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CHAPTER 1. GETTING STARTED WITH GAUSS

Outline
. What is Gauss?
. Scalars, Vectors, and Matrices
. Operators
. Matrix Functions

. Files, Input & Output
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1.1 What is Gauss?

Gauss is a matrix based language with many built—in
functions. The basic data structures in Gauss are
matrices. Special cases are vectors and scalars.
Operators are matrix operators. It also has a full
range of graphical features and random number

generators.
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1.2 Scalars, Vectors, and Matrices

1. Define scalars:

c=4.d=2:

) )

2. Define a row vector:
r={1234}.
Type “print x;”
3. Define a column vector:
r= {1, 2,3, 4} ;
Type “print x;”
4. Do you ever need a sequence of numbers?
r = seqa(l,d, c);
5. Define a matrix (entered by rows):
amat=4{123,456,789,10 11 12};

Type “print amat;”



1.2. SCALARS, VECTORS, AND MATRICES

6. Do you ever need a matrix of zeros

cmat = zeros(d, 3);

)

or ones?

)

dmat = ones(2,4);

What about the identity matrix:

idmat = eye(c);
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7. You can get submatrices:

arl = amat|[l,.]; QRow 1@

ar24 = amat|2 :4,.]; @ Rows 2 thru 4 @
ac2 = amat|.,2]; @ Column 2 @

ac23 = amat[.,23]; @ Columns 2 and 3 @

asub = amat(2:4,2:3]; @ What is it? @
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1.3 Operators

1. Matrix multiplication is simple:

bmat = { 20 21, 22 23, 24 25}

cmat = amat *x bmat;

2. Matrix transpose is: amatt = amat’;
3. How about: dmat = x'amat;

4. Try z = x + amat;

5. Here is something different:

y = x.xamat; Q Element by element multiplication @

6. Try this out:

z = x. % .amat; @Q Kronecker product @
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1.4 Matrix Functions

1. Suppose you have a positive definite covariance

matrix:
sigma={ 2 .8 -.5, .8 1 -.3,-.5 -.3 .7 };
2. You can invert it with:
sigmai = invpd(sigma);
Check it with:
a = S1gma * s1gmat;

3. Its determinate is

detsig = det(sigma);



1.4. MATRIX FUNCTIONS

4. Its Cholesky decomposition:
sigl2 = chol(sigma);
Check
a = sigl2'sigl2
5. We use this in generating N(y|u, X):
mu = {1,5,10};
y = mu+ sigl2'rndn(3,1);
Cool! Note that rndn(3,1) gives a vector of

independent, standard normals. rndn(3,10) gives

a 3 by 10 matrix of standard normals.
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6. Try

Y

ybar

ystd

ycor

{f,m,p}

library

{f,m,p}

xy (y[-,1],y[-»2]);
_plctrl

xy (y[.,1],¥[-,2]);

graphset;

= mu' + rndn(100, 3) * sigl2;

meanc(y);
stde(y):
corrx(y);
hist(y|., 1], 10);
pgraph;
hist(y|., 1], 10);
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1.5 Files, Input & Output

1. ASCI Files & Simple Data Files

e Read ASCI File

load xdatal[10,3] = "c:\\mcmc\\inout\\dataO.txt";
@ data0.txt has 10 rows and 3 columns @
@ data0O.txt does not have variable names @
@ xdata is a 10 by 3 matrix in Gauss C]

print xdata;

e Save a matrix from GAUSS.

save ydata = xdata;

@ Save xdata into file ydata.fmt @

e Load a .FMT File.

load zdata = ydata;

@ load file ydata into zdata @

11
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2. GAUSS Files:

e Creating a GAUSS data file.

new; @ Clear memory @
@ Generate some data @

nobs = 100; @ number of observations @

nvars 5; @ number of variables @

vdata = rndn(100,5); @ 100 by 5 matrix of standard normals @
@ Character vector of variables names @

let vnames = varl var2 var3 vard varb;

@ Create the Gauss file vdatag @

create f1 = vdatag with “vnames, 0, 8;
@ The data is written to vdatag.dat @
@ Names are in the vdatag.dht @

@ f1 is the file handle @

@ Write the matrix vdata to gauss file vdatag @
wnum = writer(f1,vdata);

@ wnum = number of observations written to f1@

@ Close the file @
cok = close(fl);

@ cok = 0 if successful; = -1 if unsuccessful @



1.5. FILES, INPUT & OUTPUT

e Reading a GAUSS file.

new; @ Clears memory @
infile = "vdatag"; @ Name of Gauss File @

@ infile is the input ’file handle’ for vdatag @

@ Input Gauss files @

© Opens Gauss file & assigns file handle f1 @

open f1 = "infile;

vdata = readr(f1,rowsf(f1));

@ vdata is the name of the matrix @

@ readr reads Gauss file with file handle f1. @

@ rowsf(f1) returns the number of rows in the Gauss file. @
@ readr reads rowsf(fl) rows, which is the entire dataset. @

cok = close(fl); @ close the file @

@ Get the variable names @

vnames = setvars(infile);

@ Print the variable names @
@ $ indicates a character vector @

print $ vnames;

13
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3. EXCEL Files.

e Import EXCEL, version 4.0.
Convert it to a GAUSS file.

@ Example of converting EXCEL file to a gauss file @
new;

@ Set file names and paths @

fname = "c:\\mcmc\\InOut\\data2.x1ls";

©@ EXCEL version 4.0 First row has variable names. Q@
dname = "c:\\mcmc\\InOut\\data2g.dat";

@ GAUSS data file @

iok = importf(fname, dname,0,1);

@ Convert EXCEL file to GAUSS data file @

@ iok = 1 if success and = 0 if failure @

@ Read Gauss File @

infile = "data2Zg";

open f1 = “infile;

vdata2 = readr(f1,rowsf(f1));
cok = close(fl);

vn = setvars(infile);

print $ vn;
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e Export Gauss file to EXCEL file.

@ Export Gauss data file to EXCEL @
fold = "c:\\mcmc\\InOut\\data2g.dat";

fnew "c:\\mcmc\\InOut\\data3.x1ls";

exok = exportf(fold, fnew ,0);

@ fold is the path & name of the Gauss file @

@ fnew is the path & name of the target EXCEL file @
@ 0 is default -> all variables @

@ exok = 1 is success; = 0 is failure @

e Export Data to EXCEL File

@ Export data to EXCEL file @
@ Create some data. @

mdata = rndn(50,4);

@ Give variables their names @

let mnames = bayes is more fun;

Q@ Give path + file name for EXCEL file @

outxls = "c:\\mcmc\\InOut\\mdata.xls";

@ Export it. @

exok = export(mdata, outxls, mnames);

15
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CHAPTER 1.

GETTING STARTED WITH GAUSS



Chapter 2
GAUSS Libraries

GAUSS allows user defined subroutines to be added to the GAUSS programing environ-
ment. Extending Gauss is accomplished with libraries files. Libraries define collections
of subroutines or Gauss procedures. These procedures are complied by Gauss with the

command:
library < libl >, < 262 >, ... < libn >;
The graphics library is “pgraph.” Before using graphics, type:
library pgraph;

We used this command on page (10).
Library files define procedures for the GAUSS compiler. They have an “lcg” extension

and reside in the subdirectory:

C:\GAUSS\LIB

My programs uses the library bamm.lcg, which contains my subroutines for Simpson’s
integration and some random number generators. Before running my programs, you need

to issue:

17
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library pgraph, bamm;

bamm.lcg only defines subroutines contained in one file. In general, one LCG library can
pull subroutines from several files, and one file of procedures can be used by more than
one LCG file. The only constraint is that on a particular library call, each subroutine is
uniquely defined by a LCG file. The contents of bamm.lcg is:

c:\mcmc\src\bamm. src

intsim ! proc
dirl : proc
dirord : proc
wishartO : proc
wishart ! proc
rndmn ! proc
rndzmn ! proc
rndtna : proc
rndtnb : proc
rndnab : proc
rndgamlo . proc
rndgamup ! proc

The first line gives the path and file name for the file that contains the procedures.
The following lines gives names of the procedures that you wish to compile. You do not

have to list all procedures in your file.
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2.1 SRC Files

The code for the procedures in a library file is contained in a SRC file. These have the

extension “src¢” and are in the directory. GAUSS’s SRC files are in:

C:\GAUSS\SRC

However, you can place your procedures anywhere, just as long as the LCG gives the
correct path. Each procedure in the SRC file has to be defined in a LCG file. bamm.lcg

and bamm.src work together.
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/%

>k >k 3K 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k 5k 5k %k >k 3k 3K 3k 3k 3k 5k 5k 5k 5k 5k %k %k % 3K 3K 5K 3K 3k 3k %k %k 5k 5k %k %k %K 3K 3K 5K 5K 5k 5k %k %k 5k >k >k %k %k K >k 5K > 5 > %k %k %k >k >k %k %k %

x  (C) Copyright 1999, Peter Lenk. All Rights Reserved.

* BAMM.SRC are my procedures for Lenk’s MCMC

* INTSIM performs Simpson’s integration.

* Note: Gauss does it too, but my version is simpler when
* fx is computed over a fixed grid x to plot fx versus x.
* DIR1 generates a dirichlet random deviate.

* DIRORD generates ordered dirichlet random deviates

* WISHARTO generates a standard Wishart.

* WISHART generates general Wishart & Inverse Wishart

* RNDMN generates multinomial counts.

* RNDZMN generates indicator for bin gets ball.

* RNDTNA generates truncated normals above a value

* RNDTNB generates truncated normals below a value

* RNDNAB generates normal between a and b.

* RNDGAMLO generates truncated gamma above lower bound.

3k >k 3K 3K 3K 3K 3K 5k 5k 5k 3k 3k 5k 5k 5k %k >k 3K 3K 3K 3k 3k 5k 5k 5k 5k 5k 5k %k K 3K 3K 5K 5K 3k 3k 5k 5k 5k 5k 5k %K %K K 3K 5K 5K 5k 3k %k %k 5k >k >k %k %k K >k 5K 5 5k > %k %k %k >k >k % %

*/

/*

sk sk o o o ok sk ok ok o ok ok ok o sk ok ok o o koK ok ok o sk ok sk o sk sk ok s o ok sk ok ok o ok sk ok ok o ok sk sk ok o ok ok ok o
* INTSIM performs simpson’s integration

* f = function, grid must have 2*m+1 points, k cols

* del = grid size, scalar or k by 1 vector

skt ok skskok o ok sksksk sk sk sk sk sk sk sk sk ok ok sksk sk ok sksk sk sk ok sk sk sk sk ok sksk sk ok sksk ok ok sk sk ok
*/

PROC intsim(f,delta);

local r, t, even, fint;

fint = 0;

r = rows(f);

if r == 2xfloor(r/2);

print "ERROR: Even number of rows for simpson’s integration";
elseif r == 3; @ Simple Simpson’s Integration @

t = 114]1;

fint = (t’f).*(delta’)/3;

else; @ Composite Simpson’s Integration @

t = 1| (ones((r-3)/2,1) .*.(412))14]1;

fint = (t’f).*(delta’)/3;

endif;

retp(fint’);

endp;
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/%

3k >k 3K 3K 3K 3K 3K 5k 5k 3k 3k 5k 5k 5k %k %k 3K 3K 3K 3k 3k 3k 5k 5k 5k 5k 5k 5k %K K 3K 5K 5K 5k 3k 3k %k %k 5k 5k %k XK K 5K 3K 5K 5k 5k %k %k %k >k >k k *k Kk Kk

* DIR1.G generates a matrix of Dirichlet random variables
* Rows are independent random variables.

* INPUT

* xi = n x h matrix of parameters

* Each row are the parameters for a Dirichlet.

*  QUTPUT

* x = n by h matrix of dirichlet probabilities

* each row is an independent dirichlet(xi).

skokokok o ok sk ok ok o sk ko ok ok sk o ok sk sk ok o ok sk sk ok o ok sksk ok ok sk sk ok ok ok skok ok o ok skokok ok sk okok ok ok
*/

PROC diri(xi);

local x,r,c;

r = rows(xi);

e cols(xi);

x = rndgam(r,c,xi);

retp(x./sumc(x’));

endp;

/*

3k 5k 3k 5k >k 5k >k 5k 5k 5k 5k >k 5k >k 3k 5k 3k 5k 5k 5k >k 3k 5k 5k 5k 3k 5K >k 5k >k 3k 5k 5k 5k >k 5k >k 5k 5k 3k 5k >k 5k >k 5k >k 5k 5k >k 5k >k 5k >k %k 5k %k >k >k >k >k %k >k %k >k k %k

DIRORD generates truncated dirichet random deviates.
p_l <=p_.2<= ... <= pK

Uses slice sampling.

INPUT:

alpha = k x 1 vector of "alpha" values
xgam = n x k vector of truncated gammas used in prob
OUTPUT:
prob = n x k matrix of probabilities
xgam = updated values of truncated gammas.
stk sk stk ok ok ok ok oo o o o o ko ok ok sk sk sk sksk sk sk sk o o s s ko ok ok sk sk sk sk sk sk sk ok o o o o ok ok ok sk sk sk sk sk sk sk sk ok ok ok

*/

* X X X X X X X %

PROC (2) = dirord(alpha,xgam);
local i,k,n,ul,u2,umin,c;

k = cols(xgam);

n = rows(xgam);

ul = rndu(n,k);

u2 = rndu(n,k);

if alphal[l] == 1; @ alpha = 1 implies that x is exponential @
xgam[.,1] = -1n(1-u2[.,1]1);
else;

c = 1/(alpha[1]-1);
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umin = (ull.,1]"c).*xgam[.,1];

umin = (umin .< 0).*(0-umin) + umin; @ umin > 0 @
xgam[.,1] = umin - 1n(1-u2[.,11);

endif;

i=2;

do while i <= k;

if alphal[i] == 1; @ alpha =1 @

umin = xgam[.,i-1];

xgam[.,i] = umin-1n(1-u2[.,i]);

else;

¢ = 1/(alphalil-1);

umin = (ull.,il"c).*xgam[.,i];

umin = maxc( (umin~xgam[.,i-1]1)’ );

umin = (umin .< 0).*(0-umin) + umin; @ umin > 0 @
xgam[.,i] = umin - 1n(1-u2[.,il);

endif;

i=1i+1;

endo;

retp(xgam./(sumc(xgam’)), xgam);

endp;

/*
sk sk ok ok ke ok sk ok ok e ok sk sk ok s ke sksk ok sk ok sk sk sk e ok sk sk ok s ok sk sk ok sk ok sk sk ke ok sksk sk s ok sk sk ok sk ok sk sk ok ok ok
WISHARTO.G generates a random deviate from a standard
Wishart distribution.
m = dimension, n = df.
Bartletts decomposition: W = T*T’ where T upper diagonal
of T is zero. Lower diagonal elements of T are normal.
Diagonal elements of T are sqrt(chi-square).
See page 99 of Ripley, Stochastic Simulation.
skt ok skskok sk ok sk sk sk sk ok sk sk ok sksksk sk ok sksk sk sk ok sksk sk sk ok stk sk ok sksksk sk ok sk sksk ok ok skskok ok ok
x/
PROC wishartO(m,n);
local 1i,j,t,x,alpha;
t = zeros(m,m);
if m >= n;
print "ERROR: DF of Wishart < Dimension";
elseif m > 1; @ more than one dimension @
@ Create low diagonal matrix with N(0,1) deviates @
t = rndn(m*(m-1)/2,1); @ vector of normals @

* X X ¥ ¥ X x

GAUSS LIBRARIES

t = lowmat (xpnd(t)); @ expand into symmetric & reshape into lower diagonal matrix @

t = zeros(1,m) | (t"zeros(m-1,1)); @ fill-out zeros @
@ put gamma down diagonal e
alpha = seqa(n,-1,m)/2;
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x = sqrt( rndgam(m,1,alpha)*2 ); @ gamma(alpha,0.5) @

t = diagrv(t,x);

retp(t*t’); @ outer product gives bartlett’s decomposion @
elseif m == 1; @ m = 1 -> Wishart is gamma(df/2,1) @

x = rndgam(1,1,n/2);

retp(x);

else;

print "ERROR: DF of Wishart < 1: df = " m;

endif;

endp;

/*

sk sk o ke ok sk sk ok e ok sk sk ok o sk sk ok s ok sk ok sk e ok sk sk sk e ok sk sk o s sk sk o s ok sk sk e ok sk sk sk e ok sk sk ok s sk sk sk o ek sk sk sk e ok sk sk ok
WISHART

Generates general Wishart and Inverted Wishart

INPUT

dim = dimension of matrix

df = degree of freedom

gmat = scale matrix

OUTPUT

wish = random matrix with the Wishart distribution

wishi = random matrix that is inverted Wishart.

NOTE:

In most MCMC applicationms,

df is the posterior degrees of freedom:

df = df0 + n where df0 = prior df.

gmat is the posterior scale matrix:

gmat = (g0~{-1} + sum_{i=1}"n (y_i - mu_i)(y_i - mu_i)’> )~{-1}
where g0 is the prior scale matrix.

wishi = Sigma, the covariance matrix

wish = Sigma~{-1}

skt ok stk ok ok sk sk ok ok sksksk s ok sksk sk sk ok sk sk sk ok sksk sk sk ok sksksk sk ok sk ok sksksk sk ok sksksk ok ok sk sk ok sksk sk sk sk sk sk sk ok
*/

PROC (2) = wishart(dim,df,gmat);

local wish, wishi, gmatl2, w;

gmatl2 = chol(gmat);

w = wishart0(dim,df); @ Get standard Wishart @

wish = gmatl12’wxgmatl12; @ Wishart @

wishi = invpd(wish); @ Inverted Wishart @

retp(wish,wishi);

endp;

* X X X X X X X X X X X X X X X X x

/*

sk sk o o o ok sk ok ok o sk ok ok o sk sk ok ok o sk sk ok sk o ok sk sk sk o sk sk ok sk o sk sk ok sk o ok sk sk ok e ok sk sk ok ok e ok sk ok ok ok ok
* RNDMN generates multinomial random deviates
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* X is MN_K(n,p): n trials, k cells, p = probs.
*

* Input:

* n = number of trails

* p = j by k matrix of probabilities

* Each row is a probability vector

*

* Qutput:

* X = j by k matrix

* Each row is multinomial counts.

*

ok Kok KoK KK ok KoK K oK KoK K ok K ok K oK oK ok Kok K oK KK K ok oK ok KoK ok ok oK ok K ok KoK ok ok Kok K oK oK ok Kok K
*/
PROC rndmn(n,prob);
local x,xrows,cells,i,u;
xrows = rows(prob) ;
cells = cols(prob);
if not ((prob >= 0 ) and (prob <=1 ));
errorlog "ERROR in RNDMN.G: probability not between O and 1";

endif;
if not sumc(prob’) == 1;
errorlog "ERROR in RNDMN.G: probability does not sum to 1";
endif;
X = zeros(xrows,cells);
i =1;

u = rndu(xrows,n);

do while i <= cells;
x[.,i] = sumc(( (u.>0) .and (u.<= probl[.,il))’);
u =u - prob[.,i];
i=1+1;

endo;

retp(x);

endp;

/*
sk ok ok sk 3 ok ok K K ok ok ok K ok ok sk ok ok ok Kk ok ok sk K ok sk sk ok ok sk ok sk ok ok sk ok ok sk K sk ok ok ok ook ok ok K ok ok ok ok K
RNDZMN.G generates multinomial(1,prob).
Z indicates the bin that gets the ball.
INPUT
prob = n x h; n = number of obs, h = number of bins.
probli,j]l = P(z_i is in bin j)
rows are independent.
OUTPUT
z =n x 1 vector
z[i] = j if bin j received ball.

* X X X X X X X *
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ok Kok KoK KoK K oK K oK K ok oK ok K oK KK ok Kok K oK KoK Kok K ok K oK K ok oK ok K oK ok ok K ok oK K ok Kok K ok K
*/
PROC rndzmn (prob) ;
local z,j,u,h,n;
n = rows(prob);
h = cols(prob);
if not ((prob >= 0 ) and (prob <=1 ));
errorlog "ERROR in RNDZMN.G: probability not between O and 1";
endif;
if not (( sumc(prob’) > 0.999999) and (sumc(prob’) < 1.000001));
errorlog "ERROR in RNDZMN.G: probability does not sum to 1";
endif;
z = zeros(n,1);

u = rndu(n,1);

j=1

do while j <= h;
z =z + ((u.>0).and (u.<= prob[.,j1)).*j;
u =u - prob[.,j];
i=i+y

endo;

retp(z);

endp;

/*

sk sk ok ok ok sk sk ok o sk sk ok sk ok sk sk sk ke ok sk sk sk s ok sk sk ok sk ok sk sk sk ke ok sksk sk s ok sk sk sk ok sk ok ok sk sk sk s ok sk sk sk ok sk sk sk ok
RNDTNA generates form a truncated normal distribution
Truncation is above from (-infinity, xtop)
INPUT
mu = vector of means
sigma = vector of stds
xtop = upper limit
OUTPUT
x = truncated normal
sk sk ok ok o sk sk sk ok o sk sk ok o sk sk ok s ok sk sk sk e ok sk sk sk e ok sk sk ok s ok sk sk ok sk e ok sk sk sk ek sk sk sk e ok sk sk sk s ke ok sk sk ok ok sk sk ok ek ok
*/
PROC rndtna(mu,sigma, xtop);
local u, fb, x ;
u = rndu(rows(mu),1);
fb = cdfn( (xtop - mu)./sigma);
X = mu + sigma.*cdfni( u.*fb );
x = (xtop - x).*(x .> xtop) + x;
retp(x);
endp;

¥ ¥ X X X ¥ X *
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/%
sk ok sk ok ok K ok ok 3 ok K sk ok K ok ok 3 ok K ok ok 3 ok K 3 ok K ok ok 3 ok sk sk ok K ok ok 3 ok K sk ok ok ok 3 ok K sk ok ok ok 3 ok K sk ok K ok ok ok sk sk ok ok K
RNDTNB generates form a truncated normal distribution
Truncated on [xbot, infinity)
INPUT
mu = vector of means
sigma = vector of stds
xbot = lower limit
QUTPUT
x = truncated normal
5ok ok ok K o oK ok K K ok ok K K ok ok oK K 3 ok ok 3K ok ok K K ok ok ok 3 ok ok K K ok ok ok K 3 ok ok 3 ok ok K K 3k ok ok K 3 ok ok 3 K ok ok K K K ok ok K ok ok K

*/

* X X X ¥ X X x

PROC rndtnb(mu,sigma,xbot);

local u, fa, fb, x ;

u = rndu(rows(mu),1);

fa = cdfn( (xbot - mu)./sigma);

fb = 1;

x = mu + sigma.*cdfni(fa + u.*(fb-fa));
x = (xbot - x).*(x .< xbot) + x;
retp(x);

endp;

/*

ok sk o ok K ok sk 3 ok K o ok 3 ok sk 3 ok K o ok 3 ok K 3 ok K ok sk 3 ok 3k ok ok K ok sk 3 ok K 3 ok 3 ok sk 3 ok K ok ok ok sk 3 ok K ok ok 3 ok sk 3k ok 3 ok ok ok 3k ok ok sk ok
RNDNAB
Generate a matrix of normals that are constrained between two numbers
f(x) \propto I(low < x < up)*N(x|xm, xv)

*
*

*

*

* INPUT:

* nr = number of rows

* nc = number of columns
¥ Xm = mean

* XV = variance

* low = lower bound

* up = upper bound

* QUPUT

* nr by nc matrix of random numbers

ok sk ok ok K ok ok 3 ok K ok ok ok ok 3k ok K ok ok ok K sk ok ok ok 3 ok sk sk ok sk ok ok 3 ok sk sk ok ok ok 3 ok K sk ok ok ok 3 ok K sk ok ok sk 3 ok 3k sk ok 3 ok K ok ok ok K
x/

proc rndnab(nr,nc,xm,xv,low,up);

local flow, fup, xstd, x;

if low > up;

errorlog "Error in RNDNAB: Lower bound exceeds upper bound.";

print "low = " low " up = " up;



2.1. SRC FILES

retp(0);

endif;

xstd = sqrt(xv); @ STD of X @

flow = cdfn((low-xm)/xstd); @ Normal cdf of lower bound @
fup = cdfn((up-xm)/xstd); @ Normal cdf of upper bound @
if flow >= 1;

errorlog "RNDNAB: F(lower bound) = 1";

retp(0);

endif;

if fup <= 0;

errorlog "RNDNAB: F(uppper bound) = 0";

retp(0);

endif;

X
X

xm + xstdxcdfni( (fup - flow)*rndu(nr,nc) + flow) ;
(low - x).*x(x .< low) + x;

x = (up - x).*x(x .> up) + x;

retp(x);

endp;

/*
ook stk ok ook sk ok ok ok ok ook sk sk ok o ok sk s ok sk ok sk ook sk sk ok ok sk ook sk ok ok ok sk ok ok sk ok sk sk ok ok sk ok ok ok ok ok
RNDGAMLO.G

f(x) \propto I( x> low) x"{alpha-1}exp(-beta*x)

*

*

*

*

* INPUT:

* nr = number of rows

* nc = number of columns
* alpha = shape parameters of gamma: scalar
* beta = scale parameter: scalar

* low = lower limit: scalar.

*
*
*

OUTPUT
truncated gamma
stk ok koK ok ok ok ok ok ok ok ok o o ko ok ok ok ok oK ok ok ok ok ok ok ok ok o o kK ok ok sk sk ok ok ok ok ok ok ok ok ok o ok ok kKoK ok ok ok ok ok ok ok ok
*/
proc rndgamlo(nr, nc, alpha,beta,low);
local glow, p, a2, x;
a2 = alphaxones(nr,nc);
glow = cdfgam(alpha,betaxlow);
if glow >= 1; glow = 0.99999; endif;
p = rndu(ar,nc).*(1-glow) + glow;
x = gammaii(a2, p)./beta;
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x = (low - x).*x(x .< low) + x;
retp(x);
endp;

/*
ook stk ok ook sk ok ok sk o ok stk ok ook sk sk ok ok sk ook sk sk ok ok sk ook stk ok ok sk ook ok sk ook sk sk ok ok sk ok ok ok ok ok
RNDGAMUP. G

£(x) \propto I( x < up) x"{alpha-1}exp(-beta*x)

INPUT:
nr = number of rows

alpha = shape parameters of gamma: vector
beta = scale parameter: vector
low = lower limit: scalar.

OUTPUT
truncated gamma
stk ok ok o oK oK ok oK ok o oK o ok o oK ok o ok R K o sk ok oK oK o oK o K ok ok ok o oK ok o ok ok o ok sk o sk ok o ok oK o sk ok K ok o ok oK ok K ok ok
*/
proc rndgamup(nr, nc, alpha,beta,up);
local gup, p, a2, x;
a2 = alpha.*ones(nr,nc);
gup = cdfgam(alpha,betaxup);
if gup >= 1; gup = 0.99999; endif;
p = rndu(nr,nc) .*gup;
x = gammaii(a2, p)./beta;
x = (up - x).*(x .> up) + x;
retp(x);
endp;

*
*
*
*
*
*
* nc = number of columns
*
*
*
*
*
*
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3.1 Data Generation

/*

sk sk ok ke ok sk sk ok o sk sk ok sk ok ok sk ok sk e ok sk sk ok s ok sk ok sk ok sksk sk e ok sk sk ok sk ok sk sk ok e ok sk sk ok ok
*  GREG1.GSS

* Generates data for linear regression

sk sk sk sk sk sk sk sk sk ok sk ok ok o o o ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk o o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk o ok
*/
new;
nobs = 30; @ number of observations @

@ Define true regression parametes @
betat = {

2,

-1,

3,

0

3

@ Enter vector or matrices by rows, separated by commas @
sigmat = 2; @ true error std @
rankx = rows(betat); @ rows(x) = number of rows for x @
xdim = rankx-1; @ number of dependent variables @
xnames = 0 $+ "X" $+ ftocv(seqa(l,1,xdim),1,0);

@ Makes a character string that is X1, X2, ... @
ynames = "Y";
Xynames = xnames |ynames;

xdata = rndn(nobs,xdim); @ rndn -> N(0,1) random numbers @
xmat = ones(nobs,1) xdata; @ design matrix @
@ © pastes two matrics side-by-side @

@ Generate depenent observations @
ydata = xmat*betat + sigmat*rndn(nobs,1);
@ rndn(r,c) generates a r x ¢ matric of N(0,1) random deviates @

xydata = xdata"ydata;

/*

3k 5k 3k 5k >k 3k >k 3k 5k 3k 5k %k 5K >k 3k 5k 3k 5k >k 5k >k 3k 5k 3k 5k 5k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k 3k >k 3k 5k >k 5k >k >k >k %k 5k %k >k k >k k k

* Create a Gauss file. f1 is the file handle.

