subjects @
  for fj (1,yrows[1],1); j = fj; @ loop over selections @
    xij = xpdata[lxy[1,j]:uxy[1,j],1:rankx]; @ Get design matrix @
    cij = xpdata[lxy[1,j]:uxy[1,j],rankxp]; @ Get vector of choices @
    if maxc(cij) == 0; @ Picked base brand @
      zij = mvar+1;
    else; @ Picked one of brands 1 to mvar @
      zij = maxindc(cij);
    endif;
    muij = xij*(beta[i,.]’); @ logits @
    muij = muij|0;
    emuij = exp(muij);
    emuij = sumc(emuij);
    llbeta[i] = llbeta[i] + muij[zij] - ln(emuij);
  endfor;
endfor;
retp(llbeta);
endp;

/*
 ***************************************************
 * OUTPUTANAL
 * Does analysis of output and save some results
 ***************************************************/

PROC (0) = outputanal;
format 10,5;
local bout, sout, ebeta, sbeta, cb, rmse, fmts1,fmts2, ftn1, ftn2, a,b, flag, i0, i, betat, thetat, lambdat;
Get true parameters if simulation
if flagtrue == 1;
    load betat = betat;
    load thetat = thetat;
    load lambdat = lambdat;
endif;

let fmt1[1,3] = "*.*lf" 10 5;  
let fmt2[1,3] = "*.*lf" 10 0;  
let fmts1[1,3] = "-*.*s" 10 9;  
let fmts2[1,3] = "*.*s" 10 9;  
format 10,5;  
output file = ^outfile reset;  

print "Results from LOGIT1.GSS";
print "Hierarchical Bayes Multivariate LOGIT";
print;
print "Select one of " mvar+1 " alternatives.";
print;
print "beta_i = Theta'z_i + delta_i";
print "delta_i is N(0, Lambda)";
print;
print "Output file: " getpath(outfile);  
print "Date: " datestr(date);  
print "Number of subjects = " nsub;
print "Number of observations per subject: ";
print "Average = " meanc(yrows);
print "STD = " stdc(yrows);
8.2. BAYESIAN ANALYSIS

```
print " MIN = " minc(yrows);
print " MAX = " maxc(yrows);
print;
print "Total number of Choices = " ntot;
print "Number of Alternatives = " mvar+1;
print "Number of dependent variables X = " rankx " (including intercept)";
print "Number of dependent variables Z = " rankz " (including intercept)";
print;
print "Dependent variables are " $xpnames[rankxp];
print " Summary Statistics for Choices (excluding Base)"
call sumstats(ynames, reshape(xpdata[.,rankxp],ntot,mvar),fmts1,fmts2,fmtn1);
print;
print "First level equation for Logits"
print "logit_{ij} = X_{ij}*beta_i + epsilon_{ij}";
print;
print " Summary Statistics for X"
call sumstats(xnames[mvar+1:rankx],xpdata[.,mvar+1:rankx],fmts1,fmts2,fmtn1);
print;
print "Second level equation:"
print "beta_i = Theta*z_i + delta_i";
print;
print " Summary Statistics for Z"
call sumstats(znames[2:rankz],zdata[.,2:rankz],fmts1,fmts2,fmtn1);
print;
print "---";
print;
print "Statistics for Individual-Level Regression Coefficients"
if flagtrue == 1;
 ebeta = meanc(betat);
sbeta = stdc(betat);
print "True Beta"
sout = {"Variable" "Mean" "STD"};
call outtitle(sout,fmts1,fmts2);
bout = xnames~ebeta~sbeta;
call outmat(bout,fmts1,fmtn1);
endif;
print "HB Estimates of Beta"
sout = {"Variable" "PostMean" "PostSTD"};
```
call outitle(sout,fmt1,fmt2);

ebeta = meanc(betam);
sbeta = sqrt( meanc((betas^2)) + stdc(betam)^2);
bout = xnames~ebeta~sbeta;
call outmat(bout,fmt1,fmt1);
print;

if flagtrue == 1;
print "Comparison of True Beta to Individual Level Estimates";
for i0 (1,rankx,1); i = i0;
    print "Variable " $ xnames[i];
    cb = corrx(betat[.,i]~betam[.,i]);
    rmse = betat[.,i] - betam[.,i];
    rmse = rmse'rmse;
    rmse = sqrt(rmse/nsub);
    print "Correlation between true and HB = " cb[1,2];
    print "RMSE between true and HB = " rmse;
    print;
endfor;
endif;

print "-------------------------------------------";
print;

print "HB Estimates of Theta";
sout = "~(xnames');
if flagtrue == 1;
    print "True Theta";
    call outitle(sout,fmt1,fmt2);
    bout = znames~thetat;
    call outmat(bout,fmt1,fmt1);
    print;
endif;
print "Posterior Mean of Theta";
print outitle(sout,fmt1,fmt2);
bout = znames~thetam;
call outmat(bout,fmt1,fmt1);
print;
print "Posterior STD of Theta";
call outtitle(sout,fmt1,fmt2);
bout = znames~thetas;
call outmat(bout,fmt1,fmt1);
print;
print "-------------------------------------------";
print;
sout = "~(xnames');
8.2. BAYESIAN ANALYSIS

print "HB Estimate of Lambda";
if flagtrue == 1;
    print "True Lambda";
    call outitle(sout,fmts1,fmts2);
    bout = xnames\'lambdat;
    call outmat(bout,fmts1,fmtn1);
    print;
endif;
print "Posterior Mean of Lambda";
call outitle(sout,fmts1,fmts2);
bout = xnames\'lambdam;
call outmat(bout,fmts1,fmtn1);
print;
print "Posterior STD of Lambda";
call outitle(sout,fmts1,fmts2);
bout = xnames\'lambdas;
call outmat(bout,fmts1,fmtn1);
print;
print "=----------------------------------------------------------------------------=
output off;
closeall;
endp;

PROC (0) = outitle(a,fmt1,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1(ones(ncols-1,1).*fmt2);
flag = printfm(a,mask,fmt);
print;
endp;
/*
******************************************************************************
* OUTMAT
* Outputs a matrix:
* (Character Vector)~(Numeric matrix);
* The entries in the numeric matrix have the same format
* INPUT
* bout = matrix to be printed
* fmts = format for string
* fmtn = format for numeric matrix
* OUTPUT
* None
*******************************************************************************/
PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols = cols(bout);
nrows = rows(bout);
fmt = fmts(ones(ncols-1,1).*fmtn);
mask = zeros(nrows,1)~ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);
print;
endp;
/*
******************************************************************************
* SUMSTATS
* Prints summary statistics for a data matrix
* INPUT
* names = character vector of names
* data = data matrix
* fmts1 = format for string
* fmts2 = format for string
* fmtn = format for numbers
* OUTPUT
* None
*******************************************************************************/
PROC (0) = sumstats(names,data,fmts1,fmts2,fmtn);
local a, bout;
a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outitle(a,fmts1,fmts2);
bout = names~meanc(data)~stdc(data)~minc(data)~maxc(data);
call outmat(bout,fmt1,fmt2);
endp;