The Gauss file will be called "XYDATA."

The column will be named by the strings in the character array xyname.
“xyname means use the names in the character string.

0, 8 gives double precision real numbers.

* ¥ ¥ %
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3k 3k 3k 3k ok >k 3k Sk ok sk >k >k >k Sk 3k ok >k >k 3k 3k sk ok ok >k 3k Sk ok ok >k >k 3k Sk ok ok %k >k >k 3k sk ok %k %k k 5k ok >k %k %k 3k k ok k k >k

*/

create fl1 = xydata with “xynames, 0, 8;

/*

sk sk sk koo ok ok ok o o o o o ok ook ok ok sk sk sk sk sk sk sk o o o o o koo ok sk sk sk sk sk sk sk sk ok ok o o o ok
Next read data into the Gauss file by using the writer command.
f1 is the file handle defined in previous command.

xydata is the data matrix that we just created.

writer returns the number of rows read to f1.

If it is not rows(xydata), something bad happended.

skt ok stk ok ook sk sk sk ok sk sk sk ok sksk sk sk ok sksk sk sk ok sksk sk sk ok sksk sk ok sksk sk ok sksk sk sk ok

x/

if writer(f1,xydata) /= rows(xydata);

errorlog "Conversion of XYDATA to Gauss File did not work";
endif;

closeall f1;

* X X ¥ ¥

@ Plot Y versus X_i @

_plctrl = -1; @ Plot symbols and no lines @
for i0 (1,xdim,1); i = i0;

title(ynames $+ " versus " $+ xnames[i]);
xy(xdatal.,i] ,ydata); @ Plot y versus x_i @
endfor;

graphset; @ Return to default graphs @
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3.2 Bayesian Analysis

/*
Kk ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok K
(C) Copyright 1999, Peter Lenk. All Rights Reserved.
LINREG*.GSS
Does basic, linear regression model:

*
*
*
*
* Y = X*beta + epsilon
*  epsilon is N(O,sigma”2I)
* beta is N(b0,B0)

* sigma”2 is IG(r0/2,s0/2)
*

*

library pgraph, plbam;
stk sk sk sk sk sk sk sk sk sk sk ok ok kokok ok sk sk sk sk sk sk sk sk sk sk sk sk ke okok ok ok ok sk sk sk sk ok

*/

new;

inxy = "xydata"; Q@ Name of Gauss file with X,Y data @

outfile = "resultsl.dat"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @

/*

>k >k >k 3k 5k 5k ok 5k 5k 5k >k 5k %k %k %k >k >k 5k 5k 5k 5k >k %k >k %k %k %k >k >k >k >k >k %k %k %k >k k %

* Initialize parameters for MCMC
3K >k K 3K 3K 3K 3k 5k 5k 5k 5k 5k 5k 5k 5K K 5K 5K 5K 3K 3k 5k 5k 5k 5k 5k %k X K 5K 5K 5k 5k 5k %k %k %k %

*/
smcmc = 1000; @ number of iterations to save for analysis Q
skip =1; @ Save every skip iterations ©
nblow = 500; @ Initial transition iterations Q
nmcmc = nblow + skip*smcmc; @ total number of iteratioms Q
/*
ok sk o ok ok sk 3 ok K o ok ok K 3 ok 3 ok ok 3 ok 3k ok ok ok sk ok ok ok ok kK
* Get data
sk >k 3k 5k ok >k 3 5k ok sk 3k 5k ok ok 3k ok sk 3k 5k ok >k 3 5k ok >k 3k ok >k >k 3K >k >k k 3K >k >k 3k >k
*/
@ Input Gauss files @
open f1 = "inxy; @ Get Gauss file for X, Y data Q
@ Opens Gauss file & assigns file handle f1 @

xydata = readr (f1,rowsf(f1));

Q@ readr reads in Gauss file with file handle f1. Q

@ rowsf(fl) returns the number of rows in the Gauss file. Q

@ readr reads rowsf(f1) rows, which is the entir dataset. c]
ci = close(fl);
Xynames = setvars(inxy) ; @ Get the variable names that accompnay X, Y data @

ynames = xynames [rows (xynames)] ;
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Xnames = "Constant"|xynames[1:rows(xynames)-1];
xdim = cols(xydata)-1; @ number of x variables

@ cols(x) = # of columns of x
rankx = xdim + 1; @ number of beta parameters
nobs = rows(xydata) ; @ number of observations
xdata = ones(nobs, 1) “xydatal.,1:xdim];

@ design matrix, includes an intercept
~ sticks two matrices side by side
ones(i,j) = i x j matrix of ones
x[i,j] is the i,j element of x
x[.,j] is the column j of x
x[.,j1:j2] are columns jl to j2 of x
x[i,.] is row i of x

x[11:i2,.] are rows il to i2 of x

©@ 0 © © © © ©

ydata = xydatal.,cols(xydata)];

@ Sufficient statistics used in MCMC @

xtx = xdata’xdata;
xty = xdata’ydata;
@ Get MLE Q@

{bhat, bstd, sighat, rsquare} = regmle(xdata,ydata);

/*
ook sk ok ok ok ok o ok sk ok ok o ok sk sk ok s ok ok o ok sk ok ok ook ok sk ok ok ok ok ok

* Initialize Priors
sk ok ok sk ok ok ok o ok o ok ok ok ok ok ok ok o ok o ok o ok sk ok ok ok ok ok ok ok ok ok ok K

*/

@ Beta is N(ebO, vb0) @

eb0 = zeros(rankx,1); @ prior mean el

vbO = 100*eye (rankx) ; @ prior variance @
@eye(m) = m x m identity matrix @
@ Generally, use big variance c]

vib0 = invpd(vb0); @ invpd(x) = inverse of positive definite x

viebO = vibO*eb0; @ used in full conditional of beta Q@

Q@ Sigma2 is Inverted Gamma(r0/2, s0/2) @

@ E(1/sigma2) = r0/s0 and Var(1l/sigma2) = 2*r0/s0"2 @

@ Usually pick rO and sO small and positive @

r0 = 2; sO0 = 2;

rn = r0 + nobs; @ Posterior shape parameters Q@

/*

© © © ©

@ 0 0 oo o o 0
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3k 3k 3k 5k ok >k 3k Sk ok ok >k >k >k Sk 3k ok >k >k Sk Sk ok >k %k >k 3k sk ok ok %k 3k Sk ok ok %k %k >k k ok

* Initialize MCMC
ook ok ok ook sk o ok ok sk ok ok ok ok ok sk ook ok sk ok sk ok ok ok sk ok ok

*/

@ Initial parameters for MCMC @

@ Could initialize to MLE. Q

beta = zeros(rankx,1); @ regression coefficients @
sigma =1; @ error std Q@
sigma2 = sigma*sigma; @ error variance @

@ Define matrics for saving MCMC iterations @

betag = zeros(smcmc, rankx);

sigmag = zeros(smcmc,1);

/*

st ok sk sk sk sk sk sk ok ok ok ok ok ok o o ok ok ok ok sk sk sk sk sk sk ok ok ok sk sk ok ok ok ok ok ok
* Do MCMC

stk sk sk ok ok ok ok ok ok ok ok o o o ok ok ok ok sk sk sk ok sk sk ok ok ok ok ok ok ok o ok ok
*/

@ Do the initial transition period @
for i1 (1,nblow,1); imcmc = il;
call getbetasigma;

endfor;
for i1 (1,smcmc,1); imcmc = il; @ Save smcmc iterations ¢l
for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @
call getbetasigma;
endfor;
betag[imcmc,.] = beta’; @ Save regression coefficients @
sigmag[imcmc, .] = sigma; @ Save error std @
endfor;
/*

>k >k 3k 3K 3K 5k ok 5k 5k 3k >k >k %k %k >k >k >k 5k 5k 5k 5k 5k %k %k >k >k %k %k >k >k >k >k 5k 5k %k %k >k >k >k %k %k *k >k >k >k >k

* Analyze Results
Sk sk 3k 5k ok >k 3 oK ok sk 3k 5k ok ok 3K ok sk 3k 3k ok >k 3k ok ok >k 3k ok ok >k 3K 5k >k ok 3K ok >k 3k 5K ok >k 3k ok >k %k 3k >k

*/

@ Compute posterior means and std from MCMC iterations @
sigm = meanc (sigmag) ;

sigstd = stdc(sigmag);

bm = meanc (betag) ;

bs = stdc(betag);

yhat = xdatax*bm;
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cy
cy?2 cyl1,2]*cyl[1,2];

call outputanal;

@ Plot saved iterations against iterations number @

t = seqa(nblow+skip,skip,smcmc) ; @ saved iteration number @
title("Error STD versus Iteration");

xy(t,sigmag) ;

title("Coefficients versus Iteration");

xy(t,betag) ;

© Compute the posterior density of sigma over a grid @
{sgrid,fs} = pdfsignma;

@ Compute the marginal posterior density of beta_j over a grid @
{bgrid, fb} = pdfbeta;

title("Posterior Density of the Error STD");

xy(sgrid,fs);

for £fj (1,rankx,1); j = fj;
title("Posterior Density of Coefficient for " $+ xnames[j]);
xy (bgrid[.,jl,fbl.,j1);

endfor;

graphset; @ Return to default graphs @
end;

/*

stk sk sk sk sk sk sk ok ok sk sk sk ok ok feok ok ok sk sk sk sk sk sk sk sk ok sk sk ok ook ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok
*  REGMLE

*  Compute MLE for simple regression

*  INPUT:

* XDATA = Design matrix

* YDATA = Dependent Variable

*  OUTPUT:

* BHAT = MLE for regression coefficients
* BSTD = STD Error of beta

* Sighat = Error STD

* Rsqure = R-Squared

stk sk sk sk sk sk sk ok ok s sk s ok ok ok ok ok ok sk sk sk sk sk sk sk sk ok s sk sk ok ok ok sk sk sk sk sk sksk sk sk sk sk sk ok ok
*/

PROC (4) = regmle(x,y);
local xtx, xtxi, xty, b, yhat, resid, sse, s, sst, r2, bstd;
Xtx = xX’x;

corrx(ydata“yhat) ; @ Correlation between Y and Yhat @
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xtxi = invpd(xtx) ; @ Inverse of xtx @
xty =x’y;
b = xtxi*xty; @ MLE of beta Q
yhat = x*b; @ Predicted y values e
resid = y - yhat; @ Residuals @
sse = resid’resid; @Sums of Squares Error @
s = sqrt(sse/nobs); @ Error STD Q
sst = y - meanc(y);
sst = sst’sst; @ SS Total Q@
r2 =1 - sse/sst; @ R-squared @
bstd = sxsqrt(diag(xtxi));
retp(b,bstd, s,r2); @ Return to main program @
endp;

/*

skt ok sk skok sk sk sksk ok ok sk sk ok sksk sk sk ok sksk sk sk ok sk sk sk sk ok sksk sk ok sk sk ok

* GETBETASIGMA

*  Generate one MCMC random deviate of beta and sigma
*  No input or output.

* Data & values are passed through global variables
skt ok sk skok ok ok sk sk sk sk ok sk sk sk ok sksk sk sk ok sksk sk sk ok sk sk sk sk ok sksk sk ok sk sk ok

x/

PROC (0) = getbetasigma;

local ebn, vibn, vbn, vbnl2, sse, sn;

/*

skt ok ok sk skok ok sk sk sk ok ok sksksk ok sksk sk sk ok ok sk sk ok sksksk sk ok sk sksk sk ok skskok ok sk sk ok ok
* Generate beta:

*  beta is N(ebn, vbn);

*  vbn = (X’X/sigma2 + VbO~{-1} )~{-1} is posterior variance

*  ebn = vbnx(X’Y/sigma2 + Vb0~ {-1}*eb0) is posteriro mean

stk sk sk ok sk stk kst ke stk s kol sk sk sk sk stk kst etk sk ok sk sk ok sk stk stk ok sk ok

*/

ebn = xty/sigma2 + viebO; @ Posterior variance * ebn = posterior mean of beta
vibn = xtx/sigma2 + vibO0; @ Inverse of posterior variance of beta
vbn = invpd(vibn);

vbnl2 = chol(vbn);

ebn = vbn*ebn;

beta = ebn + vbni12’rndn(rankx,1);

/*

sk sk ok ke ok sk sk ok o ok sk sk ok o ok sk sk sk ke sk sk sk sk ke ok sk sk sk ok sk sk sk ok ok sk sk sk ok sksk sk ok sk sk sk sk ok ok sk ok ok
* Generate sigma2

*  sigma2 is IG(rn/2, sn/2)

* rn = r0 + nobs

* sn = s0 + (y - X#beta)’(y - Xxbeta)
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3k 3k 3k 5k ok >k 3k Sk ok sk >k >k >k Sk sk ok >k >k >k 3k sk ok ok >k 3k Sk ok ok >k >k 3k Sk ok ok %k >k Sk 5k sk ok >k >k Sk 5k ok >k %k >k 3k 3k ok ok %k >k k ok k k

*/

sse = ydata - xdataxbeta;
sse = sse’sse;

sn = s0 + sse;

sigma2 = sn/(2*rndgam(1,1,rn/2));
@ rndgam(i,j,alpha) generates a matrix of gamma random variables with @

@ shape parameters alpha and scale parameter beta = 1 c]
@ mean = alpha and variance = alpha e
sigma = sqrt(sigma2); @ Error STD Q
endp;

/*

stokok sk ok ook sk ok ok ok ok sk ok sk ok sk ok ok ok sk ok ok ok sk ok s ok sk ok sk ok ok sk ok s ok sk ok ook sk ok ok ok sk ok sk ok
* OUTPUTANAL

*  Does analysis of output and save some results
skt ok skokok ok sk sk ok ok ok stk ok stk ok sk ok sk sk ok stk ok sk ok sk skok ok ok skokok sk ok ok

x/
PROC (0) = outputanal;

local bout, sout, fmtnl, fmtn2, fmtsl, fmts2;

format 10,5; @ Default format Q
let fmtn1[1,3] = "*.*x1f" 10 5; @ Format for printing numeric variable @
let fmtn2[1,3] = "x.x1f" 10 O; @ Format for numeric variable, no decimal Q
let fmts1[1,3] = "-x.%s" 10 9; @ Format for alpha, left justify Q
let fmts2[1,3] = "*x.*xs" 10 9; @ Format for alpha, right justify @
output file = “outfile reset; @ outfile is the file handle for the output file
@ Route printed output to the defined by outfile

print "Results from LINREG1A.GAS";
print "Bayesian analysis of linear regression model using MCMC.";

print "Ouput file: " getpath(outfile); Q@ File assigned to file handle outfile @
datestr(date); @ Print the current data c]
print;

print "Model";

print "Y = Xsbeta + epsilon";
print "Number of observations
print "Number of independent variables =
print "Summary Statistics";

call sumstats(xynames,xydata,fmtsl,fmts2,fmtnl); @ Print summary statistics @
print;

print;

" nobs;
" xdim "(excluding the intercept).";

print "MLE Analysis";
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print;

print "Number of observations = " nobs;
print "Number of dependent variables = " xdim;
print;

print "R-Squared = " rsquare;

print "Multiple R = " sqrt(rsquare);

print "MLE Error STD = " sighat;

print;

print "Estimated Regression Coefficents";

sout = {"Variable" "MLE" "StdError"};

call outitle(sout,fmtsl,fmts2);
bout = xnames~bhat“bstd;
call outmat (bout,fmtsl,fmtnl);

CHAPTER 3. LINEAR REGRESSION

print "--————-------—— "

print;

print "MCMC Analysis";

print;

print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;
print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;

print "Number of observations = " nobs;

print "Number of dependent variables = " xdim " (excluding the intercept)";
@ Compute posterior means and std @

print;

print "Bayes R-Square = " cy2;

print "Bayes Multiple R = " cyl[1,2];

print;

print "Error Standard Deviation";

print "Posterior mean of sigma = " sigm;

print "Posterior STD of sigma = " sigstd;

print;

print "Regression Coefficients";

sout = {"Variable" "PostMean" "PostSTD"};

call outitle(sout,fmtsl,fmts2);

bout = xnames bm~bs;

call outmat(bout,fmtsl,fmtnl);
output off;

closeall;

endp;
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/%

stk sk sk sk sk sk sk sk sk sk ok ok o ok ok okok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok

* PDFSIGMA

*  Computes posterior density if sigma over a grid.
*  INPUT

* Uses global variables

*  QUTPUT

* sgrid = grid for the density

* fs = posterior pdf on sgrid
sk sk stk ok ok ok ok oo o o o ok ok ok ok ok sk sk sk sk sk sk ok ok ok o sk o o ok

x/

PROC (2) = pdfsigma;

local smax, smin, ms, sdelta, sgrid, scon, fs, s2grid, lnsgrid, iO, i,
sse, sn;

@ compute posterior density of sigma over a grid @

smax = maxc(sigmag) ;
@ maxc(x) returns maximum of x ¢}
smin = minc(sigmag) ;
@ minc(x) returns minimum of x @
@ Get grid for plotting @
ms = 100;
sdelta = (smax-smin)/ms;
sgrid = seqa(smin, sdelta, ms+1);
scon = 1n(2) - 1lnfact(1+rn/2);
fs = zeros(ms+1,1);
s2grid = sgrid.x*sgrid;

lnsgrid = 1ln(sgrid);
for i0 (1,smcmc,1); i = i0;
sse = ydata - xdatax(betagli,.]’);
sse = sse’sse;
sn = sO + sse;
fs fs + exp(scon + rn*ln(sn/2)/2 + (0.5 - rn)*lnsgrid - sn/(2*xs2grid));
endfor;
fs = fs/smcmc;
fs = fs/intsim(fs,sdelta); @ intsim is simpson’s integration @
retp(sgrid,fs);
endp;

/*

stk sk sk sk sk sk sk sk sk sk sk ok o ok ke okokok ok sk sk sk sk sk sk sk sk sk sk sk kokokok ok ok ok ok

* PDFBETA

*  Computes marginal posterior density of beta over a grid.
* These are marginal, univariate densities.
*  INPUT

* Uses globals.

39
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*  QUTPUT
* bgrid = each row corresponds to grid for beta_j
* fb = each row corresponds to marginal density for beta_j

Kk ok ok ok ok ok ok K ok ok ok K o ok ok sk ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok K
*/

PROC (2) = pdfbeta;

local mb, bgrid, bmax, bmin, bdelta, fj, j, fb, bcon, sigma, sigma2,
vibn, vbn, ebn, vbnd;

@ Plot posterior density for beta @

mb = 100;

bgrid = zeros(mb+1,rankx);
bmax = bm + 5%bs;

bmin = bm - 5%bs;

bdelta = (bmax - bmin)/mb;
for £fj (1,rankx,1) ; j = £fj;

bgrid[.,j] = seqa(bmin[j],bdeltaljl, mb+1);
endfor;

b zeros (mb+1,rankx) ;

bcon = -1n(2%pi)/2;

for £fj (1,smemc, 1); j = £j;
sigma = sigmagl[jl;
sigma2 = sigma”2;

vibn = (xtx/sigma2 + vib0);

vbn = invpd(vibn); @ Posterior variance given beta @

ebn = vbn*(xty/sigma2 + viebO); @ Posterior mean given beta (¢

vbnd = diag(vbn); @ diagonal elements Q

fb = fb + exp(bcon - 0.5*%1n(vbnd)’ - ((bgrid - ebn’)~2)./(2*vbnd’) );
endfor;

fb = fb/smcmc;
fb = fb./(intsim(fb,bdelta)’);

retp(bgrid, fb);

endp;

/*

st sk e o ok ok ok ok sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk ok ok ok ok sk sk ok ok k
* OUTITLE

* Prints header for columns of numbers.

*  INPUT

* a = character row vector of column names
* fmtsl = format for first column

* fmts2 = format for second column



3.2. BAYESIAN ANALYSIS

* OUTPUT

* None

ok ok ok ok sk ok 3 ok 3 ok 3k ok ok ok ok ok 3 ok 3 ok 3k ok sk ok ok ok ok 3 ok 3 ok 3 ok 3k ok ok ok ok ok ok K
*/

PROC (0) = outitle(a,fmtl,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);

mask = zeros(1,ncols);

fmt = fmt1| (ones(ncols-1,1) .*.fmt2);
flag = printfm(a,mask,fmt);

print;

endp;

/*

stk sk ok sk ok sk ok ok sk sk ok sk ok o sk sk s ok sk sk ok sk sk ok sk sk sk ok sk sk s ok sk sk ok sk sk sk ok
* QUTMAT
*  Outputs a matrix:

* (Character Vector) ™ (Numeric matrix);

* The entries in the numeric matrix have the same format
* INPUT

* bout = matrix to be printed

* fmts = format for string

* fmtn = format for numeric matrix

* QUTPUT

* None

ok sk o ok ok sk 3 ok K o ok ok ok 3 ok K ok ok 3 ok sk 3 ok K ok ok 3 ok 3k K ok K ok ok ok 3k k ok ok K

x/

PROC (0) = outmat (bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;

ncols = cols(bout);

nrows = rows (bout) ;

fmt = fmts| (ones(ncols-1,1) .*.fmtn);
mask = zeros(nrows, 1) “ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt) ;

print;

endp;

/*

sk sk sk sk sk sk sk sk sk sk sk sk ok o o sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok ke sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok
* SUMSTATS
*  Prints summary statistics for a data matrix

* INPUT

* names = charater vector of names
* data = data matrix

* fmtsi = format for string

* fmts2 = format for string
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* fmtn = format for numbers

* OUTPUT

* None

ook sk ok ok ook ok o ok sk ok ok o ok sk sk ok s ok sk o ok sk sk ok ook sk ok ok ok ook sk sk ok ok ok ook ok ok
x/

PROC (0) = sumstats(names,data,fmtsl,fmts2,fmtn);
local a, bout;

a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outitle(a,fmtsl,fmts2);
bout = names “meanc (data) “stdc(data) “minc(data) “maxc(data) ;

call outmat (bout,fmtsl,fmtn);
endp;
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3.3 Autocorrelated Errors

/*

stk sk sk sk sk sk sk sk sk sk ok ok o ok ke okokok ok sk sk sk sk sk sksk sk sk sk sk ko kokokok ok ok sk ok
ARE1.GSS

linear regression model + AR Errors

Y = Xxbeta + epsilon
epsilon_t = rho*epsilon_{t-1} + zeta_t
zeta_t iid N(O,sigma”2);

Priors

beta is N(b0,B0)
sigma”2 is IG(r0/2,s0/2)
rho is uniform on [-1,1];

Issue the command:

library pgraph, plbam;

before running.

sk sk stk ok ok ok o o o o ok ke ofe ok ok sk sk sk sk sk sk sk ok ok o sk sk ok ok ok ok ok sk sk sk ok ok ok

¥ X X X X X X X X X X X X X X X x

*/

new;

inxy = "xydata"; @ Name of Gauss file with X,Y data Q

outfile = "resultsl.dat"; @ Specify output file for saving results Q
@ outfile is a string variable that contains a file name @

/*

3k 5k 3k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k 5k >k 5k 5k 5k 5k >k 3k >k 5k 5k %k 5k %k 5k %k %k >k %k >k k >k k %k

* Initialize parameters for MCMC
sk sk o ke ok sk sk ok e ok sk sk ok s ok sk sk sk ke ok sk sk sk ke ok sk sk ok sk ok ok sk ok sk ok

*/

smcmc = 1000; @ number of iterations to save for analysis
skip =1; @ Save every skip iteratiomns

nblow = 1000; @ Initial transition iterations

nmcme = nblow + skip*smcmc; @ total number of iteratioms

/*

ok sk ok ok ok ok 3 ok sk ok ok ok sk sk ok ok ok o ok ok sk ok ok ok o ok ok ok ok ok
* Get data

ook stk ok ook sk ok ok sk ook sk ok ok ok sk ook ok ok ok sk ok ok ok ok ok ok
*/
xydata
62 0 0 9.300964847 s

= A
1
62.25 0 1 0 9.31031088 s

43
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96.5
96.75
97
97.25
97.5
97.75 0
98
98.25
98.5
98.75
99
99.25 0
99.5
99.75 0
100

o = O = O

= O
P OO R, OO0 PP, OO0OOKr OOOo

};

1 10.53096768
10.58920094
10.55873256
10.6049277

1 10.55745908
10.61346125
10.56329119
10.57158074

1 10.51375015
10.57867359
10.57846729
10.62615552

1 10.49607128
10.70802127

0 10.55840854

O OO O OO OO0 OO OoOOoOOo

Xynames = { IlYearll s lIQlII s I|Q2|I , IlQ3l|

ynames

xdim =

rankx =
xXnames =

nobs =

xmat
xdata =

ydata =

@ Sufficient statistics used in MCMC @
= xdata’xdata;

Xtx
xty =

xynames [rows (xynames)]

cols(xydata)-1;

xdim+1;

"Const" | xynames[1:xdim] ;

rows (xydata) ;

= xydatal.,1:xdim];

ones (nobs, 1) “xmat;

xydatal.,cols(xydata)]

xdata’ydata;

B

B

B
B
B
B
>

B

B

B

’

>

"Sales"};

@

© 0 0 0 0 o o ©

number of x variables
cols(x) = # of columns of x
number of beta parameters

number of observations

design matrix, includes an intercept
~ sticks two matrices side by side
ones(i,j) = i x j matrix of ones
x[i,j] is the i,j element of x
x[.,j] is the column j of x
x[.,j1:j2] are columns jl to j2 of x
x[i,.] is row i of x

x[i1:12,.] are rows il to i2 of x

@

©@ 0 0 0o o
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@ Get MLE @
{bhat, bstd, sighat, rsquare} = regmle(xdata,ydata);

/*
3k 3k 3k 3k 3k 3k 3k 3k 3K 3k 3K 3K 3K 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k %k %k 5k 5k >k >k >k sk >k >k >k k k k

* Initialize Priors
ok ok ok ok ok ok 3 ok 3 ok 3k ok sk ok ok ok ok ok 3 ok 3 ok 3k ok ok ok ok ok ok ok ok K oK K

*/
@ Beta is N(ebO, vb0O) @
eb0 = zeros(rankx,1); @ prior mean @
vbO = 100000*eye (rankx) ; @ prior variance @
@eye(m) = m x m identity matrix @
@ Generally, use big variance @
vib0 = invpd (vbO) ; @ invpd(x) = inverse of positive definite x @
vib0 = zeros(rankx,rankx) ;
viebO = vibO*eb0; @ used in full conditional of beta Q
@ E(1/sigma2) = r0/sO and Var(1/sigma2) = 2*r0/s0"2 (¢
@ Usually pick rO and sO small and positive c]
r0 = 0; sO = 0;
rn = r0 + nobs; @ Posterior shape parameters: Add one for the epsilon_0 @
/*

3k K 3K 3K 3K 3K 3k 5k 5k 5k 5k 5k 5k 5k %k K 3K 5K 5K 5k 3k 5k 5k 5k 5k %k %k XK K 3K 5k 5k 5k 5k %k %k %k %

* Initialize MCMC
ook ok ok ook sk o ok ok sk ook sk ok ok ok sk ook ok sk ok sk ok ok ok sk ok ok

*/

@ Initial parameters for MCMC @

@ Could initialize to MLE. Q

beta = zeros(rankx,1); @ regression coefficients Q
sigma =1; @ error std Q@
sigma2 = sigma*sigma; @ error variance @

rho = 0;

@ Define matrics for saving MCMC iterations @
betag = zeros(smcmc, rankx);
sigmag = zeros(smcmc,1);
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rhog = zeros(smcmc,1);

/*

koK ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok K
* Do MCMC

stk sk sk sk ok sk ok ok ok ok o o o o ok ok ok sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok
*/

@ Do the initial transition period @
icount = 0;

for il (1,nblow,1); imcmc = il;
call getall;
icount = icount + 1;
endfor;
for i1 (1,smcmc,1); imcmc = il; @ Save smcmc iterations
for i2 (1,skip,1); jmcmc = i2; Q@ Save every skip iterations
call getall;
icount = icount + 1;
endfor;
betag[imcmc,.] = beta’; @ Save regression coefficients
sigmag[imcmc, .] = sigma; @ Save error std
rhog[imcmc, .] = rho;
endfor;
/*

>k >k K 3K 3K 3K 3k 5k 5k 5k 3k %k 5k >k >k %k %k >k 3k 3k 5k 5k %k %k %k %k %k >k >k %k k%

* Analyze Results
skt ok skskok ok ok sk sk sk sk ok sk sk ok sk sksk sk ok sksk sk sk ok

*/

@ Compute posterior means and std from MCMC iterations @
sigm = meanc (sigmag) ;

sigstd = stdc(sigmag);

rhom = meanc (rhog) ;

rhos = stdc(rhog);

betam = meanc(betag) ;

betas = stdc(betag);

yhb = xdataxbetam;

cy = corrx(ydata~yhb); @ Correlation between Y and Yhat @
cy2 = cyl[1,2]*cy[1,2];

yhat = xdataxbhat; @ MLE prediction @
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rhat = ydata[2:nobs] - yhat[2:nobs]; @ One step ahead forecast residuals mle: no AR @
resid = ydata - yhb;

ypred = yhb[2:nobs] + rho*resid[1:nobs-1];

rhbc = ydata[2:nobs] - ypred; @ One step ahead forecast residuals Bayes Q@

PrmseML = sqrt(rhat’rhat/(nobs-1));
PrmseB = sqrt(resid’resid/(nobs-1));
PrmseBC = sqrt(rhbc’rhbc/ (nobs-1));

call outputanal;
@ Plot saved iterations against iterations number @

t = seqa(nblow+skip,skip,smcmc); Q@ saved iteration number @
@_plctrl = -1;0
_plwidth = 8;

title("Ford’s Quarterly Revenue vs Year");
xlabel("Year");
ylabel("Log Revenue");
_plegctl = { 1 7 62 10 };
/*************
[1] X,Y coordinate units: 1=plot coord, 2=inches, 3=Tek pixels
[2] Legend text font size. 1 <= size <= 9.
[3] X coordinate of lower left corner of legend box
[4] Y coordinate of lower left corner of legend box
Kok KKK KKK K KKK [

_plegstr = "Observed\000Bayes AR\OOOML IID";
xy(xdata[2:nobs,2] ,ydata[2:nobs] “ypred~yhat [2:nobs]) ;

title("Forecast Residuals vs Year");
ylabel ("Residuals") ;
xy(xdata[2:nobs,2], rhbc~rhat);

graphset;
title("Posterior Distribution of rho");

xlabel("rho");
{f,m,p} = hist(rhog,25);
graphset;
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end;

/*

sk sk ok ok o ok sk ok ok o sk ok ok o ok sk ok ok ok o koK ok sk o ok sk ok ok o ok

*  REGMLE

*  Compute MLE for simple regression
*  INPUT:

* XDATA = Design matrix

* YDATA = Dependent Variable
*  QUTPUT:

* BHAT = MLE for regression coefficients
* BSTD = STD Error of beta

* Sighat = Error STD

* Rsqure = R-Squared

sk sk ok ok o ok sk ok ok o ok sk ok ok o sk sk ok sk o sk sk ok sk o ok sk sk ok o ok

x/

PROC (4) = regmle(x,y);
local xtx, xtxi, xty, b, yhat, resid, sse, s, sst, r2, bstd;

xtx = x’Xx;
xtxi = invpd(xtx); @ Inverse of xtx
xty =x’y;
b = xtxi*xty; @ MLE of beta Q
yhat = x*b; @ Predicted y values
resid =y - yhat; @ Residuals Q
sse = resid’resid; @Sums of Squares Error
s = sqrt(sse/nobs); @ Error STD
sst = y - meanc(y);
sst = sst’sst; @ SS Total
r2 =1 - sse/sst; @ R-squared
bstd = s*sqrt(diag(xtxi));
retp(b,bstd, s,r2); @ Return to main program
endp;
/*
stk ok ok o oK oK ok K ok R oK ok ok oK ok o ok oK o sk ok o ok o oK sk ok ok ok oK ok ok K ok ok ok o
* GETALL

*  Generate one MCMC random deviate of beta and sigma
*  No input or output.

* Data & values are passed through global variables
stk ok skskok o ok sksksk sk ok sk sk sk ok sk sk ok sk sk sk sk ok sk sk sk sk ok sksk sk ok sk sk ok

x/

PROC (0) = getall;

¢]

ol
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local slmr, ystar, xstar, vibn, vibnl2, ebn,
resid, rstar, sn, v2, rhotop, rhobot, arho, brho, rv, rm;

simr = sqrt(1 - rho"2);

/*

stk skok ok ok sk sksk sk sk sk sk ok sk ok ok sk sk sk sk sk sk sk sk sk sk ko ok sk sk sk sk ok ok
* Generate beta:

* Do adjustment for AR Errors.

*  beta is N(ebn, vbn);
*

*

vbn = (X’X/sigma2 + Vb0~ {-1} )~{-1} is posterior variance
ebn = vbn*(X’Y/sigma2 + Vb0~{-1}*eb0) 1is posteriro mean
KA KKK KKK KK KKK KK oK KoKk KKK oK Kok Kook KoK oK oK

*/

ystar = ydata - rhox*(0|ydatal[l:nobs-1]);

xstar = xdata - rhox( zeros(l,rankx) | xdatall:nobs-1,.]);

xstar([1,.] = simr*xstar([1,.];

ystar[1] = slmr*xystar[1];

vibn = xstar’xstar/sigma2 + vibO;

vibnl2 = chol(vibn); @ vibnl12’vibnil2 = vibn

ebn = xstar’ystar/sigma2 + viebO;

beta = cholsol(ebn+vibnl12’rndn(rankx,1), vibnl2);
@ cholsol is efficient method of solving linear equations if you have chol decompostion
@ Suppose C’C = A @
@ Need to find x to solve A*x = Db ¢]
@ x = cholsol(b, C) does it c]

/*

3k 5k 3k 5k >k 3k >k 3k 5k k 5k >k 5k >k 5k >k %k 5k %k 5k %k 5k %k >k *k k k %k

* Generate sigma2

*  sigma2 is IG(rn/2, sn/2)

* rn = r0 + nobs

* sn = s0 + (y - Xsbeta)’(y - X*beta)
5K 5k 5K oK ok ok ok ok ok sk sk sk sk ok oK oK oK oK oK ok ok ok ok ok sk sk K

*/

resid = ydata - xdataxbeta;

rstar = resid - rho*x(0|resid[1:nobs-1]1);
rstar[1] = rstar[1]*simr;

sn = s0 + rstar’rstar;

sigma?2 sn/(2*rndgam(1,1,rn/2));
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sigma = sqrt(sigma2); @ Error STD Q

/*

ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok

Generate rho
Use Damien’s method to handle the determinant factor.
Truncated normal on -1 to 1

*
*
*
*
* (See program TEST2.GSS to test the following identities.)
* Smat = sigma2+*cor/(1-rho~2) where

* cor is Topelitz with (i,j) element rho {|i-jl}.

* Det|Smat|~"{-1/2} = sqrt((1 - rho~2))/(sigma2~{n/2})
KKK KKK KKKk K

*/

/*

ok K ok ok ok sk 3 ok 3 3k ok 3 ok K 3k ok 3 ok ok ok 3k K ok K

* To include the determinate:

* V < sqrt(1 - rho"2)

* - sqrt( 1 - V72 ) < rho < sqrt( 1 + V"2)
ok ko ok ok ok 3 ok K ok ok 3 ok K ok ok ok ok 3k ok K

*/

v2 = (1 - rho~2)*rndu(1,1);
rhotop = sqrt(l - v2);

rhobot = - rhotop;

@ Keep rho between -1 and 1 @
rhobot = maxc(rhobot|-1);

rhotop = minc(rhotop|1);

arho = resid[2:nobs-1] ’resid[2:nobs-1];
brho = resid[2:nobs]’resid[1:nobs-1];
rv = sigma2/arho;

rm = brho/arho;

rho = rndnab(1,1,rm,rv,rhobot,rhotop) ; @ truncated normal from -1 to 1 @
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endp;

/%

sk sk sk ok ok sk ok ok o sk sk ok sk o sk sk sk sk o ok sk sk ok sk ok sk ok sk ok sk ok ok

* OQUTPUTANAL

*  Does analysis of output and save some results
stk ok ok sk skok ok ok sk sk ok ok sk sk sk ok sk sk sk sk ok sksk sk ok sk sk ok

*/
PROC (0) = outputanal;

local bout, sout, fmtnl, fmtn2, fmtsl, fmts2;

format 10,5; @ Default format Q
let fmtni1[1,3] = "x.x1f" 10 5; @ Format for printing numeric variable @
let fmtn2[1,3] = "*.*x1f" 10 O; @ Format for numeric variable, no decimal Q
let fmts1[1,3] = "-*x.*s" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*xs" 10 9; @ Format for alpha, right justify @
output file = “outfile reset; @ outfile is the file handle for the output file
@ Route printed output to the defined by outfile

print "Results from ARE1.GSS";
print "Bayesian analysis of linear regression model using MCMC.";
print "AR Error Terms.";

print "Ouput file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data c]
print;

print "Model";

print "Y = Xxbeta + epsilon";

print "epsilon_t = rhoxepsilon_{t-1} + z_t";
print "Var(Z_t) = sigma~2";

print;

print "Number of observations = " nobs;

print "Number of independent variables = " xdim "(excluding the intercept).";
print "Summary Statistics";

call sumstats(xynames,xydata,fmtsl,fmts2,fmtnl); @ Print summary statistics @
print;

print;

print "---————------———— ";

print "MLE Analysis";

print;

print "Number of observations = " nobs;

print "Number of dependent variables = " xdim;

print;
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print "R-Squared = " rsquare;

print "Multiple R = " sqrt(rsquare);

print "One-Step Ahead Predictive RMSE = " PrmseML;
print;

print "MLE Error STD = " sighat;

print;

print "Estimated Regression Coefficents";

sout = {"Variable" "MLE" "StdError"};

call outitle(sout,fmtsl,fmts2);

bout = xnames ~bhat“bstd;

call outmat(bout,fmtsl,fmtnl);

print "--——-------——————— ";

print;

print "MCMC Analysis";

print;

print "Total number of MCMC iterations = " nmcmc;

print "Number of iterations used in the analysis = " smcmc;

print "Number in transition period = " nblow;

print "Number of iterations between saved iterations = " skip-1;

print;

print "Number of observations = " nobs;

print "Number of dependent variables = " xdim " (excluding the intercept)";
@ Compute posterior means and std @

print;

print "Bayes R-Square = " cy2;

print "Bayes Multiple R = " cyl[1,2];

print "One-Step Ahead Predictive RMS without AR Correction = " PrmseB;
print "One-Step Ahead Predictive RMSE Corrected for AR Errors = " PrmseBC;
print;

print "Error Standard Deviation";

print "Posterior mean of sigma = " sigm;

print "Posterior STD of sigma = " sigstd;

print;

print "Error Correlation";

print "Posterior mean of rho = " rhom;

print "Posterior STD of rho = " rhos;

print;

print "Regression Coefficients";

sout = {"Variable" "PostMean" "PostSTD"};

call outitle(sout,fmtsl,fmts2);

bout = xnames betam”betas;
call outmat (bout,fmtsl,fmtnl);
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output off;

closeall;

endp;

/*

sk ok sk o ok K ok 3k 3 ok K o ok 3 ok K 3 ok K ok sk 3 ok K o ok 3 ok K s ok 3 ok sk 3 ok 3k ok ok 3 ok sk 3k ok 3 ok ok oK
* QUTITLE

* Prints header for columns of numbers.

* INPUT

* a = character row vector of column names
* fmts1 = format for first column

* fmts2 = format for second column

* QUTPUT

* None

ok ok ok ok K ok ok 3 ok K sk ok 3 ok ok 3 ok K ok ok 3 ok K sk ok K ok ok ok ok sk ok ok ok ok sk sk ok ok K

x/

PROC (0) = outitle(a,fmtl,fmt2);
local mask, fmt, flag, ncols;

ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1l| (ones(ncols-1,1) .*.fmt2);

flag
print;
endp;
/*

ook sk ok ok K ok ok 3 ok K ok oK 3 ok K 3k ok K ok ok 3 ok sk sk ok 3 ok ok 3 ok ok ok K ok sk 3k ok ok ok ok 3k koK
* QUTMAT

* OQutputs a matrix:

printfm(a,mask,fmt);

* (Character Vector)~ (Numeric matrix);

* The entries in the numeric matrix have the same format
* INPUT

* bout = matrix to be printed

* fmts = format for string

* fmtn = format for numeric matrix

* QUTPUT

* None

Hok ok ok ok K ok ok 3 ok K ok ok K ok K 3 ok K ok ok 3 ok K ok K ok ok ok K ok ok ok ok ok 3k sk ok ok K

x/

PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols cols(bout);
rows (bout) ;

nrows
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fmt fmts| (ones(ncols-1,1) .*.fmtn);
mask = zeros(nrows,1) “ones(nrows,ncols-1);

flag = printfm(bout,mask,fmt) ;

print;

endp;

/*

sk ok sk ok ok K ok ok 3 ok K ok ok 3 ok K sk ok 3 ok sk 3 ok K ok ok 3 ok K sk ok 3 ok ok 3 ok K ok ok 3 ok sk 3k ok ok ok ok
* SUMSTATS

*  Prints summary statistics for a data matrix
* INPUT

* names = charater vector of names
* data = data matrix

* fmtsl = format for string

* fmts2 = format for string

* fmtn = format for numbers

* QUTPUT

* None

ok sk o ok K ok sk 3 ok K ok ok 3 ok 3k 3 ok K ok ok 3 ok K sk ok ok sk 3 ok K ok ok ok sk 3 ok ok ok ook kK ok
*/

PROC (0) = sumstats(names,data,fmtsl,fmts2,fmtn);
local a, bout;

a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outitle(a,fmtsl,fmts2);
bout = names “meanc(data) “stdc(data) “minc(data) “maxc(data);

call outmat(bout,fmtsl,fmtn);
endp;
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4.1 Data Generation

/*

stk sk sk sk sk sk sk sk sk sk sk o ok ok ke ok ok ok sk sk sk sk sk sk sk sk ok sk sk ke kokokok ok sk sk sk sk sk sk sk sk sk sk ok ok
GMULREG. GSS
Genenerates data for multiple regression analysis:

Y=X%B +U

Y is a nobs by mvar matrix
Rows of Y correspond to subjects.
Columns of Y correspond to variables.

X is a nobs by rankx design matrix

Rows of X correspond to subjects.

Columns of X corresponds to variables.

B is a rankx by mvar matrix of regression coefficients.
U is matrix normal.

The mean of U is zero.

The rows of U are independent of each other.

Each row of U has the same covariance matrix Sigma.

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* Y has a matrix normal distribution.

* Write Y as row vectors:

*Y={Y1, ..., Y_n’}

* so that Y_i is a mvar vector of observations for subject i.
*

* Define yv = vec(Y’) = {Y_1, Y.2, ..., Y_n}

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

yv is a nobs*mvar vector that stacks the observations for
each individual.

Then yv = vec(B’*X’) + vec(U’).

One can verify that

vec(B’*X’) = (X.*.I)xvec(B’)

where .*. is Kroneck product and

I is a mvar by mvar identity matrix.

Define beta = vec(B’), which is a rankx*mvar vector.

Put epsilon = vec(U’).

Then epsilon is a nobs*mvar vector.

It has a normal distriubtion with mean O and covariance matrix
Var(epsilon) = I.*.Sigma

where I is a nobs by nobs identity matrix.
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Then, we can write
yv = (X.x.I)*beta + epsilon.

It has density:
(2#pi) “{nobs*mvar/2) |Sigma| “{-nobs/2}
xexp( -0.5%(yv - (X.*.I)*beta)’(I.*.Sigma"{-1}) (yv - (X.*.I)*beta) )

Another way to write this is:

(2#pi) “{nobs*mvar/2) |Sigma| “{-nobs/2}

exp(-0.5*%tr( Sigma~{-1}(Y - X*B)’(Y-X*B) ) )

where "tr" is the trace of a matrix (sum of the diagonal elements).
sk sk o e ok sk sk ok e ok sk sk ok o ok sk ok sk ke ok sk sk sk ek sk sk sk ek sk sk ok sk ok sk ok sk ok sk sk sk e ok sk sk ok sk ok

*/

new;

flagplot = 1; @ 1 -> do a bunch of plots @

nobs = 100; @ Number of subjects @

mvar = 4; @ Y_{ij} is mvar vector. Eg: mvar brands @

rankx = 3; @ Rank of the design matrix Q@

xdim = rankx - 1; @ Number of X variables excludin the intercept @
pardim = nobs|mvar|rankx;

@ Define some variable names for Gauss file @

@ Use string arrays @

a = seqa(l,1,mvar);

ynames = 0 $+ "Y" $+ ftocv(a,1,0);

@ ftocv converts a number to the corresponding character @

a = seqa(l,1,xdim);

xnames = 0 $+ "X" $+ ftocv(a,1,0);

Xynames = xnames |ynames;

¥ X X X X X X X X X ¥ X

@ Generate X data. @
xdata = rndn(nobs,xdim); @ xdata does not have an intercept @
xmat = ones(nobs,1) xdata;

@ Define true error variance Sigma @

@ First do chol decomposition (Gauss does upper triangular) @
sigl2 = {

sigmat = sigl2’sigl2;
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@ Define true bmatt @
bmatt = {

12 -14,

-304 2,

2 .5 -46

};

@ Generate ydata Q@
ydata = xmat*bmatt + rndn(nobs,mvar)*sigl2;
@ Wasn’t that simple! @

xydata = xdata"ydata;

@ Create a Gauss file. f1 is the file handle. @

create fl1 = xydata with “xynames, 0, 8;

if writer(f1l,xydata) /= rows(xydata);

errorlog "Conversion of XYDATA to Gauss File did not work";
endif;

closeall f1;

save pardim = pardim;

save sigmat = sigmat;
save bmatt = bmatt;

if flagplot == 1;

_plctrl = -1; @ plot with symbols only @

for i0 (1,mvar,1); i = i0;

for £fj (1,xdim,1); j = £j;

title(" " $+ ynames[i] $+ " versus " $+ xnames[j]);
xy (xdatal.,j],ydatal.,il);

endfor;

endfor;

graphset;

endif;

end;
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4.2 Bayesian Analysis

/%

>k >k K 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k >k %k %k >k 5k 3K 3k 3k 3k %k %k 5k >k %k %k X K 5k 5K 5K 5k 3k %k %k %k >k %k %k X XK >k >k 5k %k % %k %k %k %

¥ X X X X X X K XK K X X X X X X X X X N K K K K X X X X X X X X X X K X ¥ ¥ X X x

MULREG.GSS
Analyzes data form multivariate regression model:

Y=X%B +U

Y is a nobs by mvar matrix
Rows of Y correspond to subjects.
Columns of Y correspond to variables.

X is a nobs by rankx design matrix
Rows of X correspond to subjects.
Columns of X corresponds to variables.

B is a rankx by mvar matrix of regression coefficients.

U is matrix normal.

The mean of U is zero.

The rows of U are independent of each other.

Each row of U has the same covariance matrix Sigma.

Prior:

vec(B’) is N(u0,v0);

Sigma is Inverted Wishart(£0,gO)
f0 is prior df.

g0 is prior scale matrix.

NOTES:

Y has a matrix normal distribution.

Write Y as row vectors:

y={v.1, ..., Yn’}

so that Y_i is a mvar vector of observations for subject i.

Define yv = vec(Y’) = {Y_1, Y_2, ..., Y_n}
yv is a nobs*mvar vector that stacks the observations for
each individual.

Then yv = vec(B’*X’) + vec(U’).
One can verify that

vec(B’*X’) = (X.*.I)*vec(B’)
where .*. is Kroneck product and
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I is a mvar by mvar identity matrix.
Define beta = vec(B’), which is a rankx*mvar vector.

Put epsilon = vec(U’).

Then epsilon is a nobs*mvar vector.

It has a normal distriubtion with mean O and covariance matrix
Var(epsilon) = I.*.Sigma

where I is a nobs by nobs identity matrix.

Then, we can write
yv = (X.*.I)*beta + epsilon.

*

*

*

*

*

*x

*

*

*

*

*

*

* It has density:

*x (2xpi) “{nobs*mvar/2) |Sigmal| ~{-nobs/2}
* *xexp( -0.5%(yv - (X.*.I)*beta)’(I.*.Sigma"{-1})(yv - (X.*.I)*beta) )
*
E S
*
*
*
*
*x
*
*
*
*

Another way to write this is:

(2%pi) “{nobs*mvar/2) |Sigma| ~{-nobs/2}
exp(-0.5*tr( Sigma~{-1}(Y - X*B)’(Y-X*B) ) )
where "tr" is the trace of a matrix (sum of the diagonal elements).

MATRIX Fun Fact

vec(B*C) = (I.*.B)*vec(C)

(C’.x.I)*vec(B)

(C’.x.B)*vec(I)

ok kKoK oK oK ok ok ok ok ok ok o o o ok ok kKoK oK ok ok ok ok ok ok ok ok o o ok ok ok kKoK ok ok ok ok ok ok ok ok ok o o K

*/

new;
outfile = "resultsl.dat"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @

inxy = "xydata"; @ Name of Gauss file with X,Y data @

flagtrue = 1; @ 1 -> knows true parameters from simulation @

/*

skt ok ok sk skok ok ok sk sk ok sk sk sk ok sksk sk sk ok ok sksk sk ok sksksk sk ok sk sksk sk ok skskok sk ok ok

* Initialize parameters for MCMC

sk sk ok o sk sk ok ok o sk sk ok ok ek sk ok sk o sk sk ok s ok ok sk ok sk e ok sk sk sk e ok sk sk ok sk ke ok sk sk ok o ok ok

*/

smcmc = 500; @ number of iterations to save for analysis @
skip = 1; @ Save every skip iterations @

nblow = 500; @ Initial transition iterations @

nmcmc = nblow + skip*smcmc; @ total number of iterations @
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/%

sk sk ok o ok sk sk ok o sk sk ok sk ek sk ok sk e ok sk sk ok s ok sk sk sk e ok sksk sk e ok sk sk ok sk ok sk sk ok ok ok

* Get data

stk ok ok sk sk ok ok sk sk sk sk ke ok sk sk sk ok ok sk sk sk sk ok ok sk sk ok ok sksk sk sk ok sk sksk sk ok sksk ok ok ok

*/

load pardim = pardim; @ pardim give nobs, mvar, rankx @
nobs = pardim[1];

mvar = pardim[2];

rankx = pardim[3]; @ rank of the design matrix @

xdim = rankx - 1; @ does not include intercept @

@ Input Gauss files @

open f1 = "inxy; @ Get Gauss file for X, Y data @

@ Opens Gauss file & assigns file handle f1 @

xydata = readr(f1,rowsf(f1));

@ readr reads in Gauss file with file handle f1. @

@ rowsf(f1l) returns the number of rows in the Gauss file. @
@ readr reads rowsf(f1l) rows, which is the entir dataset. @
ci = close(f1);

if not nobs == rows(xydata);

errorlog "Rows of data matrix are wrong: Check pardim.";
endif;

@ First xdim columns of xydata are the independent variables
@ Columns xdim+1 to xdim+mvar are the dependent variables @
if not xdim+mvar == cols(xydata);

errorlog "Columns of data matrix are wrong: Check pardim.";
endif;

xdata = ones(nobs, 1) xydatal.,1:xdim];

ydata = xydatal.,xdim+1:xdim+mvar] ;

yv = vecr(ydata);

@ Get the variable names that accompnay X, Y data @

xynames = setvars(inxy);

xnames = xynames [1:xdim];

xnames = "Constant'|xnames;
ynames = xynames [xdim+1:xdim+mvar] ;
/*

skt ok skskok sk ok sksksk sk ok sksk sk ok sksk sk sk ok skl sk sk ok sk sk sk ok stk sk ok sksk ok sk o ok
* Compute MLE

stk ok sk sk ok sk sk sk sk stk ks ok sk sk ok sk sk sk sk sk ks ks ok sk ok sk sk ok ok
*/

xtx = xdata’xdata;

xtxi = invpd(xtx);

xty = xdata’ydata;

bhat = xtxi*xty; @ bhat = (X’X)"{-1}X’Y @

c]

65
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resid = ydata - xdataxbhat;

sighat = resid’resid/nobs;

@ Define betah = vec(bhat’) @

@ The betah = [ (X’X)"{-1}X’> .*x. I]* vec(Y’) @

@ Var(betah) = (X’X)"{-1} .*. Sigma @
bhatvar = xtxi .*. sighat;

bstderr = sqrt( reshape( diag(bhatvar) ,rankx,mvar) );

/*
ook sk ok ok ok ok o ok ok ok o ok sk sk ok s ok ok o ok sk sk ok ok ok s ok ok ok ok sk ok ok ok ok o ok ok sk ok ok K

* Initialize Priors
sk ok ok sk ok ok ok o ok o ok ok ok ok ok ok ok ok o ok s ok o ok sk ok ok ok ok ok s ok o ok ok ok ok ok ok ok ook o ok ok ok kK

*/

@ Prior bmat is N(uO,v0) @
@ put beta = vec(bmat’) @
bdim = rankx*mvar;

u0 = zeros(bdim,1);

v0 = 100*eye(bdim); @ thdim = rankx*nparz @
vO0i = invpd(vO0); @ used in updating theta @
v0iu0 = v0i*u0; @ used in updating theta @

@ Prior for sigma is IW(f0, g0) @
fO0 = mvar+2; fOn = fO + nobs;
g0i = eye(mvar);

/*
ook stk ok ook sk ok ok ok sk ok ok stk ok ook sk ok ok ok sk ook sk sk ok ok sk ook ok ok ok sk ok ok ok ko ok

* Initialize MCMC
stk skok ok o sk sk sk sk sk sk sk ok sk ok ok ok sk sk sk sk sk sk sk sk sk ok ko sk sk sk sk sk sk sk ok sk ok ok ok sk sk ok ok

*/
bmat = zeros(rankx,mvar);
beta = vecr(bmat);

sigma = eye(mvar) ;
sigmai = invpd(sigma);

@ Define data structures for saving iterates & computing posterior means & std @
betag = zeros(smcmc,bdim) ;

¢ = mvarx(mvar+1)/2;

sigmag = zeros(smcmc,c); @ save iterations for sigma @

/*

3k >k K 3K 3K 3K 3k 3k 5k 3k 3k 5k 5k 5k %k %k >k 3K 3K 3k 3k 3k 5k %k 5k %k %k %k % K 3K 5K 5K 5k 5k %k %k %k >k %k %k X K K 3k >k %k >k k k
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* Do MCMC

st ok sk sk sk sk ok sk ok ok ok ok o o o ke ok ok ok sk sk sk sk sk sk sk ok ok o o o o ok ok ok ok sk sk sk sk sk sk sk ok ok ok o o ok

*/

@ Do the initial transition period @

for i1l (1,nblow,1); imcmc = il;

{bmat, sigma, sigmai} = getmulreg(ydata,xdata,xtx,bmat,sigma,sigmai,v0i,v0iu0,f0On,g0i);
endfor;

for i1 (1,smcmc,1); imcmc = il; @ Save smcmc iterations @

for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @

{bmat, sigma, sigmai} = getmulreg(ydata,xdata,xtx,bmat,sigma,sigmai,v0i,v0iu0,f0On,g0i);
endfor;

@ Save the random deviate. @

betag[imcme, .] = vecr(bmat)’;

sigmaglimcmc, .] = vech(sigma)’;

@ vech({1 23, 456, 789}) ={1, 45, 789} @

@ xpnd is the inverse operator of vech @

endfor;

/*

sk sk sk sk sk sk sk sk sk sk sk sk o o o sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok
* Compute Posterior Means and STD

stk sk sk ok sk sk sk sk sk sk s o ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ko okok ok sk sk sk sk sk sk sk sk sk sk sk ok

*/

betam = meanc(betag);

bmatm = reshape(betam,rankx,mvar) ;

sigmam = xpnd(meanc(sigmag)); @ xpnd reconstructs symmetric matrix @

betas = stdc(betag);
bmats reshape (betas,rankx,mvar) ;
sigmas = xpnd(stdc(sigmag));

@ Compute predictive value of Y_{ij} @
yhat = xdataxbmatm;

resid = ydata - yhat;

stderr = sqrt(diag( resid’resid/nobs) );
@ Pick out each dimension of Y_{ij} and compute fit statistics @
multir = zeros(mvar,1);

rsquare = zeros(mvar,1);

for fm (1,mvar,1); m = fm;

cm = corrx(ydatal.,m] yhat[.,m]);
multir[m] = cm([1,2];

rsquare[m] = cm[1,2]7°2;

endfor;
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/*

sk sk sk sk ok ok oo o s s ok ke ok ok ok sk sk stk sk sk sk sk ok o sk s ok ok ok ok sk sk sk sk sk sk sk ok ok ok
* Do some output

3k 5k 3k 5k >k 3k >k 5k 5k 5k 5k >k 5K >k 3k >k 3k 5k >k 5k >k 5k 5k 5k 5k %k 5k >k 5k >k 5k 5k 5k 5k %k 5k >k >k >k %k 5k %k >k % %k k
*/

call outputanal;

@ Plot saved iterations against iterations number @

t = seqa(nblow+skip,skip,smcmc); @ saved iteration number @
title("beta = vec(B’) versus Iteration");

xy(t,betag) ;

title("Error Variance versus Iteration");

xy(t,sigmag) ;

graphset;

end;

/*

sk sk sk sk sk sk sk sk sk sk sk ok ok o o sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk o ke ke sk sk sk sk sk sk sk sk sk sk sk sk ok
* GETMULREG

* Generate multivariate regression parameters.
* Ydata = Xdatax*bmat + epsilon

*

* INPUT

* ydata = dependent variables

* xdata = independet variables

* xtx = xdata’xdata

*

* bmat = current value of coefficient matrix

* sigma = current value of covariance matrix

* sigmai = its inverse

* vO0i = prior precisions for bmat

* vO0iu0 = prior precision*prior mean for bmat

* fOn = posterior df for sigma

* g0i = prior scaling matrix inverse for sigma

OUTPUT

bmat = updated rankx x mvar coefficient matrix
sigma = updated variance

sigmai = updated inverse of sigma

* ¥ ¥ X* X %
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* Calling Statement:

{bmat, sigma, sigmai} = getmulreg(ydata,xdata,xtx,bmat,sigma,sigmai,v0i,v0iu0,fOn,g0i);
stk sk sk sk ok ok ok ok ok ok ok o o o ok ok ok sk sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok

*/

PROC (3) = getmulreg(ydata,xdata,xtx,bmat,sigma,sigmai,v0i,v0iu0,fOn,g0i);

local vbl2, ubn, beta, bdim, resid, gni, gn, rankx, mvar;

rankx = rows(bmat);
mvar = cols(ydata);
bdim = rankx*mvar;

/*

sk stk o ok stk ok s sk sk sk ok sk sk sk ok sk sk sk s ok stk sk sk sk sk sk o ok skok sk ok

* Generate bmat from N_{rankx x mvar}(M,v)

* beta = vec(bmat’)

* beta is N(u,V) whee u = vec(M’);

* V= (X°X.*.Sigma~{-1} + V_0"{-1})~{-1}

* u = Vk( (X’.*.8igma"{-1})*vec(Y’) + V_0"{-1}u_0 )
sk stk o s ok stk o sk ok sk ok sk sk sk ok sk ke ok sk sk sk e ok stk s s ok stk sk sk ok ks ok sk o ok skok

*/

vb12 = chol(xtx.*.sigmai + v0i);

ubn = ( (xdata’).*.sigmai )*vecr(ydata) + vO0iuO;
beta = cholsol(ubn + vbl2’rndn(bdim,1), vbil2);
bmat = reshape(beta,rankx,mvar) ;

/*

Kok o KoK o KoK oK oK K ok oK oK K oK KoK o KoK ok KoK ok oK oK ok oK ok K ok Kok

* Generate Sigma

* Sigma“{-1} is Wishart df = fOn, scale matrix = gn
stk ok ok sk s ok sk ok ok sk sk ok ke skok sk sk ok sk s ok sk sk ok sk sk sk ok ke skok sk ok ok

*/

resid = ydata - xdataxbmat;

gni = g0i + resid’resid;

gn = invpd(gni);

{sigmai, sigma} = wishart(mvar,fOn,gn);

retp(bmat,sigma,sigmai);
endp;

/*

kokokok ok skokok ok ok sk okokok ok okokok ok sk ko sk ok skokok ok sk okokok sk okokok ok skokok ok skokok ok ok skskok ok ok skokok ok skokok ok sk ko ok
* OUTPUTANAL

* Does analysis of output and save some results

stk o ok stk ok o sk sk ok o ok sk ok s ok stk ok sk sk sk ok sk ok sk ok ok stk ok sk ok sk sk ok ok stk ok ok stk sk ok sk o ok skok ok ok ok skok
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*/

PROC (0) = outputanal;

format 10,5;

local bout, sout, ebeta, sbeta, cb, rmse, fmtnl, fmtn2, fmtsl, fmts2, a,b,
bmatt, sigmat;

if flagtrue == 1; @ Did a simulation. Get true parameters Q@
load bmatt = bmatt;

load sigmat = sigmat;

endif;

let fmtni[1,3]
let fmtn2[1,3]

"x . x1f" 10 5; @ Format for printing numeric variable @
"x x]1f" 10 O; @ Format for numeric variable, no decimal @

let fmtsi[1,3] "-x.xs" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*xs" 10 9; @ Format for alpha, right justify @
format 10,5; @ Default pring format @

output file = “outfile reset; @ outfile is the file handle for the output file @
@ Route printed output to the defined by outfile @

print "Results from MULRegl.GSS";

print "Bayesian Multivariate Regression using MCMC.";

print "Y = XxB + U";

print "U is matrix normal, mean O, Var(U) = I .*. Sigma";

print;

print "Ouput file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @

print;

print;

print "--------- - - - - - —— - "
print;

print "MCMC Analysis";

print;

print "Total number of MCMC iterations = " nmcmc;

print "Number of iterations used in the analysis = " smcmc;

print "Number in transition period = " nblow;

print "Number of iterations between saved iterations = " skip-1;
print;

print "--——-——-——— "
print "Number of observations = " nobs;

print "Number of dependent variables = " mvar;

print "Number of independnet variables = " rankx "

(including intercept)";



4.2. BAYESIAN ANALYSIS

print;

print;

print "Y = XxB + U";

print;

print " Summary Statistics for Y";

call sumstats(ynames,ydata,fmtsl,fmts2,fmtnl);

print;

print " Summary Statistics for X";

call sumstats(xnames[2:rankx],xdatal.,2:rankx],fmtsl,fmts2,fmtnl);
print;

print;

print "---———----- ";
print "Statistics of Fit Measures for each Dimension";

sout = {"Variable" "Multi-R" "R-Sqr" "ErrorSTD"};

call outitle(sout,fmtsl,fmts2);

bout = ynames"multir~rsquare”stderr;
call outmat (bout,fmtsl,fmtnl);

print;

print "--------————m ";
print;

print "Estimated Regression Coefficients";

sout = " "7 (ynames’);

if flagtrue == 1;

print "True B";

call outitle(sout,fmtsl,fmts2);
bout = xnames~bmatt;

call outmat (bout,fmtsl,fmtnl);

print;

endif;

print "ML Estimates of B";

call outitle(sout,fmtsl,fmts2);
bout = xnames~bhat;

call outmat (bout,fmtsl,fmtnl);

print;

print "STD Error of MLE of B";

call outitle(sout,fmtsl,fmts2);
bout = xnames”~bstderr;

call outmat (bout,fmtsl,fmtnl);

print;

if flagtrue == 1;

print "True B";

call outitle(sout,fmtsl,fmts2);
bout = xnames~bmatt;

call outmat (bout,fmtsl,fmtnl);
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print;

endif;

print "Bayes Estimates of B";
print "Posterior Mean of B";
print outitle(sout,fmtsl,fmts2);
bout = xnames~bmatm;

call outmat (bout,fmtsl,fmtnl);
print;

print "Posterior STD of B";
call outitle(sout,fmtsl,fmts2);
bout = xnames~bmats;

call outmat (bout,fmtsl,fmtnl);
print;

print;
print "-------—1—m11-"1-1---——"1-"1---—--——-—-————— "

print "Estimation of the error covariance Sigam";
sout = " "7 (ynames’);

if flagtrue == 1;

print "True Sigma";

call outitle(sout,fmtsl,fmts2);
bout = ynames“sigmat;

call outmat(bout,fmtsl,fmtnl);
print;

endif;

print "ML Estimate of Sigma";
call outitle(sout,fmtsl,fmts2);
bout = ynames“sighat;

call outmat(bout,fmtsl,fmtnl);
print;

print "Bayes Estimates of Sigma";
print "Posterior Mean of Sigma";
call outitle(sout,fmtsl,fmts2);
bout = ynames”sigmam;

call outmat(bout,fmtsl,fmtnl);
print;

print "Posterior STD of Sigma";
call outitle(sout,fmtsl,fmts2);
bout = ynames“sigmas;

call outmat(bout,fmtsl,fmtnl);
print;

print " ==";
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output off;

closeall;

endp;

/*

sk ok K o ok K ok sk 3 ok K o ok 3 ok K 3 ok K ok ok 3 ok K 3 ok 3 ok sk 3 ok 3k ok ok 3 ok sk 3 ok 3 ok 3 ok sk 3 ok 3 ok ok 3 ok K 3 ok K ok sk K ok 3k ok ok ok
* QUTITLE

* Prints header for columns of numbers.

* INPUT

* a = character row vector of column names

* fmtsl = format for first column

* fmts2 = format for second column

* QUTPUT

* None

Kok sk ok ok K ok ok 3 ok sk 3k ok ok ok 3 ok K sk ok 3 ok K s ok K ok ok 3 ok sk 3k ok K ok ok 3 ok sk sk ok ok ok 3 ok K sk ok 3 ok ok 3 ok 3k ok ok ok K ok o koK
x/

PROC (0) = outitle(a,fmtl,fmt2);
local mask, fmt, flag, ncols;

ncols = cols(a);

mask = zeros(1l,ncols);

fmt = fmt1| (ones(ncols-1,1) .*.fmt2);
flag = printfm(a,mask,fmt);

print;

endp;

/*

sk ok sk ok ok K ok ok 3 ok K ok ok 3 ok oK 3 ok K ok ok 3 ok K 3k ok K ok ok 3 ok sk sk ok ok ok 3 ok sk sk ok K ok ok 3 ok sk sk ok 3 ok ok ok K sk ok ok K K ok
* QUTMAT

* OQutputs a matrix:

* (Character Vector)” (Numeric matrix);

* The entries in the numeric matrix have the same format

* INPUT

* bout = matrix to be printed

* fmts = format for string

* fmtn = format for numeric matrix

* QUTPUT

* None

Kok sk o ok K ok ok 3 ok K ok ok K ok sk 3 ok K ok ok K ok sk 3 ok K ok ok 3 ok sk 3k ok K ok ok 3 ok sk 3k ok K ok ok 3 ok sk sk ok ok sk ok K sk ok ok ok ook 3k ok
x/

PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols cols(bout);
rows (bout) ;

nrows
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fmt = fmts| (ones(ncols-1,1) .*.fmtn);

mask = zeros(nrows,1) “ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);

print;

endp;

/*

>k >k K 3K 3K 3K 3k 3k 5k 3k 3k 3k 5k >k %k %k >k 3k 3K 3k 3k 3k 3k 3k 5k %k %k %k %k %k 5k 3k 3K 5k 3k 3k %k %k 5k >k %k %k XK 3K 3K 5K 5k 5k 5k %k %k >k >k >k %k Xk %k >k > 3k >k %k %k >k k

* SUMSTATS

* Prints summary statistics for a data matrix
* INPUT

* names = charater vector of names

* data = data matrix

* fmtsl = format for string

* fmts2 = format for string

* fmtn = format for numbers

* OUTPUT

* None

stk sk sk sk sk sk sk sk sk s sk s s ok ke ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk s ke ofe ok ok sk sk sk sk sk sk sk sk sk ok s sk ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk
*/

PROC (0) = sumstats(names,data,fmtsl,fmts2,fmtn);

local a, bout;

a = {"Variable" "Mean" "STD" "MIN" "MAX"};

call outitle(a,fmtsl,fmts2);

bout = names~meanc(data) “stdc(data) “minc(data) “maxc(data);
call outmat(bout,fmtsl,fmtn);

endp;
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5.1 Data Generation

/*

sk ok ok ok ok ok ok ok sk ok ko ok ok ok ok ok ok ok sk ok sk ok ko o ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok K K
GHBREG2.GSS

Generats data for HB Regression Model

Y_i = X_ixbeta_i + epsilon_i

beta_i = Theta’Z_i + delta_i

B = ZxTheta + D

epsilon_i is N(0,sigma2*I)

delta_i is N(O,Lambda)

*--->Different Design Matrices

3k 3k 3k 5k 3k 3k 5k 3k 5k 5k 5k 3k %k 5K 5k 3k 3k 5k 3k >k 5k 3k %k 3k 5k 3k %k 5k 5k 3k >k 5k 3k %k 5k 3k %k %k 5k %k %k >k >k k kK k
x/

new;

nobs = 100; @ Number of subjects @

yrows = 5 + floor(10*rndu(nobs,1)); @ Number of observations per subject @

ntot = sumc(yrows) ;

sigmat = 5; @ True error STD @

* X X X ¥ X x

1bd12 = {
5.5 -1 .1,
-2 0,

3 2,
01

“ O O O
O O

)

1bd12 = 1bd12/2;
lambdat = 1bd12’1bd12;

thetat = {

2 -1 -3 4,

-1 02 -3,

3210

};

rankx = rows(lambdat) ;
rankz = rows(thetat);
@ Get pointer into stacked xy matrices @
b = cumsumc(yrows) ;

a 1] (1+b[1:nobs-1]);
iptxy = a"b;

xdim = rankx - 1;

zdim rankz - 1;

a = seqa(l,1,xdim);

xnames = 0 $+ "X " $+ ftocv(a,1,0);
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a = seqa(l,1,zdim);
znames = 0 $+ "Z " $+ ftocv(a,1,0);
xynames = xnames|"Y ";

xdata = rndn(ntot,xdim) ;

xmat = ones(ntot,1) xdata;

zdata = rndn(nobs,zdim);

zmat = ones(nobs,1) zdata;

betat = zmat*thetat + rndn(nobs,rankx)*1bd12;
ydata = zeros(ntot,1);

Q@ Generate and store y data @

for i0 (1,nobs,1); i = i0;

xi = xmat[iptxyl[i,1]:iptxy[i,2],.];

yi = xi*(betat[i,.]’) + sigmat*rndn(yrows[i],1);
ydataliptxy[i,1]:iptxy[i,2],.]1 = yi;

endfor;

xydata = xdata"ydata;

/*

sH ok sk o ok K ok sk 3 ok K ok ok ok sk 3 ok K ok ok 3 ok sk 3 ok K ok ok 3 ok K 3k ok K ok ok 3 ok 3k 3k ok ok ok ok K ok ok ook kK
* Create & Read a Gauss file. f£f1 is the file handle.

s ok K o ok ok ok 3 ok 3 3k ok 3 ok sk 3 ok K 3k ok 3 ok sk 3 ok 3 oK ok 3 ok sk 3k ok 3 3k ok 3 ok 3k 3k ok 3 ok ok 3 ok 3k 3k ok 3 ok ok K

*/

create f1 = xydata with “xynames, 0, 8;

if writer(f1,xydata) /= rows(xydata);

errorlog "Conversion of XYDATA to Gauss File did not work";
endif;

closeall f1;

create f1 = zdata with “znames, 0, 8;

if writer(f1,zdata) /= rows(zdata);

errorlog "Conversion of ZDATA to GAUSS File did not work";
endif;

closeall f1;

save yrows = yIOWS;

save sigmat = sigmat;

save betat = betat;

save thetat = thetat;

save lambdat = lambdat;

7
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5.2 Bayesian Analysis

/*

stk sk sk sk sk ok ok sk ok ok ok o o o o ok ok ok sk sk sk sk sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk sk sk sk ok ok ok ok o
* HBREG2.GSS

* HB Linear Regression Model.

* Allows for subject level design matrices.

*

* Y_i = X_ixbeta_i + epsilon_i for i = 1,..., nsub
* epsilon_i is N(O,sigma”2 I)

*

* beta_i = Theta’z_i + delta_i

* delta_i is N(0,Lambda)

* B = Z*Theta + Delta

*

* PRIORS

* sigma”2 is Inverted Gamma(r0/2,s0/2)

* Theta is maxtrix normal (u0,vO0).

* That is, vec(Theta) is N(vec(u0),vO0).

* vec(theta) stacks the columns of theta.

* Lambda is Inverted Wishart(f0, g0)

>k >k 5k 3k 5k 5k ok ok 5k 5k 5k %k >k %k >k >k >k >k 5k 5k 5k 5k >k %k >k %k %k %k >k >k >k 5k 5k 5k >k >k >k >k >k %k %k >k >k >k >k >k >k >k %k >k k

*/

new;

outfile = "result.res"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @

inxy = "xydata"; @ Name of Gauss file with X,Y data @

inz = "zdata"; @ Name of Gauss file with Z data @

flagtrue = 1; @ 1 -> knows true parameters from simulation @
/*

stk sk sk sk sk ok ok ok s sk sk ok ok ke ok ok ok sk sk sk sk sk sk sk sk ok s sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok

* Initialize parameters for MCMC

sk sk 3k 3k ok sk 3 ok ok sk 3k ok ok sk 3K ok >k 3k 3k ok sk 3k ok ok ok 3K ok sk 3k 3k ok ok 3k 3K ok >k 3k 5k >k >k 3k ok >k >k 3k >k >k 5k 3k K

*/

smecmc = 100; @ number of iterations to save for analysis @
skip = 1; @ Save every skip iterations @

nblow = 100; @ Initial transition iterations @

nmcmc = nblow + skip*smcmc; @ total number of iterations @

/*

ok ok ok ok ok 3 ok 3 ok 3 oK ok ok ok ok ok 3 ok 3 ok 3k ok 3k ok 3k ok ok ok 3 ok 3 ok 3k oK 3k ok sk ok ok ok ok 3k ok kK
* Get data

ok ok ok ok K ok 3 oK 3 ok 3k oK 3k ok 3k K ok 3 oK 3 ok 3k oK 3k ok 3k ok ok K oK K ok 3 oK 3k oK 3k ok 3k ok ok K ok K ok K oK K oK

*/
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@ Input Gauss files @

open f1 = “inxy; @ Get Gauss file for X, Y data @

@ Opens Gauss file & assigns file handle f1 @

xydata = readr(f1l,rowsf(f1));

@ readr reads in Gauss file with file handle f1. @

@ rowsf(f1) returns the number of rows in the Gauss file. @
@ readr reads rowsf(fl) rows, which is the entir dataset. @
ci = close(f1);

xynames = setvars(inxy); @ Get the variable names that accompnay X, Y data @
ynames = xynames [rows (xynames)] ;

xnames = "CS"|xynames[1:rows(xynames)-1];

@ Last row of xydata is Y. @
xdata = xydatal.,l:cols(xydata)-1]; @ Get independent variables @
ydata = xydatal.,cols(xydata)]; @ Get dependent variable @

open fl1 = “inz;

zdata = readr(f1,rowsf(f1));
ci = close(f1);

znames = setvars(inz);
znames = "CS"|znames;

loadm yrows = yrows; @ yrows gives the number of observations per subject @
nsub = rows(yrows); @ Number of subjects. @

ntot = sumc(yrows); @ Total number of observations. @

@ Create pointer based on yrows to access xdata and ydata @

b = cumsumc(yrows); @ cumsumc is the cumulative sum of yrows @

a = 1|(1+b[1:nsub-1]);

iptxy = a"b;

@ To use iptxy to get the design matrix and data for subject i: @

@ x_i = xdataliptxyli,1]:iptxyl[i,2],.] @

Q@ y_i = ydataliptxyl[i,1]:iptxy[i,2]]1 @

xdim = cols(xdata);

zdim = cols(zdata);

@ add intercepts to xdata and zdata @

xdata = ones(ntot,1) xdata;

zdata = ones(nsub,1) “zdata;

rankx = cols(xdata);

rankz = cols(zdata);

thdim = rankx*rankz; @ dimension of vec(theta) @

@ Compute some sufficient statistics @
@ Get point to access stacked matrices of xtx, xtxi, and xty @
b = seqa(rankx,rankx,nsub);
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a = 1|(1+b[1:nsub-1]);

iptxt = a"b;

bpool = invpd(xdata’xdata)*xdata’ydata;
xtx = zeros(rankx*nsub,rankx) ;

xty = zeros(rankx*nsub,1);

bhat = zeros(nsub,rankx); @ MLE of beta_i @
sse = 0;

for i0 (1,nsub,1); i = i0;

xi = xdataliptxyli,1]:iptxyli,2],.];

yi = ydataliptxyl[i,1]:iptxyl[i,2],.];
xitxi = xi’xi;

xityi = xi’yi;
xtx[iptxt[i,1]:iptxt[i,2],.] = xitxi;
xtyliptxt[i,1]:iptxt[i,2],.] = xityi;
if rank(xitxi) >= rankx; @ Got an inverse Q@
xitxii = invpd(xitxi);

bhat[i,.] = (xitxiixxityi)’;

else; @ Use the pooled estimate Q@
bhat[i,.] = bpool’;

endif;

resid = yi - xix(bhat[i,.]’);

sse = sse + resid’resid;

endfor;

s2hat = sse/ntot; @ MLE of sigma2 @
sighat = sqrt(s2hat);

ztz = zdata’zdata;

/*
stk sk ok ok ok sk o ok ok ok ok sk sk ok s ok ok o ok sk sk ok ok sk s ok sk ok ok ook sk ok ok ok ook ok k ok ok K

* Initialize Priors
sk sk ok sk ok ok ok o ok o ok sk ok ok ok ok sk ok s ok s ok o ok sk ok ok ok ok sk ok ok o ok ok ok ok ok ok ok ok ok o ok ok ok koK

*/

@ Prior for sigma2 is IG(r0/2, s0/2) @
r0 = 2; s0 = 2;
rn = r0 + ntot;

@ Prior for theta is N(uO,v0) @
u0 = zeros(thdim,1);

v0 = 100*eye(thdim); @ thdim = rankx*rankz 6]
vO0i = invpd(vO0); @ used in updating theta @
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v0iu0 = vOix*vec(u0); @ used in updating theta @

@ Lambda~{-1} is W_rankx(f0,g0 ) @

@ fO = prior df, g0 = prior scale matrix @
f0 = rankx+2; £fOn = fO + nsub;

g0i = eye(rankx); @ g0°{-1} @

/*

sk ok ok ok ok K ok ok 3 ok 3k ok 3k ok ok K ok 3 ok 3 ok 3k ok 3k ok 3k ok ok ok 3 ok 3 ok 3 ok 3k ok 3k ok ok K ok ok ok K
* Initialize MCMC

ook sk ok ok ok ok o ok sk ok ok ok ok o ok sk ok ok ok ok sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok

*/

beta = zeros(nsub, rankx);
sigma = 1;

sigma2 = s2hat;

theta = zeros(rankz,rankx);
lambda = eye(rankx);
lambdai = invpd(lambda) ;

@ Define data structures for saving iterates & computing posterior means & std @
betam = zeros(nsub,rankx); @ posterior mean of beta @

betas = zeros(usub,rankx); @ posterior std of beta @

sigmag = zeros(smcmc,1);

thetag = zeros(smcmc,thdim);

¢ = rankx*(rankx+1)/2;

lambdag = zeros(smcmc,c); @ save unique elements of lambda @

/*

stk ok ok sk sk ok ok sk sk sk ok ok sk sk ok sk sk sk sk ok ok sk sk ok sksksk sk ok sk sksk sk ok sksk ok ok ok
* Do MCMC

3k 5k 3k 5k >k 3k >k 3k 5k 3k 5k %k 5K >k 3k >k 3k 5k >k 5k >k 3k >k 3k 5k 3k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k >k >k %k 5k >k >k %k >k >k %k >k k k
*/

@ Do the initial transition period @

for i1 (1,nblow,1); imcmc = il;

call gethbreg;

endfor;

for il (1,smcmc,1); imcmc = il; @ Save smcmc iterations @

for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @
call gethbreg;

endfor;

sigmagl[imcmc] = sigma;

thetag[imcmec,.] = vecr(theta)’;
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betam = betam + beta;

betas = betas + beta”2;

lambdag[imcmc, .] = vech(lambda)’; @ vech gets unique elements of symmetric matrix @
endfor;

/*

stk Kok o oK oK ok K ok oK oK oK ok oK ok o ok oK o oK ok K ok o oK ok ok K ok o ok ok ok Kok ok ok ok oK o
* Compute Posterior Means and STD

stk ok ok o oK oK ok K ok R oK ok o oK ok o ok oK o ok ok oK ok o oK K ok ok ok o oK ok ok ok ok ok ok ok ok o
*/

@ Compute Posterior Means @

betam = betam/smcmc;

sigmam = meanc(sigmag) ;

thetam = meanc(thetag);

thetam = reshape(thetam,rankz,rankx) ;

lambdam = xpnd(meanc(lambdag)); @ xpnd is opposite of vech @

@ Compute Posterior STD @

betas = sqrt( abs(betas - smcmc*betam™2)/smcmc) ;
sigmas = stdc(sigmag);

thetas = stdc(thetag);

thetas = reshape(thetas, rankz, rankx);

lambdas = xpnd(stdc(lambdag));

@ Predict yi @

yhhb = zeros(ntot,1);

yhml = yhhb;

for i0 (1, nsub, 1); i = i0;

xi = xdataliptxyli,1]:iptxyli,2],.];

yhhb [iptxy[i,1]:iptxy[i,2]] = xi*(betam[i,.]’);
yhml [iptxy[i,1] :iptxy[i,2]] = xi*(bhat[i,.]1’);
endfor;

cr = corrx(ydata~yhhb) ;

hbr = cr[1,2];

estd = ydata - yhhb;

estd = sqrt(estd’estd/ntot);

cr = corrx(ydata~yhml) ;

mlr = cr[1,2];

estdml = ydata - yhml;

estdml sqrt(estdml’estdml/ntot);

/*

>k >k K 3K 3K 3K 3k 3k 5k 3k 3k 5k 5k 5k 5k %k >k 3K 3K 3k 3k 3k %k %k 5k 5k %k X K 3K 3K 5K 5K 5k 5k %k %k >k >k %k Xk K K K Kk
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* Do some output
stk sk sk sk sk sk sk sk sk sk ok o ok ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ke sk ok ok sk sk sk sk sk sk sk sk ok ok

*/

call outputanal;

@ Plot saved iterations against iterations number @

t = seqa(nblow+skip,skip,smcmc); @ saved iteration number @
title("Error STD versus Iteration");

xy (t,sigmag);

title("Theta versus Iteration");

xy (t,thetag);

title("Lambda versus Iteration");

xy (t,lambdag) ;

title("MLE & HB for " $+ xnames[2]$+ " versus " $+ xnames[1]);
_plctrl = -1;

xy(bhat[.,1] betam[.,1] ,bhat[.,2] “betam[.,2]);
graphset; @ Return to default settings @

end;

/*

ok sk ok ok ok ok 3 ok K ok ok ok ok ok K ok ok ok sk ok K ok ok ok sk ok 3 ok ok ok K ok ok ok K
GETHBREG

Does one iteration of the HB regression model.
INPUT

Global Variables

OUTPUT

Global Variables

ok sk o ok ok ok 3 ok K 3 ok 3 ok ok 3 ok K o ok 3 ok sk 3 ok 3k ok ok 3 ok ok 3 ok 3 3k ok 3 ok ok ok 3 K ok K
x/

PROC (0) = gethbreg;

local vibn, vibnl2, ebin, yhat, sse, sn, resid, gni, gn, gnl2, w, iO, i, limub, yhati,
betai;

* X ¥ ¥ X x

limub = zdatax*theta*lambdai; @ Used in posterior mean of beta @
/%

KKK KoK oK oK oK oK oK ok oK o o o K K K K K KoK oK oK oK oK oK oK ok ok o o o K K KKK KoK oK oK

* Generate beta

* beta_i is N(mbin, vbn)

* vbn ( X_i’X_i/sigma2 + Lambda~{-1} }~{-1}

* mbin = vbn*( X_i’Y_i/sigma2 + Lambda"{-1}*Theta*Z_i)

KKK KoK oK oK oK oK ok oK oK o o K K K KKK oK oK oK oK oK ok ok oK ok o o o K K K K KKK oK oK

*/
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sse = 0;
for i0 (1,nsub,1); i = i0;
xi = xdataliptxy[i,1]:iptxyl[i,2],.];

yi = ydataliptxyl[i,1]:iptxyl[i,2],.];
xitxi = xtx[iptxt[i,1]:iptxt[i,2],.];
xityi = xtyliptxt[i,1]:iptxt[i,2],.];

vibn = xitxi/sigma2 + lambdai;

vibnl2 = chol(vibn);

ebin = xityi/sigma2 + limubl[i,.]’;

betai = cholsol(ebin + vibni12’rndn(rankx,1), vibnl2);
betal[i,.] = betai’;

yhati = xixbetai;

resid = yi - yhati;

sse = sse + resid’resid;

endfor;

/*

sk stk ok ok stk ok o sk sk sk sk sk sk sk sk ok sk sk sk e ok sk sk sk e ok stk sk sk ok kb sk sk o ok sk ok
* Generate sigma2

* sigma2 is IG(rn/2, sn/2)

* rn = rO + ntot

* sn = sO0 + sum_{i=1}"{nsub} (Y_i - Xxbeta_i)’(Y_i - X*beta_i)
sk stk ok ok sk sk ok ok sk sk sk sk ok sk sk sk ok sk sk sk s ok stk sk sk ok sk sk sk sk ok sksk sk ok sk sk ok
*/

sn = sO + sse;

sigma2 = sn/(2*rndgam(1,1,rn/2));

sigma = sqrt(sigma?2);

/*

stk sk sk ok ok ok ok ok ok ok ok ok o o ok ok ok sk sk ok ok sk sk sk ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok

* Generate Theta and Lambda from multivariate model:

* B = ZxTheta + N(0,Lambda)

3k 3k 3k 5k 3k >k 5k 3k %k 5k 5k 3k %k 5K 5k 3k 3k 5K 3k %k 5k 3k %k 5k 5k 3k %k 5Kk 5k 3k % 5k 3k %k 5k 3k %k k 5k k k Kk k k

*/

{theta, lambda, lambdai} =
getmulreg(beta,zdata,ztz,theta,lambda,lambdai,v0i,v0iu0,fOn,g0i);

endp;

/*
ook st ok ok ook sk o ok sk ok ok ook sk sk ok sk ok sk ook sk ok ok ok ok ok sk ook ok ok ok sk ok ok ok ok ok
* GETMULREG
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Generate multivariate regression parameters.
Yd = Xd*parmat + epsilon

INPUT

yd = dependent variables
xd = independet variables
xdtxd = xd’xd

parmat = current value of coefficient matrix
var = current value of covariance matrix
vari = its inverse

vO0i = prior precisions for bmat

vOiu0 = prior precision*prior mean for bmat
fOn = posterior df for sigma

g0i = prior scaling matrix inverse for sigma

* XK X X X X X X X X X X ¥ ¥ *

OUTPUT

parmat = updated rankx x mvar coefficient matrix
var = updated variance

vari = updated inverse of sigma

¥ ¥ ¥ X ¥ ¥ *

Calling Statement:

{parmat, var, vari} = getmulreg(yd,xd,xdtxd,parmat,var,vari,v0i,v0iu0,fOn,g0i);
stk sk sk ok ok ok ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok sk sk ok ok ok ok ok ok ko ok ok ok ok ok ok ok sk ok ok ok

*/

PROC (3) = getmulreg(yd,xd,xdtxd,parmat,var,vari,v0i,v0iu0,fOn,g0i);

local vbl2, ubn, par, pdim, resid, gni, gn, rp, cp;

rp = rows(parmat) ;
cp = cols(parmat);
pdim = rp*cp;

/%

SRR R oK oK KKK K R oK K oK KKK K ok K ok K KKk ok K ok K ok Kk K o

* Generate parmat from N_{rp x cp}(M,v)

* par = vecr(parmat)

* par is N(u,V) whee u = vec(M’);

* V= (Xd’Xd.*.Var~{-1} + V_0"{-1})"{-1}

* u = Vx( (Xd’.*.Var~{-1})*vec(¥Yd’) + V_0"{-1}u_0 )
KKK K KoK K o KKK KKK oK K ok oK K KoK K ok K ok K ok KoK K ok K ok oK ook ok ok K o

*/

vb12 = chol(xdtxd.*.vari + vO0i);
ubn = ( (xd’).*.vari )*vecr(yd) + v0iuO;
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par = cholsol(ubn + vb12’rndn(pdim,1), vbi2);
parmat = reshape(par,rp,cp);

/*

stk sk ok ok ok ok o sk sk sk ok ok o ok sk sk ok ok o ok s sk sk ok ok ok ok sk ok

* Generate Var

* Var~{-1} is Wishart df = fOn, scale matrix = gn
stk Rk R sk ok ok sk oK oK R sk K ok ok ok sk ok ok ok sk ok K ok sk K ok ok oK

*/

resid = yd - xd*parmat;

gni = g0i + resid’resid;

gn = invpd(gni);

{vari, var} = wishart(cp,fOn,gn);

retp(parmat,var,vari);
endp;

/*

s ok K o ok 3 ok sk 3 ok K 3k ok 3 ok K 3 ok 3 ok ok 3 ok K 3k ok K ok sk 3 ok 3 ok ok 3 ok sk 3k ok 3 3k ok 3 ok 3k 3k ok 3 ok sk 3 ok 3k 3k ok 3 ok sk 3 ok 3k ok ok 3 ok sk 3k ok 3 oK oK 3 ok

* OUTPUTANAL

* Does analysis of output and save some results

sk ok sk ok ok ok sk 3 ok K ok ok ok ok 3 ok K ok ok 3 ok K 3 ok K ok ok 3 ok sk 3k ok K ok ok 3 ok K sk ok ok ok 3 ok sk sk ok K ok sk 3 ok 3k sk ok ok sk ok sk ok ook K ok

*/

PROC (0) = outputanal;

local bout, sout, ebeta, sbeta, cb, rmse, fmtnl, fmtn2, fmtsl, fmts2, a, b,
betat, sigmat, thetat, lambdat, bratio ;

if flagtrue == 1; @ Did a simulation @
load betat = betat;

load sigmat = sigmat;

load thetat = thetat;

load lambdat = lambdat;

endif;

@ Define formats for fancy printing @
@ Used to print a matrix of alpha & numeric variables @

format 10,5; @ Default pring format @
let fmtn1[1,3] = "*.x1f" 10 5; @ Format for printing numeric variable @
let fmtn2[1,3] = "*x.*x1f" 10 O0; @ Format for numeric variable, no decimal @

let fmtsi[1,3] "-x.xs" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*s" 10 9; @ Format for alpha, right justify ¢
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output file = “outfile reset; @ outfile is the file handle for the output file @
@ Route printed output to the defined by outfile @

print
print
print
print
print
print
print
print;
print
print
print;
print

"Results from HBReg2.GSS";
"Hierarchical Bayesian linear regression model using MCMC.";
"Different design matrices for each subject";

"Y_i = X_ixbeta_i + epsilon_i";
"beta_i = Theta’z_i + delta_i";
llorll .

I

"B = ZxTheta + Delta";

"epsilon_i is N(O,sigma2*I)";
"delta_i is N(O, Lambda)";

"Ouput file: " getpath(outfile); @ File assigned to file handle outfile @

datestr(date); @ Print the current data @

print;
print;

print;
print
print;
print
print
print
print
print;
print
print
print
print
print
print
print
print
print;
print
print;
print
print

"MCMC Analysis";

"Total number of MCMC iterations = " nmcmc;
"Number of iterations used in the analysis = " smcmc;
"Number in transition period = " nblow;
"Number of iterations between saved iterations = " skip-1;
"Number of subjects = " nsub;

"Mean # of observations per subject = " meanc(yrows);
"STD # of observations per subject = " stdc(yrows);

"MIN # of observations per subject = " minc(yrows);

"MAX # of observations per subject = " maxc(yrows);
"Total number of observations = " ntot;

"Number of dependent variables X = " xdim " (excluding intercept)";

"Number of dependent variables Z = " zdim " (excluding intercept)";

"Dependent variable is " $ynames;

"Independent variables in first level equation: Y_i = X_i*beta_i + epsilon_i";

" Summary Statistics for X";

call sumstats(xnames,xdata,fmtsl,fmts2,fmtnl);

print;

87

print "Independent variables in second level equation: beta_i = Theta*z_i + delta_i";

print
print
print;

" Summary Statistics for Z";
sumstats(znames,zdata,fmtsl,fmts2,fmtnl);
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print "----————— "
print;

print "Fit Statistics for ML";

print "Muptilpe R =" mlr;

print "R-Squared = " mlr~2;

print "Error STD DEV = " estdml;

print;

print "Fit Statistics for HB";

print "Muptilpe R = " hbr;

print "R-Squared =" hbr~2;

print "Error STD DEV = " estd;

print;

print "---————---—————— "5

print "Estimation of the error STD sigma";
if flagtrue == 1;

print "True Sigma = " sigmat;

endif;

print "MLE = " sighat;

print "Posterior Mean = " sigmam;

print "Posterior STD = " sigmas;

print;

print "--———----—m "
print;

print "ML Pooled Estimate of Beta";

bout = xnames™bpool;

call outmat(bout,fmtsl,fmtnl);

print;

print "--————----- "
print;

print "Statistics for Individual-Level Regression Coefficients";
if flagtrue == 1;

ebeta = meanc(betat);

sbeta = stdc(betat);

print "True Beta";

sout = {"Variable" "Mean" "STD"};

call outitle(sout,fmtsl,fmts2);

bout = xnames~ebeta”sbeta;

call outmat(bout,fmtsl,fmtnl);

endif;

print "MLE of Beta";

sout = {"Variable" "MeanMLE" "StdMLE" };
call outitle(sout,fmtsl,fmts2);

bout = xnames~meanc(bhat) “stdc(bhat);
call outmat (bout,fmtsl,fmtnl);
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print "HB Estimates of Beta";

ebeta = meanc(betam);

sbeta = sqrt( meanc( (betas”2)) + stdc( betam)~2);
sout = {"Variable" "PostMean" "PostSTD" };

call outitle(sout,fmtsl,fmts2);

bout = xnames~ebeta”sbeta;

call outmat (bout,fmtsl,fmtnl);

print;

print;

print "Proportion of times that |Post Mean Betal|/(Post STD) > 2.";
bratio = betam./betas;

b = bratio .> 2;

bout = xnames~ (meanc(b));

call outmat(bout,fmtsl,fmtnl);

print;

print "--————-----— "
print;

if flagtrue == 1;

print "Comparison of True Beta to Individual Level Estimates";
for i0 (1,rankx,1); i = i0;

print "Component " ij;

cb = corrx( betat[.,i] “betam[.,i] );

rmse = betat[.,i] - betam[.,i];

rmse = rmse’rmse;

rmse sqrt (rmse/nsub) ;

print "Correlation between true and HB = " cb[1,2];
print "RMSE between true and HB = " rmse;
print;

cb = corrx( betat[.,i] bhat[.,i] );

rmse = betat[.,i] - bhat[.,i];

rmse = rmse’rmse;

rmse = sqrt(rmse/nsub);

print "Correlation between true and MLE = " cb[1,2];
print "RMSE between true and MLE = " rmse;
print;

endfor;

endif;

print "--————-----————— "
print;

print "HB Estimates of Theta";

sout = " "“(xnames’);

if flagtrue == 1;
print "True Theta";
call outitle(sout,fmtsl,fmts2);
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bout = znames“thetat;

call outmat (bout,fmtsl,fmtnl);
print;

endif;

print "Posterior Mean of Theta";
print outitle(sout,fmtsl,fmts2);
bout = znames“thetam;

call outmat (bout,fmtsl,fmtnl);
print;

print "Posterior STD of Theta";
call outitle(sout,fmtsl,fmts2);
bout = znames~thetas;

call outmat (bout,fmtsl,fmtnl);
print;

print "Post Mean/Post STD";
print outitle(sout,fmtsl,fmts2);
bout = znames~ (thetam./thetas);
call outmat (bout,fmtsl,fmtnl);
print;

print "--———--------—— "
print;

sout = " """ (xnames’);

print "HB Estimate of Lambda";
if flagtrue == 1;

print "True Lambda";

call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdat;

call outmat (bout,fmtsl,fmtnl);
print;

endif;

print "Posterior Mean of Lambda";
call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdam;

call outmat (bout,fmtsl,fmtnl);
print;

print "Posterior STD of Lambda";
call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdas;

call outmat (bout,fmtsl,fmtnl);
print;

print " "

output off;
closeall;
endp;
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/*

sk ok sk ok ok s ok ok 3 ok sk ok ok ok ok 3k ok sk ok ok 3 ok K sk ok ok ok 3 ok k ok ok ok ok 3 ok sk sk ok ok K 3k ok sk ok ok ok K sk ok ok ok ok ok sk ok ok
* QUTITLE

* Prints header for columns of numbers.

* INPUT

* a = character row vector of column names

* fmtsl = format for first column

¥ fmts2 = format for second column

* QUTPUT

* None

sk ok K o ok oK sk 3 ok K 3 ok 3 ok ok 3 ok K ok ok 3 ok K 3 ok K ok ok 3 ok K 3k ok K ok ok 3 ok 3k 3k ok 3 ok sk 3 ok 3k 3k ok K ok sk 3 ok 3k ok ok ok ok ok 3k ok

*/

PROC (0) = outitle(a,fmtl,fmt2);
local mask, fmt, flag, ncols;

ncols = cols(a);

mask = zeros(1l,ncols);

fmt = fmt1| (ones(ncols-1,1).*.fmt2);
flag = printfm(a,mask,fmt);

print;

endp;

/*

5ok sk ok ok K ok ok 3 ok K 3 ok K ok ok 3 ok 3 ok ok 3 ok 3k 3 ok 3 ok ok 3 ok 3k 3k ok 3 ok ok 3 ok K 3k ok 3 ok ok 3 ok K 3k ok 3 ok ok 3 ok 3k 3k ok 3 ok oK ok
* QUTMAT

* Outputs a matrix:

* (Character Vector)” (Numeric matrix);

* The entries in the numeric matrix have the same format

* INPUT

* bout = matrix to be printed

* fmts = format for string

¥ fmtn = format for numeric matrix

* QUTPUT

* None

sk ok K ok ok oK sk 3 ok K 3 ok 3 ok ok 3 ok K ok ok 3 ok K 3 ok 3 ok ok 3 ok K 3k ok 3 ok ok ok 3k 3k ok 3 ok sk 3 ok 3k 3k ok 3 ok sk 3 ok 3k 3k ok 3 ok ok ok 3 K oK

*/

PROC (0) = outmat(bout,fmts,fmtn);

local fmt,mask,flag,ncols, nrows;

ncols = cols(bout);

nrows = rows(bout);

fmt = fmts| (ones(ncols-1,1) .*.fmtn);

mask = zeros(nrows,1) “ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);
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print;
endp;

/*
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* SUMSTATS

* Prints summary statistics for a data matrix
* INPUT

* names = charater vector of names

* data = data matrix

* fmtsl = format for string

* fmts2 = format for string

* fmtn = format for numbers

* QUTPUT

* None

stk sk stk sk ok ok ok oo o o o o ko ok ok sk sk sk sk sk sk sk ok o o o s o ko ok ok sk sk sk sk sk sk sk ok o o o o koo ok sk sk sk sk sk sk sk ok ok ok
x/

PROC (0) = sumstats(names,data,fmtsl,fmts2,fmtn);

local a, bout;

a = {"Variable" "Mean" "STD" "MIN" "MAX"};

call outitle(a,fmtsl,fmts2);

bout = names~meanc(data) “stdc(data) “minc(data) “maxc(data);
call outmat (bout,fmtsl,fmtn);

endp;
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HB Regression: Mixture Model
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6.1 Data Generation

/*
sk sk o ke ok sk ok ok e ok sk sk ok o sk sk ok s sk sk ok sk ke ok sk sk sk ke ok sk sk sk e ok sk sk sk sk ok ok sk ok sk ok
GMIXREG.GSS
Generats data for HB Regression Model
Y_i = X_ixbeta_i + epsilon_i
beta_i = sum_{k=1}"K N(beta_il|theta_k,Lambda_k)
epsilon_i is N(O0,sigma2*I)
Different Design Matrices
stk ok ok sk skok o sk sk sk sk ok ok sk sk sk ok ok sk sk sk ok sk sk sk sk ok ok sksk sk ok sk sk sk sk ok ok sk sk ok
*/
new;
nsub = 200; @ Number of subjects @
yrows = 3 + ceil(7*rndu(nsub,1)); @ Number of observations per subject @
ntot = sumc(yrows);
sigmat = 5; @ True error STD @
rankx = 2; @ rank(X_i) @
mmodt = 3; @ Three mixture componts @
@ thetat[.,j] is the mean for component j @
thetat = { 0 -10 7,
0 7 5 };
@ lambdat stacks 3 covariance matrics, each is a 2 by 2 matrix. @

* X X ¥ X x

lambdat = { 1 0,
0 1,
25 9,
9 4,
9 -5,
-5 5 1}

@ Get pointer into stacked xy matrices @
b = cumsumc(yrows);

a = 1|(1+b[1:nsub-1]);

iptxy = a"b;

@ Get pointer into sacked lambdat @
b = seqa(rankx,rankx,mmodt) ;

a = 1|(1+b[1:mmodt-1]);

iptgp = a"b;

xdim = rankx - 1;
a = seqa(l,1,xdim);
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xnames = 0 $+ "X " $+ ftocv(a,1,0);
xynames = xnames|"Y ";

xdata = rndn(ntot,xdim) ;

xmat = ones(ntot,1) xdata;

psit ={0.2, 0.3, 0.5 }; @ Mixture probabilities @
zprob ones(nsub,1).*. (psit’);

z rndzmn(zprob) ; @ Z gives class membership @

@ Compute Chol of lambdat @

1mbd12 = lambdat;

for i0 (1,mmodt,1); i = iO;

1mbd12[iptgpli,1]:iptgpli,2],.] = chol(lambdat[iptgpli,1]:iptgpli,2]1,.1);
endfor;

@ Generate Beta and Ydata @
betat = zeros(rankx,nsub);
ydata = zeros(ntot,1);

for i0 (1,nsub,1); i = i0;

betai = thetat[.,z[i]] + I1mbd12[iptgpl[z[il,1]:iptgpl[=z[i],2],.] rndn(rankx,1);
betat[.,i] = betai;

xi = xmat[iptxyl[i,1]:iptxy[i,2],.];

yi = xi*betai + sigmat*rndn(yrows[i],1);
ydataliptxy[i,1]:iptxy[i,2],.]1 = yi;

endfor;

xydata = xdata"ydata;

/*

stk sk sk sk sk sk sk sk sk sk ok ok o o ok koo ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ke skok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ke k

* Create a Gauss file. f1 is the file handle.

* The Gauss file will be called "XYDATA."

* The column will be named by the strings in the character array xyname.
* “xyname means use the names in the character string.

* 0, 8 gives double precision real numbers.

stk sk sk sk sk sk sk sk sk sk sk o o s ke koo ok sk sk sk sk sk sk sksk sk sk sk sk sk ok ke okok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok

x/

create fl1 = xydata with “xynames, 0, 8;

/*

stk sk sk sk sk sk sk sk sk sk ok ok o o ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk o ok ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk o ok k

Next read data into the Gauss file by using the writer command.
f1 is the file handle defined in previous command.

xydata is the data matrix that we just created.

writer returns the number of rows read to fi.

If it is not rows(xydata), something bad happended.

stk sk sk sk sk sk sk sk sk sk ok ok o o ok koo ok ok sk sk sk sk sk sk sk sk sk sk sk o o ok sk okok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok

¥ ¥ X X %
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*/

if writer(f1,xydata) /= rows(xydata);
errorlog "Conversion of XYDATA to Gauss File did not work";
endif;

closeall f1;

save yrows = yIOWS;

save classt = z; @ true classifications @
save sigmat = sigmat;

save betat = betat;

save thetat = thetat;

save lambdat = lambdat;

save psit = psit;

@ Compute individual level MLEs @

bhat = zeros(rankx,nsub);

sse = 0;

for i0 (1,nsub,1); i = i0;

xi = xmat[iptxy[i,1]:iptxy[i,2],.];
yi = ydataliptxyl[i,1]:iptxy[i,2],.];
xitxi = xi’xi;

xitxii = invpd(xitxi);

xityi = xi’yi;

bhat[.,i] = xitxii*xityi;

resid = yi - xixbhat[.,i];

sse = sse + resid’resid;

endfor;

s2hat = sse/ntot; @ MLE of sigma2 @
sighat = sqrt(s2hat);

@ Do some plots @

_plctrl = -1;

title("Y versus X");
xy(xydatal.,1],xydatal.,cols(xydata)]);
title("True Slope verus Intercept");
xy(betat[1,.]17,betat[2,.]17);

title("True & MLE Slope versus Intercept");
xy(betat[1,.]’"bhat[1,.]’,betat[2,.]’ bhat[2,.]°);
graphset;
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6.2 Bayesian Analysis

/*

sk sk o ke ok sk ok ok e ok sk sk ok s ok sk ok sk ke ok sk sk sk ke ok sk sk ok s ok sk sk ok sk ok sk ok sk ke ok sksk sk s ok sk sk ok ok

* MixReg.GSS

* HB Linear Regression Model.

* Heterogeneity for subject level parameters have a mixture of normals
* Allows for subject level design matrices.

*

* Y_i = X_ixbeta_i + epsilon_i for i = 1,..., nsub

* epsilon_i is N(O,sigma”2 I)

*

* beta_i = sum_{m=1}"M psi_m N(beta_i|theta_m,Lambda_n)

* 0 < psi_l < psi_2 .. < psi_M and sum_{m=1}"M psi_m = 1.
* delta_i is N(O,Lambda)

*

* PRIORS

* sigma”2 is Inverted Gamma(r0/2,s0/2)

* theta_m is normal (u0,v0).

* Lambda_m is Inverted Wishart(£f0, g0)

*

*———-->Note:

* This program saves subject-level beta_i as columns, not rows.
* beta is a nsub by rankx matrix

*

stk sk sk sk sk sk sk sk ok sk sk s ok ok ke ok ok ok sk sk sk sk sk sk sk sk ok s sk ke ke okok ok sk sk sk sk sk sk sk sk sk sk sk ok ok okok

*/

new;

mmod = 3; @ mmod = number of mixture components @

outfile = "resultsl.dat"; @ Specify output file for saving results @
@ outfile is a string variable that contains a file name @
inxy = "xydata"; @ Name of Gauss file with X,Y data @
flagtrue = 1; @ 1 -> knows true parameters from simulation @

pcount = 5; @ max number of times that assignments of subjects @
@ to groups can conflict with ordering: n_1 <= ... <= n_k Q@
@ where n_j = number of subjects in each group. @

pflag = 0; @ flag for runs in viloations Q@
@ pflag = 0 -> last iterations not violation @
@ pflag = 1 -> last iteration is a violation @

/*
ook sk sk oke ok ok ok ok ook o o ok ok ofe ok ok sk sk sk sk sk sk sk ok o o s s ok ok ok ok sk sk sk sk sk sk sk ok o o ok
* Initialize parameters for MCMC
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*/

smcmc = 100; @ number of iterations to save for analysis @
skip = 1; @ Save every skip iterations @

nblow = 100; @ Initial transition iterations @

nmcmc = nblow + skip*smcmc; @ total number of iterations @

mint = seqa(1l,1,mmod);

/*

sk sk sk sk sk sk sk sk ok sk sk sk ok o ok sk ok sk sk sk sk sk sk sk sk sk ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok

* Get data

sk sk ok e ok sk sk ok o ok sk ok sk ke ok sk sk sk e ok sk sk ok sk ok sk ok sk ek sksk sk e ok sk sk ok sk ok sk sk ok ok ok

*/

@ Input Gauss files @

open f1 = "inxy; @ Get Gauss file for X, Y data @

© Opens Gauss file & assigns file handle f1 @

xydata = readr(f1,rowsf(f1));

@ readr reads in Gauss file with file handle f1. @

@ rowsf(f1) returns the number of rows in the Gauss file. @
@ readr reads rowsf(f1l) rows, which is the entir dataset. @
ci = close(f1);

xynames = setvars(inxy); @ Get the variable names that accompnay X, Y data @
ynames = xynames [rows (xynames)];

xnames = "Constant"|xynames[1:rows(xynames)-1];

@ Last row of xydata is Y. @
xdata = xydatal.,l:cols(xydata)-1]; @ Get independent variables @
ydata = xydatal.,cols(xydata)]; @ Get dependent variable @

loadm yrows = yrows; @ yrows gives the number of observations per subject @
nsub = rows(yrows); @ Number of subjects. @

ntot = sumc(yrows); @ Total number of observations. @

@ Create pointer based on yrows to access xdata and ydata @

b = cumsumc(yrows); @ cumsumc is the cumulative sum of yrows @

a = 1|(1+b[1:nsub-1]);

iptxy = a"b;

@ To use iptxy to get the design matrix and data for subject i: @

@ x_i = xdataliptxyli,1]:iptxyl[i,2],.] @

@ y_i = ydataliptxyl[i,1]:iptxy[i,2]] @

xdim = cols(xdata);
@ add intercepts to xdata @
xdata = ones(ntot,1) xdata;
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rankx = xdim+1;
@ Create pointer to get into stacked lambda matrix @
if mmod > 1;

b = seqa(rankx,rankx,mmod) ; @ {rankx, 2*rankx, ..., mmod*rankx } @

a = 1|(1+b[1:mmod-1]); @ {1, rankx+1, 2*rankx+1, ..., (mmod-1)*rankx+1} @
iptgp = a"b;

else;

iptgp = 17rankx;

endif;

ompute some sufficient statistics @

seqa(rankx,rankx,nsub) ;

1| (1+b[1:nsub-1]1);

iptxt = a"b;

xtx = zeros(rankx*nsub,rankx) ;

xty = zeros(rankx*nsub,1);

bhat = zeros(rankx,nsub); @ MLE of beta_i @
sse = 0;

for i0 (1,nsub,1); i = i0;

xi = xdataliptxyl[i,1]:iptxyl[i,2],.];
yi = ydataliptxyl[i,1]:iptxyl[i,2],.];
xitxi = xi’xi;

xitxii = invpd(xitxi);

xityi = xi’yi;
xtx[iptxt[i,1]:iptxt[i,2],.] = xitxi;
xtyliptxt[i,1]:iptxt[i,2],.] = xityi;
bhat[.,i] = xitxii*xityi;

resid = yi - xixbhat[.,i];

sse = sse + resid’resid;

endfor;

s2hat = sse/ntot; @ MLE of sigma2 @
sighat = sqrt(s2hat);

@eC

@ Get point to access stacked matrices of xtx, xtxi, and xty @
b =

a

/%
stk stk ok ook sk o ok ok sk ok ok sk sk ok ok sk ook sk ok ok ok sk ook ok sk ok sk ok ok ok sk ok ok ok ok k

* Initialize Priors
st ok sk ok ok ok ok o ok ok ok o ok sk sk ok s ok ok o ok sk sk ok ook ok s ok sk ok ok ok sk ok s ok ok ok ok sk ok ook ok

*/

@ Prior for sigma2 is IG(r0/2, s0/2) @
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r0 = 2; sO0 = 2;
rn r0 + ntot;

@ {psi_m}, the mixture probabilities, have ordered Dirchlet proir. @
w0 = ones(mmod,1);
xgam = seqa(l,1,mmod)’; @ used in generating ordered dirichlet @

@ Prior for theta_i is N(uO,v0) @

u0 = zeros(rankx,1);

vO0 = 100*eye (rankx) ;

vO0i = invpd(vO0); @ used in updating theta @

v0iu0 = vOi*vec(u0); @ used in updating theta @

@ Lambda“{-1} is W_rankx(f0,g0 ) @

@ fO = prior df, g0 = prior scale matrix @
f0 = rankx+2;

g0i = eye(rankx); @ g0~{-1} @

/*

skt ok sk sk sk ok sk sksk sk ok sk sk ok sksksk sk ok sksk sk sk ok sk sk sk sk ok sksk sk ok skskok sk ok ok

* Initialize MCMC

sk sk ok o ok sk ok ok o sk ok ok o sk sk ok s ok sk sk ok sk ke sk sk sk sk ek sk sk sk e ok sk sk ok sk ok ok sk ok ok ok

*/

psi = mint/sumc(mint); @ Class probabilities @

@ Assign membership based on random start e

zprob = ones(nsub,1).*.psi’; @ Individual level prob. .*. is Kronecker product. @
z = rndzmn(zprob); @ Generate multinomials @

classn = sumc(z .== mint’ ); @ number in each of the mmod classes @
rclass rankindx(classn,1);

beta = bhat;

theta = zeros(rankx,mmod) ;

lambda = zeros(rankx*mmod,rankx) ;

lambdai = lambda;

bvars = zeros(rankx*mmod,1);

for i0 (1,mmod,1); i = iO;

if classn[i] > rankx+1; @ We have some observations in this class @
zi =2z .== 1i;

bi = selif(beta’,zi)’; @ Get beta for subjects assigned to group i @
mbi = meanc(bi’);

resid = bi - mbi;

lbdai = resid*resid’/classnl[i];

else;

mbi = zeros(rankx,1);
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lbdai = eye(rankx);

endif;

thetal.,i] = mbi;
lambdaliptgpl[i,1]:iptgpli,2],.] = 1lbdai;
lbda = invpd(lbdai);
lambdai[iptgp[i,1]:iptgpl[i,2],.] = lbda;
bvars [iptgpl[i,1] :iptgp[i,2]] = diag(lbda);
endfor;

sigma2 = s2hat;

sigma = sqrt(sigma2);

/%

stk ok sk sk sk sk sk sk sk sk ok ok o ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ke ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk ko kokokok ok ok

* Arrays for saving iterations & computing posterior means & std
sk sk stk ook ok ok oo o o s ok ok ook ok sk sk sk sk sk sk sk sk ok o sk s s ke ok ke ok ok ok sk sk sk sk sk sk sk ok ok sk sk ok ok ok ok ok ok

*/

betam = zeros(rankx,nsub); @ posterior mean of beta @

betas = zeros(rankx,nsub); @ posterior std of beta @

sigmag = zeros(smcmc,1); @ MCMC iterations for error std @

psig = zeros(smcmc,mmod) ;

zprobm = zeros(nsub,mmod); @ Individual level class membership probabilities @
thdim = rankx*mmod;

thetag = zeros(smcmc,thdim);

lambdag = zeros(smcmc,mmod*rankx); @ MCMC iterations for heterogeniety variance @
lambdam = zeros(rankx*mmod,rankx) ;

lambdas = lambdam;

loglikeg = zeros(smcmc,1);

loglike = 0;

/*

stk sk sk o ok ok o sk sk sk ok ok o sk sk sk sk ko ok s sk sk sk ok ok o sk sk sk ok ok ok ok ok ok
* Do MCMC

SRR KK KKK oK oK KK KoK K ok oK oK oK KoK Kok oK ok oK oK oK ok K ok oK oK oK ok Kok oK ok oK
*/

@ Do the initial transition period @

nmcmc = 0; @ Just a counter @

ipcount = 0; @ Counter of order restriction violations @
for i1 (1,nblow,1); imcmc = il;

nmcmc = nmcmc + 1;

call getmixreg;

endfor;

for il (1,smcmc,1); imcmc = il; @ Save smcmc iterations @
for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations @
nmcmc = nmcmc + 1;
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call getmixreg;

endfor;

sigmag[imcmc] = sigma;
thetagl[imcmc,.] = vec(theta)’;
psiglimemc,.] = psi’;

betam = betam beta;

betas = betas + beta”2;
zprobm = zprobm + zprob;
lambdam = lambdam + lambda;
lambdas = lambdas + lambda”2;
lambdag[imcme,.] = bvars’;
loglikeg[imcmc,.] = loglike;
endfor;

+

/*

sk sk sk sk sk sk sk sk sk sk sk sk o o ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok
* Compute Posterior Means and STD

stk sk sk sk sk sk sk sk sk sk sk ok ke ok ok ok sk sk sk sk sk sk sk sk ok s sk ok ok okok ok sk sk sk sk sk sk sk sk sk sk sk ok
*/

@ Compute Posterior Means @

betam = betam/smcmc;

zprobm = zprobm/smcmc;

sigmam = meanc(sigmag) ;
psim = meanc(psig);
thetam = meanc(thetag);

thetam = reshape(thetam,mmod,rankx)’;
lambdam = lambdam/smcmc;
loglikem = meanc(loglikeg);

@ Compute Posterior STD @

betas = sqrt( abs(betas - smcmc*betam”2)/smcmc) ;
sigmas = stdc(sigmag) ;

psis = stdc(psig);

thetas = stdc(thetag);

thetas reshape (thetas, mmod, rankx)’;

lambdas = sqrt( abs(lambdas - smcmc*lambdam~2)/smcmc) ;
loglikes = stdc(loglikeg);

@ Predict yi @

yhat = zeros(ntot,1);

br = zeros(nsub,1); @ multiple R for each subject @
estd = br; @ error std @

for i0 (1, nsub, 1); i = i0;

xi = xdataliptxyl[i,1]:iptxyl[i,2],.];
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yi = ydataliptxyl[i,1]:iptxyl[i,2]1];

yhati = xi*betam[.,i];

yhat [iptxy[i,1]:iptxy[i,2]] = yhati;

cy = corrx(yi“yhati); @ correlation matrix of yi and yhati @
br[i] = cyl[1,2];

resid = yi - yhati;

estd[i] = sqrt(resid’resid/yrows[i]);

endfor;

/*
ook stk ok ook sk ok ok ko ok ook sk sk ok ok ok ook sk sk ok ok ok ok sk ook ok ok ok sk kok ok ok ok

* Do some output
sk sk o ke ok sk sk ok ok ok sk sk ok s ke ok sk ok sk ke ok sk sk sk ke ok sk sk ok sk ok sk sk sk sk ok skok sk ok sk ok ok

*/

call outputanal;

@ Plot saved iterations against iterations number @

t = seqa(nblow+skip,skip,smcmc); @ saved iteration number @
title("Error STD versus Iteration");
xy(t,sigmag) ;

title("Mixture Probabilities versus Iteration");
xy (t,psig);

title("Heterogeneity Means versus Iteration");
xy(t,thetag) ;

title("Heterogeneity VARS versus Iteration");

xy (t,lambdag) ;

_plctrl = -1;

if flagtrue == 1;

load betat = betat;

load sigmat sigmat;

load psit = psit;

load thetat = thetat;

load lambdat = lambdat;

title("True & HB Slope vs Intercept");
xy(betat[1,.]’ betam[1,.]’,betat[2,.]’"betam[2,.]7);
endif;

title("HB & ML Slope vs Intercept");
xy(betam[1,.]’"bhat[1,.]’,betam[2,.]’"bhat[2,.]°);
graphset;

end;
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/%

ok sk ok ok K ok ok 3 ok K 3k ok 3 ok ok 3 ok ok sk ok K ok ok 3 ok K ok ok K ok sk 3 ok 3 sk ok 3 ok ok ok ok ok ok K

GETMIXREG

Does one iteration of the HB regression model.

INPUT

Global Variables

OUTPUT

Global Variables

ok sk o ok K ok sk 3 ok 3 ok 3 ok ok 3 ok K o ok K ok sk 3 ok K ok ok 3 ok sk 3 ok 3 ok 3 ok sk ok ok ok K

x/

PROC (0) = getmixreg;

local

sse, i0,1i,thetak,lambdaik,xi,yi,xitxi,xityi,vibn,vibnl2,ebin,yhati,resid,sn,
fk,k,betak,mbetak,c,b,fnk,gnki,gnk,gnkl2,w,lambdak,resid2,dlambik, zmaxp,
rclass, pflag, lamb0O,lamb2,j;

* ¥ ¥ ¥ X *

zprob = zeros(nsub,mmod); @ used in computing the P(z[i] = k) @

/*

ok kKoK ok ok ok ok ok ok ok ok o o ok ok ok kKoK ok ok ok ok ok ok ok ok o o ok ok K KoK ok ok ok ok

* Generate beta_i

* If Y_i belongs to class k, then

* beta_i is N(mbin, vbn)

* vbn = ( X_i’X_i/sigma2 + Lambda_k~{-1} }~{-1}

* mbin = vbn*( X_i’Y_i/sigma2 + Lambda_k~{-1}*Theta_k)
skokokok o ok skokook ok ok skok ok o ok sksk ok ok sk sk ok ok ok sk ok ok o o skok ok ok o ok ok ok ok

*/

sse = 0;

for i0 (1,nsub,1); i = i0;

thetak = thetal.,z[il];

lambdaik = lambdailiptgpl[z[il,1]:iptgpl[z[il,2],.1;

xi = xdataliptxy[i,1]:iptxyl[i,2],.];

yi = ydataliptxyl[i,1]:iptxyl[i,2],.];

xitxi = xtx[iptxt[i,1]:iptxt[i,2],.];
xityi = xtyliptxtl[i,1]:iptxt[i,2],.];
vibn = xitxi/sigma2 + lambdaik;

vibni12 = chol(vibn);

ebin = xityi/sigma2 + lambdaik*thetak;

betal[.,i] = cholsol(ebin + vibnl2’rndn(rankx,1), vibnl2);
yhati = xi*betal.,i];

resid = yi - yhati;

sse = sse + resid’resid;

endfor;
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/%

ok KoK o K Kok K KoK KKK KKK KK KoK R K Kok K Kok Kok Kk KK KoK K
* Generate sigma?2

* sigma2 is IG(rn/2, sn/2)

* rn = rO + ntot

* sn = s0 + sum_{i=1}"{nsub} (Y_i - X#beta_i)’(Y_i - Xxbeta_i)
ok KoK o K Kok KKK KKK oK R K Kok K KoK KK KoK KoK KKk Kk KK K
*/

sn = sO + sse;

sigma2 = sn/(2*rndgam(1,1,rn/2));

sigma = sqrt(sigma?2);

@ Compute log likelihood @

loglike = -(ntot*1ln(sigma2) + sse/sigma2)/2;
/*

stk o ok ok oK oK ok sk K K K K o ok ok ok ok ok sk K K K ok ok ok ok ok ok sk K K Kk ok ok ok oK
* Generate theta_k and lambda_k

stk o ok ok ok ok oK oK oK K K K K o ok ok ok ok oK sk oK K K K K o ok ok ok ok ok ok sk K K K K o ok ok ok ok oK
*/

for fk (1,mmod,1); k = fk;

@ do we have observations in class k7 @

if classn[k] > 0.5;

betak = (selif(beta’, z .== k))’; @ beta with z=k@
mbetak = meanc (betak’);

else;

mbetak = zeros(rankx,1);

endif;

lambdaik = lambdailiptgplk,1]:iptgpl(k,2],.];

/*

sk stk s ok stk ok ook sk ok o ok sk o s ok sk ok s ok ok sk ok sk ok sk sk ok skokok sk o ok
* Generate theta_k given z, beta etc.

* theta_k is N(u_nk,v_nk)

* v_n,k = (n_k lambda_k~{-1} + v_0,k"{-1})
* u_n,k = v_n,k(n_k lambda_k~{-1} meanc(beta_k) + v_0,k"{-1} u_0,k
sk sk s ok stk o sk sk sk ok o ok sk o s ok stk ok s ok sk sk sk ok sk ok s ok skeskok sk o ok
*/

¢ = chol(classn[k]*lambdaik + v0i);

b classn[k]*lambdaik#*mbetak + v0iuO;
thetak = cholsol(b+c’rndn(rankx,1),c);
thetal.,k] = thetak;

/*

skokokok o ok skokok ok ok skok ok o ok sk ok ok o ok sksk ok ok ok sk ok ok ok skokok ok o sk okok ok ok ok
* Generate Lambda_k from IW_p(fnk, Gnk)

* fnk = fOk + classn_k
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* Gnk =
* (GOk~{-1} + sum I(z_i=k) (beta_i-theta_k) (beta_i-theta_k)’) " {-1}
stk s ok o ok ok sk sk sk ok ok ok sk sk s o ok sk sk sk sk ok ok ok sk s o ok ok sk sk sk ok ok ok ok s sk ok ok ok ok ok

*/
if classn[k] > 0.5; @ observations in class k @
fnk = fO + classn[k];

resid = betak - thetal.,k];

gnki = g0i + resid*resid’;

else; @ no observations, no updating of prior @
fnk = f0;

gnki = gO0i;

endif;

gnk = invpd(gnki);

{lambdaik, lambdak} = wishart(rankx,fnk,gnk);

dlambik = det(lambdaik); @ determinant of lambdaik @

@ store lambda’s @

lambdai[iptgpl[k,1] :iptgp[k,2],.] = lambdaik;

lambdaliptgplk,1]:iptgplk,2],.] = lambdak;

bvars[iptgplk,1]:iptgpl[k,2]] = diag(lambdak); @ Save diagonals for plotting @

@ Compute the probability of class k for all subjects @
if mmod > 1;

@ Start computing P(z[i] = k) @

zprob[.,k] = 0.5*%1n(dlambik)*ones(nsub,1);

resid = beta - thetak;

resid2 = lambdaik*resid;

for i0 (1,nsub,1); i = i0;

zprob[i,k] = zprob[i,k] - 0.5%resid[.,i]’resid2[.,i];
endfor;

endif;

endfor;

@ Normalize zprob to avoid overflow @

zmaxp = maxc(zprob’);

zprob = exp(zprob - zmaxp + 3).*(psi’);
zprob = zprob./sumc(zprob’);

/*

Kok o KoK o KoK ok oK K oK oK oK K oK o K oK o KoK o KoK ok K ok K ok K oK o KoK o KoK o
* Generate the z’s

* z[i] is MN(1,p_1i)

* p_ik propto det(lambda_k) {-0.5}

* *xexp (-0.5(beta_i-theta_k) ’lambda_k~{-1}(beta_i-theta_k))
* *psi_k

* Only accept a new psi, if they generate
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* a ordering of psi_l1 <= psi_2 <= ....
sk sk ok e ok sk sk ok o sk sk ok s ke ok sk ok sk ke ok sk sk sk s ok sk sk ok sk ok ok sk sk sk ok sk sk ok sk ok ok

*/

if mmod > 1;

z = rndzmn(zprob) ;

classn = sumc( z .== mint’ ); @ Number of subjects assigned to the classes @
/*

sk sk ok ke ok sk sk ok o sk sk ok sk ok sk ok sk ke ok sk sk ok s ok sk sk ok sk ok sk sk sk ok sk sk sk sk ok ok
* DIRORD is ordered dirichlet. See /gauss/src/plbam.src
* {psi, xgam} = dirord(alpha, xgam);

* alpha = k x 1 vector of parameters.

* xgam = n x k matrix of ordered gamma random deviates.
* psi = n x k matrix of ordered dirichlet probs.

sk sk o ke ok sk sk ok o sk sk ok sk ok sk ok sk ok ok sk sk sk s ok sk sk sk sk ok sk sk sk ok sk sk sk sk ok ok

x/

{psi, xgam } = dirord(wO+classn,xgam);

psi = psi’;

@ Enforce order restrictions on classn. @
@ Allow run of pcount violations before reorder @
rclass = rankindx(classn,1);
if not rclass == mint; @ counts violate order restrictions @
pflag = 1; @ set flag for next iteration @
ipcount = ipcount + 1;
if ipcount >= pcount; @ let labels switch @
pflag = O;
ipcount = 0;
if nmcmc <= nblow;
@ permute the assignments @
classn = sortc(classn,l1);
z = recode(z, z.== mint’, rclass);
psilrclass] = psi; @ reorder psi @
xgam[1, rclass] = xgam;
thetal.,rclass] = theta;
j=1
lambO = lambda;
lamb2 = lambdai;
do while j <= mmod;
lambdaliptgp[rclass[j],1]:iptgplrclass[jl,2],.] =
lambO[iptgpl[j,1]:iptgplj,2],.];
lambdai[iptgpl[rclass[j],1] :iptgpl[rclass[jl,2],.] =
lamb2[iptgpl[j,1]:iptgpl[j,2],.]1 ;
i=i+y
endo;
endif; Q@ if igibbs <= nblow @
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endif; @ if ipcount >= pcount Q@

else; @ rclass .== mint -> reset counter & flag Q@
ipcount = 0;

pflag = 0;

endif; @ if not rclass == mint @

endif; @ if mmod > 1 @

endp;

/*

sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok sk o ok ok ok ok ok ok sk o ok ok ok sk ok ok ko ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok K ok ok ok ok ok ok
* OUTPUTANAL

* Does analysis of output and save some results

st 3k ok ok ok 3 ok ok K ok ok K K ok ok ok K o ok ok K K ok ok Kk ok ok sk K ok sk K ok ok ok K 3k ok ok K ok ok ok K sk ok ok K 3 ok ok K ok ok ok sk ok ok K ok ok ok ok
*/

PROC (0) = outputanal;

local bout, sout, ebeta, sbeta, cb, rmse, fmtnl, fmtn2, fmtsl, fmts2,
knames,knames2,mmod2,a, al,bl,iptgpt,

lambdatk,lambdamk,lambdask,fk,k, clrate, hbclass, hbclassk,

betat, sigmat, classt, psit, thetat, lambdat, mmodt;

if flagtrue == 1; @ Know true paramaters from simulation Q@
load betat = betat;

load sigmat = sigmat;

load classt = classt;

load psit = psit;

load thetat = thetat;

load lambdat = lambdat;

mmodt = maxc(classt); @ True number of mixture components @
endif;

knames = 0 $+ "Group " $+ ftocv(mint,1,0);

if flagtrue == 1;

mmodt = maxc(classt);

knames2 = 0 $+ "Group " $+ ftocv(seqa(l,1,mmodt),1,0);

endif;

@ Define formats for fancy printing @

@ Used to print a matrix of alpha & numeric variables @

let fmtn1[1,3] = "*.*1f" 10 5; @ Format for printing numeric variable @
let fmtn2[1,3] = "*.*x1f" 10 O; @ Format for numeric variable, no decimal @
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let fmts1[1,3] = "-x.xs" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*s" 10 9; @ Format for alpha, right justify Q
format 10,5; @ Default pring format @

output file = “outfile reset; @ outfile is the file handle for the output file @
@ Route printed output to the defined by outfile @

print "Results from MIXREG.GSS";

print "Hierarchical Bayesian linear regression model using MCMC.";

print "Use mixture distribution for heterogeneity";

print "Different design matrices for each subject";

print "Y_i = X_ixbeta_i + epsilon_i";

print "beta_i = sum_k psi_k N(beta_i | theta_k, lambda_k)";

print "epsilon_i is N(O,sigma2+*I)";

print;

print "Number of components is fixed at: " mmod;

print;

print "Ouput file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @

print;

print;

print "----——7----—-—-"""""""""""""""""""——— ";
print;

print "MCMC Analysis";

print;

print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;
print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;

print "Number of subjects = " nsub;

print "Mean # of observations per subject = " meanc(yrows);
print "STD # of observations per subject = " stdc(yrows);

print "MIN # of observations per subject = " minc(yrows);

print "MAX # of observations per subject = " maxc(yrows);

print "Total number of observations = " ntot;

print "Number of independent variables X = " xdim " (excluding intercept)";
print;

print "Dependent variable is " $ynames;

print;

print "Independent variables in first level equation: Y_i = X_ix*beta_i + epsilon_i";
call sumstats(xnames,xdata,fmtsl,fmts2,fmtnl); @ Print summary statisticcs @

print;

print "Loglikelihood form MCMC:";

print "Number of mixture components = "

mmod ;
" loglikem;

print "Posterior mean
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print "Posterior STD = " loglikes;

print;

print "------— - ";
print;

print "Statistics of Fit Measures for each Subject";

print "Average Predictive Correlation (Muptiple R) = " meanc(br);
print "STD of Predictive Correlations = " stdc(br);

print "Average R-Squared = " meanc(br~2);
print "STD of R-Squared = " stdc(br~2);
print "Average Error Standard Deviation = " meanc(estd) ;
print "STD of Error Standard Deviation = " stdc(estd);
print;

print "----——-------- ";

print "Estimation of the error STD sigma";
if flagtrue == 1;

print "True Sigma = " sigmat;

endif;

print "MLE = " sighat;

print "Posterior Mean = " sigmam;

print "Posterior STD = " sigmas;

print;

print "--————---mm oo ";

print "Statistics for Individual-Level Regression Coefficients";

if flagtrue == 1;

ebeta = meanc(betat’);

sbeta = stdc(betat’);

print "True Beta";

a = {"Variable" "Mean" "STD" };
call outitle(a,fmtsl,fmts2);

bout = xnames~ebeta”sbeta;
call outmat (bout,fmtsl,fmtnl);

endif;

print "MLE Coefficients ";

a = {"Variable" "MeanMLE" "STDMLE"};
call outitle(a,fmtsl,fmts2);

bout = xnames meanc(bhat’) “stdc(bhat’);
call outmat(bout,fmtsl,fmtnl);

print "HB Coefficients ";
a = {"Variable" "PostMean" "PostSTD"};
call outitle(a,fmtsl,fmts2);



6.2. BAYESIAN ANALYSIS 111

ebeta = meanc(betam’);
sbeta = sqrt( meanc( (betas”2)’) + stdc( betam’)"2);
bout = xnames“ebeta”sbeta;

call outmat(bout,fmtsl,fmtnl);

if flagtrue == 1;

print "Comparison of True Beta to Individual Level Estimates";
for i0 (1,rankx,1); i = i0;

print "Variable is " $ xnames[i];

cb = corrx( betat[i,.]’ betam[i,.]’ );

rmse = betat[i,.] - betam[i,.];

rmse = rmsexrmse’;

rmse = sqrt(rmse/nsub);

print "Correlation between true and HB = " cb[1,2];
print "RMSE between true and HB = " rmse;
print;

cb = corrx( betat[i,.]’ bhatli,.]’ );

rmse = betat[i,.] - bhatli,.];

rmse = rmsexrmse’;

rmse = sqrt(rmse/nsub);

print "Correlation between true and MLE = " cb[1,2];
print "RMSE between true and MLE = " rmse;
print;

endfor;

endif;

print "----—————------ "

if mmod > 1;
print "Estimated Group Probabilities psi";

if flagtrue == 1;

a =" ""(knames2’);

call outitle(a,fmtsl,fmts2);
bout = "True"~ (psit’);

call outmat(bout,fmtsl,fmtnl);
endif;

a=" "~ (knames’) ;

call outitle(a,fmtsl,fmts2);

bout "HB Mean"~ (psim’);

bout = bout| ("HB STD"~(psis’));
call outmat (bout,fmtsl,fmtnl);
endif;
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if flagtrue == 1; @ Do Misclassification @
print "---—----"-"--"""""""" - ——— "

clrate = zeros(mmod,mmodt) ;
hbclass = maxindc(zprobm’); @ Get index that correponds to the maximum @
for fk (1,mmodt,1); k =fk;

hbclassk = selif(hbclass, classt .== k);
if rows(hbclassk) > 0;

clratel.,k] = sumc( hbclassk .== mint’);
endif;

endfor;

print "Classification Rates: True versus Maximum HB Posterior Probability";
a =0 $+ "HB Groups ";

a = al(0 $+ "True " $+ ftocv(seqa(l,1,mmodt),1,0));

a = al|"Total";

a=a’;

call outitle(a,fmtsl,fmts2);

a = knames|"Total";
bout = clrate” (sumc(clrate’));

bout = bout| (sumc(bout)’);

bout = a"bout;

call outmat (bout,fmtsl,fmtn2);

print;

endif;

print "------- - - - - -——— - "

print "HB Estimates of Theta";

if flagtrue == 1;

print "True Theta";

a = "Variable"~ (knames2’);
call outitle(a,fmtsl,fmts2);
bout = xnames~thetat;

call outmat (bout,fmtsl,fmtnl);

endif;
print "Posterior Mean of Theta";
a = "Variable"~ (knames’);

call outitle(a,fmtsl,fmts2);
bout = xnames~thetam;
call outmat(bout,fmtsl,fmtnl);

print "Posterior STD of Theta";
call outitle(a,fmtsl,fmts2);
bout = xnames~thetas;
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call outmat (bout,fmtsl,fmtnl);
print "---——-------- "
a = "Variable"~ (xnames’);

print "HB Estimate of Lambda";

if flagtrue == 1;

bl = seqa(rankx,rankx,mmodt) ;

al = 1| (1+b1[1:mmodt-1]);

iptgpt = al”bil;

for fk (1,mmodt,1); k = fk;

lambdatk = lambdat [iptgpt[k,1]:iptgpt(k,2],.];

print "True Lambda for group " k;

call outitle(a,fmtsl,fmts2);

bout = xnames~lambdatk;

call outmat(bout,fmtsl,fmtnl);

endfor;

endif;

print "------——------ ";
for fk (1,mmod,1); k = fk;

print "Posterior Mean of Lambda for group " k;

lambdamk = lambdam[iptgpl[k,1]:iptgplk,2],.];

call outitle(a,fmtsl,fmts2);

bout = xnames~lambdamk;

call outmat(bout,fmtsl,fmtnl);

print "Posterior STD of Lambda for group " k;

lambdask = lambdas[iptgplk,1]:iptgplk,2],.];

call outitle(a,fmtsl,fmts2);

bout = xnames”lambdask;

call outmat(bout,fmtsl,fmtnl);

print "-------— - "
endfor;

print " ==";

output off;
closeall;
endp;

/*

sk ok sk ok ok K ok ok 3 ok K ok ok 3 ok sk 3 ok K ok ok 3 ok K 3k ok K ok ok 3 ok K ok ok K ok sk 3 ok K sk ok K ok sk 3 ok ok ok 3 ok K sk ok ok ok ok 3k ok ok ok
OUTITLE

* Prints header for columns of numbers.
* INPUT
*
*

*

a = character row vector of column names
fmtsl = format for first column
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* fmts2 = format for second column
* QUTPUT

* None

stk o o ok ok ok ok ok ok sk ok ok ok o o ok ok ok ok ok sk ok ok o ok ok ok ok ok sk kK ok ko ok ok ok ok ok sk sk ok ok ok o o ok ok ok ok ok sk ok ok ok ok ok ok ok
*/

PROC (0) = outitle(a,fmtl,fmt2);
local mask, fmt, flag, ncols;

ncols = cols(a);

mask = zeros(1l,ncols);

fmt = fmtl| (ones(ncols-1,1).*x.fmt2);
flag = printfm(a,mask,fmt);

print;

endp;

/*

sk ok sk ok ok ok ok 3 ok 3K 3 ok 3 ok 3k 3 ok 3 ok ok 3 ok 3k 3 ok K ok ok K ok K 3k ok 3 3k ok 3 ok K 3k ok 3 ok sk 3 ok 3k 3k ok 3 ok ok 3 ok 3k 3k ok 3 ok ok K ok
* QUTMAT

* Outputs a matrix:

* (Character Vector)” (Numeric matrix);

* The entries in the numeric matrix have the same format

* INPUT

* bout = matrix to be printed

* fmts = format for string

¥ fmtn = format for numeric matrix

* QUTPUT

* None

sk ok sk ok ok oK ok 3 ok K 3 ok 3 ok ok 3 ok 3 ok ok 3 ok sk 3 ok 3 ok ok 3 ok 3k 3k ok 3 3k ok 3 ok K 3k ok 3 ok ok ok K 3k ok 3 ok ok 3 ok K 3k ok 3 ok ok ok 3k koK

*/

PROC (0) = outmat(bout,fmts,fmtn);

local fmt,mask,flag,ncols, nrows;

ncols = cols(bout);

nrows = rows(bout);

fmt = fmts| (ones(ncols-1,1).*.fmtn);

mask = zeros(nrows,1) “ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);

print;

endp;

/*

sk sk sk sk sk sk sk sk sk sk sk sk ok o o sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk o sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk ok
SUMSTATS

Prints summary statistics for a data matrix

INPUT

names = charater vector of names

data = data matrix

fmtsl = format for string

* ¥ ¥ X X %
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fmts2 = format for string

fmtn = format for numbers

QUTPUT

None

stk koK ok ok ok ok ok ok ok ok ok ok o ok ok ok ok koK ok ok ok ok ok ok ok ok ok o o ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok koK ok ok ok ok ok ok ok ok ok
*/

PROC (0) = sumstats(names,data,fmtsl,fmts2,fmtn);

local a, bout;

a = {"Variable" "Mean" "STD" "MIN" "MAX"};

call outitle(a,fmtsl,fmts2);

bout = names~meanc(data) “stdc(data) “minc(data) “maxc(data);
call outmat (bout,fmtsl,fmtn);

endp;

* X X ¥
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Chapter 7
Probit Model
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7.1 Data Generation

/*

sk sk sk ok ke ok sk sk ok o ok sk ok sk ke ok sk sk sk e ok sk sk ok sk ok ok sk ok sk ok sk ok ok

x  (C) Copyright 1999, Peter Lenk. All Rights Reserved.

* GProbit2.GSS

*-->GProbit1.GSS assumes common design matrix for all subjects
*——>GProbit2.GSS allows for different design matrices.

* Generats data for HB PROBIT Regression Model

* Select one of mvar+l alternatives where the last alternative is
* the base brand.

*

* Y_{ij} = X_{ij}*beta_i + epsilon_{ij}

* fori=1, ..., T and j=1, ..., n_i

* Y_{ij} is mvar vector

* Y_{ijk} is the utility from subject i, choice set j, and alternative k
* for i=1, ..., nsub

* j=1, ..., yrows[i]

* k=1, ..., mvar

*

Alternative mvar+1l is the base vector.

Select alternative k if:
Y_{ijk} > max( Y_{ijl}, 0} for 1 \= mvar+l
Select mvar+1l if max(Y) < O.

beta_i is rankx vector

epsilon_{ij} is N(O,Sigma)

Identification:
sigma[mvar,mvar] = 1

X_{ij} is mvar x rankx
X will have brand intercepts for the first mvar-1 brands,
and coefficients for price and advertising.
To identify the model, we fix the intercept for the last brand to zero.

beta_i = Theta’Z_i + delta_i
delta_i is N(O,Lambda)
Z1 is I1n(income) and z2 = family size.

¥ X X X X X X X X X X X X X X X X X X X ¥

>k >k 3k 3K 3K 5k 5k ok 5k 5k %k >k 5k %k %k %k >k >k 3k >k >k ok 5k %k %k >k %k %k %k %k %k >k >k >k >k
*/

new;
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flagplot = O; @ 1 -> do a bunch of plots e
nsub = 100; @ Number of subjects ¢]
mvar = 3; @ Y_{ij} is mvar vector. Eg: mvar+l brands Q
@ Choice mvar+l is the base brand e
yrows = 10 + ceil(10*rndu(nsub,1)); @ Gives the number of observations per subject @
ntot = sumc(yrows) ; @ total number of observations ¢]
rankx = mvar + 2; @ Brand 1, Brand 2, Brand 3, Price, Advert @
@ Intercept for Brand 4 = 0 @
rankz = 3; @ # rows of Z_i

@ intercept, ln(income), and family size

@ Define some variable names for Gauss file @

@ Use string arrays @

a = seqa(l,1,mvar);

brands = 0 $+ "Brand " $+ ftocv(a,1,0);

brands?2 = brands|"Brand 4";

@ ftocv converts a numeric variable to alpha and $+ is character addition Q

@ so brands is Brand 1, Brand 2, ..., Brand mvar Q@

Xyname = brands|"Price"|"Advert"|"Choice"; @ | stacks matrices on top of each other @
zname = {"Constant", "lnIncome", "HH Size" };

@ To print a character string use: print $ zname; @

@ define two pointers to access xdata matrix @

@ xdata = { x_{11}, ... x_{1n_1}, x_{21}, ..., x_{2,n_2}, ..., x_{nsub,1} ... x_{nsub,n_{nsub}} } @
@ xij = xdata[lxyl[i,j]:uxyl[i,jl,.] @

1xy = zeros (nsub,maxc(yrows)); @ gives lower subscript @

uxy = 1xy; @ gives upper subscript @

s1 = 0;

for i0 (1,nsub,1); i = i0;
for £j (1,yrows[il,1); j = £j;

uxy[i,j] = mvar*(sl+j);
endfor;
sl = sl + yrows[i];
endfor;
1xy = uxy - mvar + 1;

1xy = (0-1xy).*(1lxy .< 0) + 1lxy; @ zero-out the negative entries. @
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@ Generate error variance Sigma Q@

sigmat ={ .2 .1 -.1,
.1 .3 -.05,
-.1 -.056 1

};

sigtl2 = chol(sigmat);

@ Generate error variance Lambda @

@ bl b2 b3 Price Advert Q

lambdat = {
1 .3 -.1 0 0 , @ bl ¢l
.3 .8 -.05 0 0 R Q@ b2 ¢l
-.1 -.05 .5 0 0 s @ b3 ¢l
0 0 0 2 .1, @ price c]
0 0 0 .1 .5 @ advert c]

lambdat = 0.01*lambdat;

1bd12

chol (lambdat) ;

@ generate Z variables @
@Z1 is 1n(income) @

m = 1n(40000);
s = (1n(120000) - m)/1.96;
z1 = m + s*rndn(nsub,1);

@ Mean center zl1@
z1 = z1 - meanc(zl);

0Z2 is family size @

z2 = floor (rndnab(nsub,1,3,4,1,10));

@rndnab is my truncated normal(rows, cols, mean, std, a, b)@
zdata = z17(z2-meanc(z2));

zdata = ones(nsub,1) zdata;

@ Generate theta @
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© Bl - B4 B2-B4 B3-B4 Price Advertising e
thetat = {
1 .5 0 -2 1, @ Intercept Q@
1 .5 -.3 1 -.5, @ Ln(Income) 6]
-.3 -.2 0 -.3 .5 @ Family Size Q@
};

@ Generate partworths beta @
betat = zdataxthetat + rndn(nsub,rankx)*1bdi2;

@ generate X & Y data @

ydata = zeros(ntot*mvar,1); @ 0/1 choice Q

ydatat = ydata; @ true utilities of Brand j - Brand mvar+l @
xdata = zeros(ntot*mvar,rankx);

ipick = zeros(mvar+1,1); @ keep track of the number of choices @

for i0 (1,nsub,1); i = i0;
for £fj (1,yrows[il,1); j = £j;
@ Do subject i, purchase j @
@ xij = brands, price, advertising @

xij = eye(mvar); @ Brand Intercepts @
@ Generate Prices c]
Q Regular Price Price Promotion c]
pl = 5.5+ .1*xrndn(1,1) - (rndu(l,1) < .4)*.3;

p2 = 5.5+ .1*xrndn(1,1) - (rndu(i,1) < .4)*.3;

p3 = 5.2 + .1xrndn(1,1) - (rndu(1,1) < .2)*.2;

p4 = 5.0 + .05*%rndn(1,1);

price = pl-p4l|p2-p4|p3-p4;

xij = xij“price;

@ Do advertising Q

@ Brand 1 heavily advertises, followed by the other four c]
al = rndu(1,1) < .4;

a2 = rndu(1,1) < .4;

a3 = rndu(1,1) < .2;

ad = rndu(1,1) < .1;

advert = al-a4l|a2-ad|a3-a4;

xij = xij"advert;

@ Generate utility for the four brands @

bi = betat[i,.]’;

yij = xij*bi + sigtl2’rndn(mvar,1);
choice = zeros(mvar,1);

ib = maxindc(yijl0);

if ib <= mvar;
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choice[ib] = 1;
endif;
ipick[ib] = ipick[ib] + 1;

@ Save it in the data matrix c]
ydata[lxyl[i,jl:uxyli,jl,.] = choice;
ydatat [1xy[i,jl:uxyli,jl,.] = yij;
xdata[lxyl[i,j]:uxyl[i,j],.] = xij;
@ rows of ydata2 are purchase occassions and columns are brands Q@
@ ydata2 will be used for computing summary statiscs for utilities @
if i == 1 and j == 1;
ydata2 = yij’;

else;
ydata2 = ydata2|(yij’);
endif;
endfor;
endfor;
xydata = xdata“ydata;
/*

3k 5k 3k 5k >k 5k >k 5k 5k 3k 5k %k 5k >k 3k >k 3k 5k 5k 5k >k 3k >k 5k 5k 3k 5k >k 5k >k %k >k %k 5k %k >k %k >k *k k k k

Output to a Gauss file.

Gauss files are faster to read, and they assign variable names to

the columns. Also, Gauss has a number of special commands that operate

on Gauss files, such as file merges, variable recoding, and summary statistics.

First, create a Gauss file. f1 is the file handle.

The Gauss file will be called "XPDATA."

The column will be named by the strings in the character array xyname.
“xyname means use the names in the character string.

0, 8 gives double precision real numbers.

3k 5k 3k 5k >k 5k >k 3k 5k 3k 5k >k 5k >k 3k >k 3k 5k >k 5k >k 5k >k 3k 5k 3k 5k >k 5k >k %k >k %k >k k >k k >k k k

*/

* X X X X X X X X %

create fl1 = xpdata with “xyname, 0, 8;

/*

sk ko ok ok sk sk ok ok e sk sk ok o sk sk ok sk ok sk sk ok sk o sk sk sk sk e ok sk sk ok ok ok ok ok

Next read data into the Gauss file by using the writer command.
f1 is the file handle defined in previous command.

xydata is the data matrix that we just created.

writer returns the number of rows read to f1.

If it is not rows(xydata), something bad happended.

sk sk ok o ke ok sk sk ok e ok sk sk ok o sk sk ok sk ke k sk ok sk ke ok sk sk sk e ok sk sk ok sk ok kok ok

* ¥ ¥ ¥ %
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*/

if writer(f1,xydata) /= rows(xydata);
errorlog "Conversion of XYDATA to Gauss File did not work";

endif;

closeall f1;

@ We do not need fl1 anymore, so close it up. @
@ Do the same for zdata c]

create f1 = zdata with “zname, 0O, 8;
if writer(f1,zdata) /= rows(zdata);
errorlog "Conversion of ZDATA to Gauss File did not work";
endif;
closeall f1;

save yrows = yrows;
save 1lxy = 1xy;
save uxy = uxy;
save ydatat = ydatat;
save sigmat = sigmat;
save betat = betat;
save thetat = thetat;
save lambdat = lambdat;

@ Define formats for fancy printing @
@ Used to print a matrix of alpha & numeric variables @

let fmtla[1,3] = "x.x1f" 10 5; @ Format for printing numeric variable
let fmtsb[1,3] = "x.xs" 8 8; @ Format for printing character variable
mask = zeros(mvar+1,1) “ones(mvar+1,1); @ 0 for alpha, and 1 for numeric
fmtil = fmtsb|fmtla; @ Format for columns of output

bout = brands2” (ipick/ntot*100) ;

print " Brand Market Shares";

print " Brand Market Share (%)";

flag = printfm(bout,mask,fmtl); @ Formated print.

print;

mask = zeros(mvar,1) “ones(mvar,4) ;

fmt2 = fmtsb|fmtlalfmtlalfmtlia|fmtia;

bout = brands~meanc (ydata2) “stdc(ydata2) "minc(ydata2) “maxc(ydata2) ;

print " Summary Statistics for Brand by Purchase Occasion Utilities";

print " Brand Mean STD MIN MAX";

flag = printfm(bout,mask,fmt2);

if flagplot == 1;
_plctrl = -1; Q@ use symbols only in plots @
@ plot beta versus ln(income) and family size @

123
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for fj (mvar,rankx,1); j = £fj;

atitle = "Partworth for " $+ xyname[j] $+ " versus " $+ zname[2];

title(atitle);

xy(zdatal.,2], betat[.,jl);

atitle = "Partworth for " $+ xyname[j] $+ " versus " $+ zname[3];

title(atitle);

xy(zdatal.,3], betat[.,jl);

wait; @ Hit any key to continue @
endfor;

@ plot y versus price for the mvar brands @
for £fj (1,mvar-1,1); j = £j;
@ create a vector to select brands from data matrices @

b = zeros(mvar,1); b[j] = 1;
bd = ones(ntot,1) .*.b; @ .*. is Kronecker product. bd is a vector of 0 & 1 @
x]j = selif(xdata, bd); @ selif extracts the rows where bd = 1 @
Vi = selif(ydatat, bd);
atitle = "Utility for " $+ brands[j] $+ " versus " $+ xyname[mvar];
title(atitle);
xy(xj[.,mvar], yj);
atitle = "Utility for " $+ brands[j] $+ " versus " $+ xyname[mvar+1];
title(atitle);
xy(xjl.,mvar+1], yj);
wait;

endfor;

graphset; @ Set plots back to default values @

endif;

end;
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7.2 Bayesian Analysis

/%

>k >k 3K 3K 3K 3k 3k 5k 5k 3k 3k 5k >k %k %k >k 5k 3K 3k 5k 3k %k %k %k %k %k %k X K 3K 3k 5k %k %k %k %k %

*
*
*

(C) Copyright 1999, Peter Lenk. All Rights Reserved.
PROBIT2.GSS
HB Probit Regression Model.

*——>PROBIT1.GSS has common design matrix for all subjects
*-->PROBIT2.GSS allows different design matrices.

¥ X X X X X X K K XK X X X X X X X X X X K K X X X X X X X X X X X X X *

Uses McCulloch & Rossi’s method for handling identification.
Select one of mvar+l alternatives.
Y_{ij} = X_{ij}*beta_i + epsilon_{ij}

fori=1, ..., ITand j=1, ..., n_i
Y_{ij} is mvar vector

Y_{ijk} is the utility from subject i, choice set j, and alternative k

for i=1, ..., nsub
j=1, ..., yrows[i]
k=1, ..., mvar

Alternative mvar+l is the base vector.

Select alternative k if:
Y_{ijk} > max( Y_{ijl} } for 1 \= k < mvar+l.
Select base brand if max(Y) < 0.

Observe the choices, not the utilities Y_{ij}.
Pick_{ij} is a mvar vector of 0/1.

beta_i is rankx vector
epsilon_{ij} is N(O,Sigma)
Sigma is full

Divide by last element after MCMC to identify coefficients.

X_{ij} is mvar x rankx
X will have brand intercepts,

and coefficients for price and advertising relative to the base brand.

beta_i = Theta’Z_i + delta_i

125
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delta_i is N(O,Lambda)
Z1 is I1n(income) and z2 = family size.

PRIORS

Sigma is Inverted Wishart(sf0,sg0)

Theta is maxtrix normal (u0,vO0).

That is, vec(Theta) is N(vec(u0),v0).

vec(theta) stacks the columns of theta.

Lambda is Inverted Wishart(f0, g0)
sk stk s ok stk ok ok ok sk o s ok sk sk ok sk sk ok sk ok sk ok ok skok ok

* X X X X X X *

*/
new;
outfile = "resultsl.dat"; @ Specify output file for saving results
@ outfile is a string variable that contains a file name
inxy = "xpdata"; @ Name of Gauss file with X, Choice data
inz = "zdata"; @ Name of Gauss file with Z data
flagtrue =1; @ 1 -> knows true parameters from simulation
/*

>k >k 5k 3K 3K 3k 3k 5k 5k 3k 3k 5k 5k %k %k >k 5k 3k 3k 5k 3k %k %k %k %k %k %k X K >k 5k 5k %k %k %k %k k%

* Initialize parameters for MCMC
skt ok sk skok sk ok sk sk sk sk ok sk sk sk ok ok sk sk sk ok sksk sk sk ok sk sk sk sk ok

*/

smcme = 200; @ number of iterations to save for analysis

skip =1; @ Save every skip iteratiomns

nblow = 100; @ Initial transition iterations

nmcmc = nblow + skip*smcmc; @ total number of iterations

nygen =1; © Do nygen generations of Y for each MCMC iteration.
/%

>k >k 3k 3K 3K 3k 3k 5k 5k 3k 3k 5k %k %k %k >k >k 5k 5k 5k 3k %k %k %k >k %k %k X K >k >k 5k %k %k %k >k k%

* Get data
ook sk ok ok ok ok o ok sk ok ok ok sk sk ok s ok ok o ok sk ok ok ok ok ok ok ok ok kK

*/

@ Get dimensions and pointers Q@

load yrows = yrows; @ Number of observations per subject e
load lxy = 1xy; @ xij = xdatallxyl[i,j]:uxyli,j]l,.] ¢
load uxy = uxy;

nsub = rows(yrows) ; @ number of subjects

mvar = uxyl[1,2] - uxyl[1,1]; @ Y_{ij} is a mvar vector.
ntot = sumc(yrows) ;

@ Input Gauss files @
open f1 = "inxy; @ Get Gauss file for X, Y data

@ © © © ©

@ 0 © © ©
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xpdata

ci
Xpnames
ynames
ynames2
rankxp
rankx
Xnames

@ Opens Gauss file & assigns file handle f1 @

= readr(f1,rowsf(f1)); @ "p" for picks @

@ readr reads in Gauss file with file handle f1. @

@ rowsf(fl) returns the number of rows in the Gauss file. @

Q@ readr reads rowsf(fl) rows, which is the entir dataset. Q@

= close(f1);

= setvars(inxy); @ Get the variable names that accompnay X, Y data @

= xpnames [1:mvar] ; Q@ Use names of interceps for names of components of Y Q@
= ynames|" Base ";

= cols(xpdata);

= rankxp - 1; @ # of X variables (includes intercept) @

= xpnames [1:rankx] ;

@ Last row of xpdata is the choice vector. Q@

open f1
zdata
ci
znames
rankz
thdim

= "inz;

= readr (f1,rowsf(f1)); @ First column of zdata is a vector of ones @
= close(f1);

= setvars(inz);

= cols(zdata); @ # of Z variables (includes intercept) @

= rankx*rankz; @ dimension of vec(theta) @

@ Compute some sufficient statistics @

ztz

/*

= zdata’zdata;

>k >k >k 3k 5k 5k ok 5k 5k 5k >k %k %k %k >k >k >k >k 5k 5k 5k >k %k >k %k %k %k >k >k >k >k >k %k >k >k >k >k %

* Initialize Priors
sk ok ok sk ok o ok o ok o ok ok ok ok ok ok ok ok ok ok o ok o ok sk ok sk ok ok ok ok ok ok ok ok K

*/

@ Prior

u0

v0
vOi
v0iu0

@ Prior
sf0
sg0i

for theta is N(uO,v0) @

= zeros(thdim,1);

= 100*eye (thdim) ; @ thdim = rankx*rankz 6]
= invpd(v0); @ used in updating theta @
= v0i*u0; @ used in updating theta @

for sigma is IW(sfO, gsO) @
= mvar+2; sfn = sfO + ntot;
eye(mvar) ;

@ Lambda"{-1} is W_rankx(f0,g0 ) @
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@ fO = prior df, g0 = prior scale matrix @

f0 = rankx+2; fOn = f0 + nsub;
g0i = eye(rankx); @ g0~{-1} @
/*

3k 5k 3k 5K >k 3k >k 5k 5k 3k 5k >k 3k >k 3k 5k 5k 5k >k 5k >k 5k 5k >k 5k %k 5k %k %k >k %k 5k %k >k *k %k Xk

* Initialize MCMC
ook ok ok ook sk ok ok sk ok ok sk sk ok ok sk ook ok ok ok sk ook ok ok ok

*/

ydata = xpdatal.,rankxp]; @ latent y variables
beta = zeros(nsub,rankx) ;

sigma = eye(mvar);

sigmai = invpd(sigma);

theta = zeros(rankz,rankx);

lambda = eye(rankx);

lambdai = invpd(lambda) ;

CHAPTER 7. PROBIT MODEL

@ Define data structures for saving iterates & computing posterior means & std Q@

betam = zeros(nsub,rankx); @ posterior mean of beta c]
betas = zeros (nsub,rankx) ; @ posterior std of beta Q@
C = mvar* (mvar+1)/2;

sigmag = zeros(smcmc,c); @ save iterations for sigma ¢
thetag = zeros(smcmc,thdim);

c = rankx*(rankx+1)/2;

lambdag = zeros(smcmc,c); @ save iterations for lambda Q@
ydatam = zeros (mvar*ntot,1); @ posterior mean utilities Q@
ydatas = ydatam; @ posterior std utilities ¢
/*

3k 3k 3K 5k 3k 3k 5k 3k 5k 5k 5k 5k %k 5K 5k 3k >k 5K 3k %k 5k 3k 5k >k 5k 3k %k 5k 5k %k %k 5k >k >k Kk >k k %k

* Do MCMC

Kok ok ok ok ok ok ok K ok ok ok K ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok

x/

etime = hsec;
@ Do the initial transition period @
for il (1,nblow,1); imcmc i1;
call getprobit;
if imcmc == 100*floor (imcmc/100);
dtime = (hsec -etime)/(60%100);
print "TP Iteration = " imcmc " D.time =
etime = hsec;
endif;

" dtime;
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endfor;

etime = hsec;

for i1 (1,smcmc,1); imcmc = il; @ Save smcmc iterations 6]
for i2 (1,skip,1); jmcmc = i2; @ Save every skip iterations G]
call getprobit;
endfor;
if imemc == (100/skip)*floor (skip*imcmc/100) ;
dtime = (hsec - etime)/(60%100);
tit = nblow + skip*imcmc;
print "Iteration = " tit " D.time = " dtime;
etime = hsec;
endif;
@ When saving parameter, divide by sqrt(sigma[mvar,mvar]) or sigma[mvar,mvar] @
sqrtsiglast = sqrt(sigmal[mvar,mvar]);

vech(sigma/sigma[mvar,mvar])’;
@ vech({1 23, 456, 789} ={1, 45, 789}@

sigmag[imeme, .]

@ xpnd is the inverse operator of vech Q
thetag[imcmc,.] = vecr(theta/sqrtsiglast)’;
betam = betam + beta/sqrtsiglast;
betas = betas + (beta/sqrtsiglast) ~2;
lambdag[imcmc, .]= vech(lambda/sigma[mvar,mvar])’;
ydatam = ydatam + ydata/sqrtsiglast;
ydatas = ydatas + (ydata/sqrtsiglast)”2;
endfor;
/%

>k >k K 3K 3K 3K 3K 5k 5k 3k 3k 5k 5k 5k >k %k %k 5K 3K 3K 3K 3k 5k 5k %k %k >k 5k >k K Xk Kk Kk k

*  Compute Posterior Means and STD
skt ok ok sk skok ok ok sk sk ok sk sk sk ok ok sk sk sk sk ok ok sk sk sk ok sk sk ok

*/

ydatam = ydatam/smcmc;

betam = betam/smcmc;

thetam = reshape (meanc(thetag) ,rankz,rankx) ;

sigmam = xpnd(meanc(sigmag)) ; @ xpnd reconstructs symmetric matrix @
lambdam = xpnd(meanc (lambdag)) ;

ydatas = sqrt( abs(ydatas - smcmc*ydatam™2)/smcmc);

betas = sqrt( abs(betas - smcmcxbetam”2) /smcmc) ;

thetas = reshape(stdc(thetag) ,rankz,rankx) ;

sigmas = xpnd(stdc(sigmag));

lambdas = xpnd(stdc(lambdag)) ;
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if flagtrue == 1; @ Did a simulation, so we have the true utilities. @
@ Get true parameters if simulation @

load ydatat = ydatat;
load betat = betat;

load sigmat = sigmat;
load thetat = thetat;
load lambdat = lambdat;

@ Pick out each dimension of Y_{ij} and compute fit statistics @

multir = zeros(mvar,1);
rsquare = zeros(mvar,1);
stderr = zeros(mvar,1);
for fm (1,mvar,1); m = fm;
b = zeros(mvar,1); b[m] = 1;
bn = ones(ntot,1) .*.b;
ym = selif(ydatat,bn);
yhatm = selif (ydatam, bn);
cm = corrx(ym~yhatm) ;
multir [m] = cm[1,2];
rsquare[m] = cm[1,2]72;
resid = ym - yhatm;
stderr [m] = sqrt(resid’resid/ntot);
endfor;
endif;

/*

stk koo ok ok ok ok oo o ok o o ok ok ok sk sk sk sk sk sk sk ok ok o o o o ok
* Do some output

stk sk sk sk sk sk sk sk sk sk ok ok o ok sk ok okok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok
*/

call outputanal;

@ Plot saved iterations against iterations number @

t = seqa(unblow+skip,skip,smcmc); @ saved iteration number @
title("Latent Error Cov vs Iteration");

xy(t,sigmag) ;

title("Theta vs Iteration");

xy(t,thetag);

title("Lambda vs Iteration");
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xy(t,lambdag) ;
graphset;

end;

/*
ok ok ok ok sk ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K
* GETPROBIT
*  Does one iteration of the HB regression model.
INPUT
Global Variables
QUTPUT
Global Variables
sk ok ok ok 3 ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok
x/
PROC (0) = getprobit;
local zbl, bi, vibn, vibnl2, ebin, yhat, sse, sn, resid, gni, gn, gnl2, w, suml, sum2,
io, i, f£j, j, xij, yij, sgni, sgn, sgnl2, muij, cij, ic,
v, sigll, siglli, smigni, signi;

* ¥ ¥ ¥

/%

Kok Kok KK KoK KoK KoK Kok KoK KoK K ok Kok oK ok ok Kok ok ok o

* Compute quantities used in conditional normal distribution.

* Need to run cndcov(sigma) before generating the random utilities.
stk ok ok ok oK o oK ok oK ok oK ook ok K ok R oK oK ok oK ok o oK ok ok K ok ok oK o ok

*/

{smigni, signi} = cndcov(sigma);

/*

stk Kok oK o oK ok oK ok oK oK ok Kok oK oK ok K ok K oK oK ok Kok ok ok o

smigni is a mvar x (mvar-1) matrix and

used in the conditional mean of Y_{i} given Y_{not i}:
smignili,.] = sigma_{i, not i}*sigma_{not i, not i)~{-1}

signi is a mvar matrix and

signil[i]l = STD(Y_{i}| Y_{mot i})

sqrt(sigma_{ii} - sigma_{i,not i}*sigma_{not i, not i}"{-1} sigma_{not i,il})
stk ok ok o ok o ok ok o ok R oK ook ok K ok o oK oK ok oK ok ok oK o sk ok ok o K

*/

* X ¥ ¥ X *x

/*

stk sk sk sk sk ok ok ok ok ok ok ok ook KooK oK oK oK oK oK oK oK ook K o
* Generate Y_{ij}, the utility.

*
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* If alternative k (k = 1, .., mvar) was selected, then

* Y_{ij} is N(X_{ij}*beta_i, Sigma) and Y_{ij}[k] >= max(Y_{ij})

stk ok sk ko sk ksl sk ok sk sk sk sk sk e sksk ok sk sk ok sk ok

*/

@ Do multiple loops of generating the Utilities for each MCMC Iteration @

for i0 (1, nsub, 1); i = i0;
for £fj (1,yrows[i]l,1); j = £j;

xij = xpdata[lxyl[i,j]:uxyl[i,j],1:rankx];
cij = xpdatal[lxyl[i,j]:uxyli,j],rankxp]; @ Choice vector (¢
yij = ydatal[lxy[i,j]:uxy[i,jl];
mui j = xij*(betali,.]’); @ Mean for y_{ij} @
if maxc(cij) == 0; @ selected base brand mvar + 1@
ic = mvar+1;
else; @ selected one of brand 1 to mvar @
ic = maxindc(cij);
endif;
yij = rndnigtj(yij, ic, muij, smigni, signi, nygen);
ydatallxyl[i,j]l:uxyl[i,jl] = yij; @ store the utility
endfor;
endfor;
/*

AR K KKK oK Kok KK KKK oK Kok K ook Kk o

* Generate beta

* beta_i is N(mbin, vbn)

* vbn = ( sum_{j=1}"{n_i} X_{ij}’Sigma~{-1} X_{ij} + Lambda"{-1} }~{-1}

* mbin = vbn*( sum_{j=1}"{n_i} X_{ij}’Sigma”{-1}Y_{ij} + Lambda~{-1}*Theta*Z_i)
KKK KRR ok K KKK KK oK K ok ok ok KoK KoK ok K ok ok

*/
zbl = zdataxtheta*xlambdai;
for i0 (1, nsub,1); i = i0;
suml = 0;
sum?2 = 0;
for £j (1,yrows[il,1); j = £j;
xij = xpdata[lxyl[i,j]:uxyl[i,j],1:rankx];
yij = ydatal[lxy[i,j]:uxyl[i,j1];
suml = suml + xij’sigmai*xij;
sum?2 = sum2 + xij’sigmaix*yij;
endfor;
vibn = suml + lambdai;
vibnl2 = chol(vibn);
ebin = sum2 + zbl[i,.]’;

bi = cholsol(ebin + vibni2’rndn(rankx,1), vibnl2);



7.2. BAYESIAN ANALYSIS 133

betali,.] = bi’;
endfor;

/*
skokokok ok ok ok okok ok ok skokok o ok sk skok ok ok sk ko ok sk okok ok
* Generate sigma
KoK ok ok KoK ok ok KK KoK ok oK Kok ok ok K ok ok ok K ok ok K K oK
*/
@ Compute SSE c]
sse = zeros(mvar,mvar);
for i0 (1, nsub,1); i = i0;
for £j (1,yrows[i]l,1); j = £j;

Xij = xpdatallxy[i,j]:uxy[i,j],1:rankx];
yij = ydatallxy[i,j]l:uxyl[i,jl1];
resid = yij - xijx(betali,.]’);
sse = sse + residx*resid’;
endfor;
endfor;
sgni = sg0i + sse;
sgn = invpd(sgni);
{sigmai, sigma} = wishart(mvar,sfn,sgn);
/*

ok ok ok K ok ok ok K ok ok K ok ok K K K ok ok K ok ok K ok ok ok ok oK

* Generate Theta and Lambda from multivariate model:

* B = ZxTheta + N(O,Lambda)

ok sk ok ok ok ok o ok K ok ok ok K ok ok ok ok K ok ok ok kK

*/

{theta, lambda, lambdai} =
getmulreg(beta,zdata,ztz,theta,lambda,lambdai,v0i,v0iu0,f0On,g01i) ;

endp;

/*

sk ko o ok ok sk ok ok o sk ok ok o sk sk ok o sk sk ok sk ok sk sk ok sk e ki ok ok

* GETMULREG

*  Generate multivariate regression parameters.

* Yd = Xd*parmat + epsilon
*

*  INPUT

*

yd = dependent variables
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* xd = independet variables

* xdtxd = xd’xd

*

* parmat = current value of coefficient matrix

* var = current value of covariance matrix

* vari = its inverse

* vOi = prior precisions for bmat

* v0iu0 = prior precision*prior mean for bmat
* fOn = posterior df for sigma

* g0i = prior scaling matrix inverse for sigma

*

*  OUTPUT

* parmat = updated rankx x mvar coefficient matrix
* var = updated variance

* vari = updated inverse of sigma

*

* Calling Statement:

{parmat, var, vari} = getmulreg(yd,xd,xdtxd,parmat,var,vari,v0i,v0iu0,fOn,g0i);
ok ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok o

*/

PROC (3) = getmulreg(yd,xd,xdtxd,parmat,var,vari,v0i,v0iu0,fOn,g0i);

local vbl2, ubn, par, pdim, resid, gni, gn, rp, cp;

rp = rows(parmat) ;
cp = cols(parmat) ;
pdim = rp*cp;

/*

KKK KoK KoK KKK oK K ok K KKK oK K oK K ook Kok K o
* Generate parmat from N_{rp x cp}(M,v)

* par = vecr(parmat)

* par is N(u,V) whee u = vec(M’);

* V= (Xd’Xd.*.Var~{-1} + V_0"{-1})"{-1}

* u = Vx( (Xd’.*.Var~{-1}) *vec(¥d’) + V_0"{-1}u_0 )
KKK KKK oK Ko KK KKK Kok Kook ok KKK ok K o

*/

vb12 = chol(xdtxd.*.vari + v0i);

ubn = ( (xd’).*.vari )*vecr(yd) + v0iuO;

par = cholsol(ubn + vb12’rndn(pdim,1), vb12);
parmat = reshape(par,rp,cp);

/%

>k >k >k K 3K 3K 3K 3K 5k 5k 3k 3k 5k 5k 5k %k %k %k >k 3k 3k 5k 5k %k %k %k %k >k >k %k %k %
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* Generate Var

*  Var~{-1} is Wishart df = fOn, scale matrix = gn
Kok Kok ook oK ok Kok oK oK ok Kok K ok oK oK ok Kok KoK ok o

*/

resid = yd - xd*parmat;

gni g0i + resid’resid;

gn invpd(gni) ;

{vari, var} wishart(cp,fOn,gn) ;

retp(parmat,var,vari) ;
endp;

/*
sk sk sk stk ok ok ok ok oo o s sk ok ok ok ok sk sk sk sk sk sk sk sk ok sk sk sk ke ke ok ok
CNDCOV
Generates some quantities used in computing conditional normal distribtioms.
INPUT:
sigma = Cov(Y)

*
E S
*
*
*
* QUPUT:

*  smigni = used in E(Y_il|Y_{not i}).
*  signi STD(Y_i |Y_{not i}).
*

*

*

*

*

*

smigni is a mvar x mvar-1 matrix and
smigni[i,.] = sigma_{i, not il}*sigma_{not i, mnot i)~{-1}
signi is a mvar vector and
signili] =
sqrt(sigma_{ii} - sigma_{i,not i}*sigma_{not i, not i}"{-1} sigma_{not i,i})
sk sk ok ke ok sk sk ok o ok ok sk ok sk ok ok sk sk sk ke ok sk sk ok sk ok ok sk ok sk e ok sk sk ok
x/
PROC (2) = cndcov(sigma);
local smigni, signi, sgmvar, ei, einot, s2noti, sinoti, s2notii, iO, ij;

sqmvar = seqa(l,1,mvar);
smigni = zeros(mvar,mvar-1); @ Sigma_{ij}*Sigma_{jjr {-1} @
@ smuigj is used in computing mean of i given not i @

signi = zeros(mvar,1); @ sigma_{ii} - sigma_{ij}*Sigma_{jj} {-1}*sigma_{ji} @

Q@ signi is STD of Y[i] given not i @
for i0 (1,mvar,1); i = i0;

ei = sqmvar .== i; @ eil[i] = 1, and eil[j] = 0 for j /=1

einot =1 - ei; @ einot[i] = 0, and einot[j] =1 for j /=1
@ selif(x,e) selects rows of x with e[j] =1 @

s2noti = selif( selif(sigma,einot)’,einot)’;

@ s2noti = sigmalj,k] with j \= 1 and k \= 1 @

135
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sinoti = selif( selif(sigma’,ei)’,einot);
@ sinoti is the ith column of sigma with the ith row removed @

s2notii = invpd(s2noti);

smignili,.] = sinoti’s2notii;

signi[i] = sqrt(sigmali,i] - smigni([i,.]*sinoti);
endfor;
retp(smigni, signi);
endp;

/*

stk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok skok ok ok ok

* RNDNIGTJ.GSS

*  Generate a vector normal where the ith elememt is greater than

*  the rest.
*  INPUT
* Y = current value of Y form MCMC Iterations
* IPICK = which component is greater than the rest, and zero
* mu = mean vector
* smigni = used in computing mean of y[i] given not y[i].
* signi = std of y[i] given not y[i].
nygen = number of generations before returning random utility.
*  QUTPUT
* Y = mvar vector where Y[i] > max( Y[j] for j not equal to i )

>k >k 3k 3K 3K 3k 3k 3k 5k 3k 5k 5k %k %k %k >k >k 5k 5k 5k 3k %k %k %k >k %k %k %k K >k >k >k 5k %k %k >k >k >k %k %k %

*/

PROC rndnigtj(y,ipick,mu, smigni, signi, nygen);
local mvar, sqmvar,ei,einot,munoti,ynoti,
mui, sii, ybot,ytop,yi, i, fori, j, fj ;

mvar = rows(mu) ; @ Dimension of problem 6]
sqmvar = seqa(l,1,mvar);
for £j (1, nygen, 1); j = £j; @ Do muliple loops of generating Y
for fori (1,mvar,1); i = fori;
ei = sgmvar .== i; @ eili] =1

and ei[j] = 0 for j /=1
0, and einot[j] =1 f

[

einot =1 - ei; @ einot[i]

@ selif(x,e) selects rows of x with e[j] = 1 @

ynoti = selif(y,einot); @ mvar - 1 vector that does not have y[i]

munoti = selif(mu,einot); @ munoti is mvar-1 vector that does not have mul[il
mui = mul[i] + smignil[i,.]*(ynoti - munoti);

sii = signil[i]; @ STD of y[i] given rest @
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if i == ipick; @ i is the selected choice, yi > max(yj,0)@
ybot maxc (ynoti|0);
y[i] rndtnb (mui,sii,ybot);
@ generates a random normal, trucnated below (in plrand.src) @
@ rndtnb(mu,std,bot): mu = vector or means, std = vector of STD, bot = lower limit @

else; @ i was not selected Q
if ipick <= mvar;
ytop = y[ipick]; @ Maximum element @
else; @ Base brand mvar+l selectd, so y < 0 @
ytop = 0;
endif;
y[i] = rndtna(mui,sii,ytop);

@ generates a random normal, truncated above (in plrand.src) @
@ rndtna(mu,std,top): mu = vector of mean, std = vector of STD, top = upper limit @

endif;
endfor; @ End loop over generating one Y vector c]
endfor; @ End loop over generating nygen Y vectors @
retp(y);
endp;

/*
ook ok ok ook sk ok s ok ok ook sk sk ok ok sk o ok sk sk ok ok sk ook ko ok ok sk ook sk ok ok ok ok ok ok ok
* QUTPUTANAL

*  Does analysis of output and save some results
stk ke ok sk ok sk ok ok sk sk sk sk ke sk sk e ok sk sk ok sk sk sk sk sk sk sk sk s sk sk sk ok sk sk sk sk sk ok e kok

*/

PROC (0) = outputanal;

format 10,5;

local bout, sout, ebeta, sbeta, cb, rmse, fmtsl,fmts2, fmtnl, fmtn2, a,b, flag, iO, i;

let fmtni[1,3] = "x.x1f" 10 5; @ Format for printing numeric variable Q
let fmtn2[1,3] = "x.*x1f" 10 O; @ Format for numeric variable, no decimal Q
let fmts1[1,3] = "-*.%s" 10 9; @ Format for alpha, left justify Q
let fmts2[1,3] = "*.*xs" 10 9; @ Format for alpha, right justify @
format 10,5; @ Default pring format Q

output file = “outfile reset; @ outfile is the file handle for the output file Q
@ Route printed output to the defined by outfile Q
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print "Results from PROBIT1.GSS";

print "Hierarchical Bayes Multivariate Probit";
print;

print "Select one of mvar+l alternatives.";

print "Alternative mvar+l is the base alternative.";
print "Observe choice k if Y_{ij}[k] >= max(Y_{ij},0).";
print "Choose base if all the y’s < 0.";

print;

print "Latent Utility Model:";

print "Y_{ij} = X_{ij}*beta_i + epsilon_{ij}";

print "Y_{ij} is a mvar vector";

print "epsilon_{ij} is N(O,Sigma).";

print "Assumes that Sigmal1,1] = 1";

print;

print "beta_i = Theta’z_i + delta_i";

print "delta_i is N(O, Lambda)";

print;

print "Ouput file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data Q
print;

print;

print "--————----mm ";

print;

print "MCMC Analysis";

print;

print "Total number of MCMC iterations = " nmcmc;

print "Number of iterations used in the analysis = " smcmc;

print "Number in transition period = " nblow;

print "Number of iterations between saved iterations = " skip-1;

print;

print "-----—7—------"" "

print "Number of subjects = " nsub;

print "Number of observations per subject:";

print " Average = " meanc(yrows);

print " STD = " stdc(yrows);

print " MIN = " minc(yrows);

print " MAX = " maxc(yrows) ;

print;

print "Total number of Y observations = " ntot;
print "Dimension of Y_{ij} = " mvar;
print "Number of alternatives = " mvar+1;

rankx " (including intercept)";
rankz " (including intercept)";

print "Number of dependent variables X
print "Number of dependent variables Z
print;
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print "Dependent variables are " $xpnames [rankxp];

print " Summary Statistics for Choices";

call sumstats(ynames,reshape(xpdatal.,rankxp],ntot,mvar),fmtsl,fmts2,fmtnl);
print;

print "First level equation for Latent Utilities";

print "Y_{ij} = X_{ij}*beta_i + epsilon_{ij}";

print;

print " Summary Statistics for X";

call sumstats(xnames,xpdatal.,l:rankx],fmtsl,fmts2,fmtnl);
print;

print "Second level equation:";
print "beta_i = Theta’z_i + delta_i";

print;

print " Summary Statistis for Z:";

call sumstats(znames,zdata,fmtsl,fmts2,fmtnl);

print;

if flagtrue == 1; @ Print some fit for utilities @
print "----————— ";
print "Fit between true and estimated utilities for each dimension.";
sout = {"Variable" "Multi-R" "R-Sqr" "ErrorSTD"};
call outitle(sout,fmtsl,fmts2);
bout = ynames multir“rsquare”stderr;
call outmat(bout,fmtsl,fmtnl);

endif;

print "---—————---——————— ";

print;

print "Statistics for Individual-Level Regression Coefficients";
if flagtrue == 1;

ebeta = meanc(betat);

sbeta = stdc(betat);

print "True Beta";

sout = {"Variable" "Mean" "STD"};

call outitle(sout,fmtsl,fmts2);

bout = xnames~ebeta”sbeta;

call outmat (bout,fmtsl,fmtnl);
endif;

print "HB Estimates of Beta";

sout = {"Variable" "PostMean" "PostSTD" };
call outitle(sout,fmtsl,fmts2);

ebeta = meanc(betam);
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sbeta = sqrt( meanc( (betas”2)) + stdc( betam) 2);
bout = xnames~ebeta”sbeta;

call outmat (bout,fmtsl,fmtnl);

print;

if flagtrue == 1;
print "Comparison of True Beta to Individual Level Estimates";
for i0 (1,rankx,1); i = i0;
print "Variable " $ xnames[i];

cb = corrx( betat[.,i] “betam[.,i] );
rmse = betat[.,i] - betam[.,i];
rmse = rmse’rmse;
rmse = sqrt(rmse/nsub) ;
print "Correlation between true and HB = " cb[1,2];
print "RMSE between true and HB = " rmse;
print;
endfor;
endif;
print "-----——7------- "
print "Estimation of the error covariance Sigam";
sout =" "~ (ynames’) ;

if flagtrue == 1;
print "True Sigma";
call outitle(sout,fmtsl,fmts2);

bout = ynames”~sigmat;
call outmat (bout,fmtsl,fmtnl);
print;

endif;

print;

print "Posterior Mean of Sigma";
call outitle(sout,fmtsl,fmts2);

bout = ynames~ sigmam;
call outmat (bout,fmtsl,fmtnl);
print;

print "Posterior STD of Sigma";
call outitle(sout,fmtsl,fmts2);

bout = ynames” sigmas;

call outmat (bout,fmtsl,fmtnl);

print;

print Mo ",
print;

print "HB Estimates of Theta";

sout =" "“(xnames’);
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if flagtrue == 1;
print "True Theta";
call outitle(sout,fmtsl,fmts2);
bout = znames~thetat;
call outmat (bout,fmtsl,fmtnl);
print;
endif;
print "Posterior Mean of Theta";
print outitle(sout,fmtsl,fmts2);
bout = znames~thetam;
call outmat(bout,fmtsl,fmtnl);
print;
print "Posterior STD of Theta";
call outitle(sout,fmtsl,fmts2);

bout = znames thetas;

call outmat(bout,fmtsl,fmtnl);

print;

print Me——mm e ",
print;

sout = " "“(xnames’);

print "HB Estimate of Lambda";
if flagtrue == 1;
print "True Lambda";
call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdat;
call outmat(bout,fmtsl,fmtnl);
print;
endif;
print "Posterior Mean of Lambda";
call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdam;
call outmat(bout,fmtsl,fmtnl);
print;
print "Posterior STD of Lambda";
call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdas;
call outmat(bout,fmtsl,fmtnl);
print;
print " ;

output off;
closeall;
endp;
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/*

KA KKK KoK oK KK KKK oK Kok oK oK KK KoK K ok oK ok ok KoK oK K ok K ok ok ok

*  TR(X)

* Compute the trace of X. Functional call (FN).
KKK AR KKK KK KKK KKK KKK KKK Kok K o

*/

fn tr(x) = sumc(diag(x));

/*

sk ok sk ok ok K ok sk o ok K ok ok 3 ok K 3 ok ok sk 3 ok K o ok 3 ok sk sk ok 3 ok sk 3 ok K ok ok ok sk 3 ok ok ok oK
* QUTITLE

* Prints header for columns of numbers.

* INPUT

* a = character row vector of column names
* fmtsl = format for first column

* fmts2 = format for second column

* QUTPUT

* None

ok sk ok ok K ok ok 3 ok K 3k ok 3 ok ok 3 ok K ok ok 3 ok ok sk ok ok ok 3 ok ok sk ok ok ok ok k sk ok ok K

x/

PROC (0) = outitle(a,fmtl,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);

mask = zeros(1,ncols);

fmt = fmt1l| (ones(ncols-1,1) .*.fmt2);

flag = printfm(a,mask,fmt);

print;

endp;

/*

st ok sk sk sk sk ok sk ok ok ok ok o o o ok ok ok sk sk sk sk sk sk ok ok ok o o o o ok ok ok sk sk sk sk sk sk ok ok ok ok
* OUTMAT

*  Qutputs a matrix:

* (Character Vector) ™ (Numeric matrix);

* The entries in the numeric matrix have the same format
* INPUT

* bout = matrix to be printed

* fmts = format for string

* fmtn = format for numeric matrix

* QUTPUT

* None

>k >k K 3K 3K 3K 3k 5k 3k 3k 3k 5k 5k >k %k %k 5k 3K 3K 3k 3k 3k %k %k 5k %k %k X K 3K 3K 5K 5k 5k %k %k %k >k >k K kK Kk k
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*/
PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;

ncols = cols(bout);

nrows = rows (bout) ;

fmt = fmts| (ones(ncols-1,1).*.fmtn);
mask = zeros(nrows,1) “ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt) ;

print;

endp;

/*

ok sk ok ok K ok ok 3 ok K ok ok 3 ok K 3k ok K ok sk 3 ok K ok ok 3 ok K sk ok 3 ok ok 3 ok K ok ok ok sk ok ok ok ok
* SUMSTATS

*  Prints summary statistics for a data matrix
* INPUT

* names = charater vector of names
* data = data matrix

* fmtsl = format for string

* fmts2 = format for string

* fmtn = format for numbers

* QUTPUT

* None

ok sk ok ok K ok ok 3 ok K ok ok 3 ok K 3k ok K ok ok 3 ok K sk ok 3 ok sk ok K ok ok ok sk ok ok ok ok 3k koK
x/

PROC (0) = sumstats(names,data,fmtsl,fmts2,fmtn);
local a, bout;

a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outitle(a,fmtsl,fmts2);
bout = names “meanc(data) “stdc(data) “minc(data) “maxc(data);

call outmat(bout,fmtsl,fmtn);
endp;
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Logit Model
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8.1

/%

CHAPTER 8. LOGIT MODEL

Data Generation

SRR KoK KKK KKK KK KKK oK K oK KKk ok K o
x  (C) Copyright 1999, Peter Lenk. All Rights Reserved.
* GLOGIT2.GSS

*

*

¥ ¥ X X %

¥ XK X X X X X X X X X X X X X X X ¥

Generats data for HB LOGIT Regression Model

—-—-> Different choice matrices.

Select one of mvar+l alternatives where the last alternative is
the base brand.

P(C_{ij} = kIX_{ij}) = exp(X_{ij}[k]’beta_i)/(1 + sum exp(X_{ij}[1]’beta_i))

for i=1, ..., nsub
j=1, ..., yrows[i]
k=1, ..., mvar+1

Alternative mvar is the base vector.

beta_i is rankx vector

X_{ij} is mvar x rankx
X will have brand intercepts for the first mvar-1 brands,
and coefficients for price and advertising.
To identify the model, we fix the intercept for the last brand to zero.

beta_i = Theta’Z_i + delta_i
delta_i is N(O,Lambda)
Z1 is I1n(income) and z2 = family size.

>k >k 5k 3K 5k 5k ok ok 5k 5k >k %k %k %k %k >k >k >k >k >k >k ok 5k %k >k >k %k %k %k >k %k >k >k >k k

*/
new;
flagplot = 1; @ 1 -> do a bunch of plots
nsub = 100; @ Number of subjects
mvar = 3; @ mvar+1l brands
@ Choice mvar+l is the base brand
yrows = 20 + ceil(10*rndu(nsub,1)); @ Gives the number of observations per subject
ntot = sumc(yrows) ; @ total number of observations
rankx = mvar + 2; @ Brand 1, Brand 2, Brand 3, Price, Advert @

©@ © © © ©
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rankz = 3; Q@ # rows of Z_1i Q
@ intercept, ln(income), and family size @

@ Define some variable names for Gauss file @

@ Use string arrays @
a = seqa(l,1,mvar);
brands =0 $+ "Brand " $+ ftocv(a,1,0);

brands2 = brands|"Base";
Xyname = brands|"Price"|"Advert"|"Choice"; @ | stacks matrices on top of each other @
zZname = {"Constant", "lnIncome", "HH Size" };

@ To print a character string use: print $ zname; @

@ define two pointers to access xdata matrix @

@ xdata = { x_{11}, ... x_{1n_1}, x_{21}, ..., x_{2,n_2}, ..., x_{nsub,1} ... x_{nsub,n_{nsub}} } @
@ xij = xdatallxyl[i,j]:uxyli,jl,.] @

1xy = zeros(nsub,maxc(yrows)); @ gives lower subscript @

uxy = 1xy; @ gives upper subscript @

s1 = 0;

for i0 (1,nsub,1); i = i0;

for £fj (1,yrows[il,1); j = £j;

uxy[i,j] = mvar*(sil+j);

endfor;

sl = s1 + yrows[i];
endfor;
1xy = uxy - mvar + 1;
1xy = (0-1xy) .*(1lxy .< 0) + 1xy; @ zero-out the negative entries. @

@ Generate error variance Lambda @

@ Generate error variance Lambda @

Q bl b2 b3 Price Advert Q

lambdat = {
1 3 -.1 0 0 R @ bl el
3 8 -.05 0 0 , Q@ b2 @
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>

lambdat = 0.01xlambdat;

1bd12 chol(lambdat) ;

@ generate Z variables @
@Z1 is 1n(income) @

m = 1n(40000) ;
s = (1n(120000) - m)/1.96;
z1 = m + s*rndn(nsub,1);

072 is family size @

z2 = floor (rndnab(nsub,1,3,4,1,10));
zdata = (zl-meanc(zl1))~(z2-meanc(z2));
zdata = ones(nsub,l1) “zdata;

@ Generate theta @
@ beta_i = Theta’z_i + delta)i @

CHAPTER 8. LOGIT MODEL

.1, Q@ price ¢]
Q@ advert @

O@rndnab is my truncated normal (rows, cols, mean, std, a,

¢l Bl - B4 B2-B4 B3-B4 Price Advertising c]

thetat = {
5 .3 0 -2 1, @ Intercept e
8 .3 -.3 .8 -.2, @ Ln(Income) @
-.2 -.2 0 -.3 .5 @ Family Size e

I

@ Generate partworths beta @

betat = zdataxthetat + rndn(nsub,rankx)*1bd12;

@ generate X & Y data @

ydata = zeros(ntot*mvar,1); @ 0/1 choice Q

ydatat = ydata; @ true utilities of Brand j - Brand mvar+l @

xdata = zeros(ntot*mvar,rankx);

ipick = zeros(mvar+1,1); @ keep track of the number of choices @
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for i0 (1,nsub,1); i = i0;
for £fj (1,yrows[il,1); j = £j;
@ Do subject i, purchase j @
@ xij = brands, price, advertising @

xij = eye(mvar); @ Brand Intercepts @
@ Generate Prices ¢]
@ Regular Price Price Promotion e
pl = 5.5 + .1*rndn(1,1) - (rndu(1,1) < .4)*.3;

p2 = 5.5+ .1*xrndn(1,1) - (rndu(l,1) < .4)*.5;

p3 = 5.2 + .1*rndn(1,1) - (rndu(1,1) < .2)*.2;

p4 = 5.0 + .05%rndn(1,1);

price (p1-p4) | (p2-p4) | (p3-p4) ;

xij = xij“price;

@ Do advertising Q

@ Brand 1 heavily advertises, followed by the other four c]
al = rndu(1,1) < .4;

a2 = rndu(1,1) < .3;

a3 = rndu(1,1) < .2;

a4 = rndu(1,1) < .1;

advert = (al-a4)|(a2-a4)|(a3-a4);

xij = xijTadvert;

@ Generate utility for brands @
uij = xij*(betat[i,.]’);
uij = uijlo; @ utility for last brand is 0 @
pij = exp(uij);
pij = pij./sumc(pij);
zij = rndzmn(pij’); @ zij takes values 1 to mvar+l @
choice = zeros(mvar,1); @ all zeros indicates last choice @
if zij <= mvar;

choice[zij] = 1;
endif;

ipick[zij] = ipick[zij] + 1;

@ Save it in the data matrix @
ydata[lxy[i,j] :uxyli,j],.] = choice;
xdata[lxy[i,j]l:uxyli,jl,.] = xij;
endfor;
endfor;

xydata = xdata“ydata;
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create f1 = xpdata with “xyname, 0, 8;
if writer(f1,xydata) /= rows(xydata);
errorlog "Conversion of XYDATA to Gauss File did not work";
endif;
closeall f1;

create f1 = zdata with “zname, 0, 8;
if writer(f1,zdata) /= rows(zdata);
errorlog "Conversion of ZDATA to Gauss File did not work";
endif;
closeall f1;

save yrows = yrows;
save 1lxy = 1xy;
save uxy = uxy;
save betat = betat;
save thetat = thetat;
save lambdat = lambdat;

@ Define formats for fancy printing @
@ Used to print a matrix of alpha & numeric variables @

let fmtla[1,3] = "*.*x1f" 10 5; @ Format for printing numeric variable @
let fmtsb[1,3] = "x.*s" 8 8; @ Format for printing character variable Q
mask = zeros(mvar+1,1) “ones(mvar+1,1); @ O for alpha, and 1 for numeric

fmtl = fmtsb|fmtla; @ Format for columns of output Q
bout = brands2” (ipick/ntot*100) ;

print " Brand Market Share (%)";

flag = printfm(bout,mask,fmtl); @ Formated print. Q
print;

if flagplot == 1;

_plctrl = -1; @ use symbols only in plots @
@ plot beta versus ln(income) and family size @

for fj (mvar,rankx,1); j = £j;

atitle = "Partworth for " $+ xyname[j] $+ " versus " $+ zname[2];
title(atitle);

xy(zdatal.,2], betat[.,jl);

atitle = "Partworth for " $+ xyname[j] $+ " versus " $+ zname[3];
title(atitle);

xy(zdatal.,3], betat[.,jl);

endfor;
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graphset; @ Set plots back to default values @

endif;
end;
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8.2 Bayesian Analysis

/*

stk Kok KoK oK ok Kok KoK oK o oK ok ook oK ook ok K ok Kok ok ok K ok K ok

x  (C) Copyright 1999, Peter Lenk. All Rights Reserved.
* LOGIT2.GSS

* Select one of mvar+l alternatives where the last alternative is

* the base brand.

hemmmm > Different choice matrices.

*

* P(C_{ij} = kIX_{ij}) = exp(X_{ij}[k]’beta_i)/(1 + sum exp(X_{ij}[1]’beta_i))

for i=1, ..., nsub
j=1, ..., yrows[i]
k=1, ..., mvar+l

Alternative mvar is the base vector.

beta_i is rankx vector

X_{ij} is mvar x rankx
X will have brand intercepts for the first mvar brands,
and coefficients for price and advertising.
To identify the model, we fix the intercept for the last brand to zero.

beta_i = Theta’Z_i + delta_i
delta_i is N(O,Lambda)

Priors:
Theta is maxtrix normal (uO,vO0).
That is, vec(Theta) is N(vec(u0),v0).
vec(theta) stacks the columns of theta.
Lambda is Inverted Wishart(f0, g0)

sk stk ok o kst sk ok ok ok sk sk ok ok sk sk sk sk ok sk sk sk sk ok sksk sk ok sk sk ok

¥ X X X X X X K XK X X X X X X X X X X X * X

*/
new;
outfile = "resultsl.dat"; @ Specify output file for saving results
@ outfile is a string variable that contains a file name
inxy = "xpdata"; @ Name of Gauss file with X, Choice data
inz = "zdata"; @ Name of Gauss file with Z data
flagtrue =1; @ 1 -> knows true parameters from simulation
/*

3k 5k 3k 5k >k 5k >k 5k 5k 3k 5k >k 5k >k 3k >k 5k 5k >k 5k %k 3k >k 3k 5k %k 5k %k 5k >k %k >k %k 5k k >k k >k

@ 0 @ © ©
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* Initialize parameters for MCMC
sk sk o ke ok sk ok ok e ok sk sk ok s sk sk ok sk ke ok sk sk sk ke ok sk sk ok s ok sk sk ok ok ok

*/
smcmc = 10000; @ number of iterations to save for analysis
skip =1; @ Save every skip iterations ©
nblow = 10000; @ Initial transition iterations
nmcmc = nblow + skip*smcmc; @ total number of iterationmns Q
metstd = 0.3; @ STD for random walk metropolis Q
/*
sk sk sk sk sk sk sk sk sk ok sk sk ok o ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk ko ok ke sk ok ok ok
* Get data
sk sk ok ke ok sk sk ok e ok sk sk ok s sk sk ok sk ke ok sk sk sk ek sk sk ok s ok ok sk ok sk ok
*/
@ Get dimensions and pointers @
load yrows = yrows; @ Number of observations per subject e
load 1lxy = 1xy; @ xij = xdatallxyl[i,jl:uxyli,jl,.] @
load uxy = uxy;
nsub = rows(yrows) ; @ number of subjects
mvar = uxy[1,2] - uxyl[1,1]; @ Y_{ij} is a mvar vector.
ntot = sumc(yrows);
@ Input Gauss files @
open f1 = "inxy; @ Get Gauss file for X, Y data Q
@ Opens Gauss file & assigns file handle f1 @
xpdata = readr(f1,rowsf(f1)); @ "p" for picks e
@ readr reads in Gauss file with file handle f1. c]
@ rowsf(f1l) returns the number of rows in the Gauss file. c]
@ readr reads rowsf(fl) rows, which is the entir dataset. 6]
ci = close(f1);
Xpnames = setvars(inxy) ; @ Get the variable names that accompnay X, Y data @
ynames = xpnames [1:mvar]; @ Use names of interceps for names of components of Y @
rankxp = cols(xpdata);
rankx = rankxp - 1; @ # of X variables (includes intercept) @
xnames = xpnames [1:rankx] ;
@ Last row of xpdata is the choice vector. @
open f1 = “inz;
zdata = readr(f1,rowsf(f1)); @ First column of zdata is a vector of ones
ci = close(f1);
znames = setvars(inz);

rankz = cols(zdata); @ # of Z variables (includes intercept) @

153
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thdim = rankx*rankz; @ dimension of vec(theta) @

@ Compute some sufficient statistics @
ztz = zdata’zdata;

/*
ook ok ok ook sk ok ok sk o ok ko ok ok sk ook ok ok ok ko ok ok sk ok ok

* Initialize Priors
ook sk ok ok ook sk ok ok ok ok ook sk sk ok o ok sk ook sk ok sk ok sk ok ok ok ok ok ok

*/

@ Prior for theta is N(uO,v0) @

u0 = zeros(thdim,1);

vO = 100*eye(thdim) ; @ thdim = rankx*rankz el
v0i = invpd(v0); @ used in updating theta @
vO0iu0 = v0i*u0; @ used in updating theta @

@ Lambda"{-1} is W_rankx(f0,g0 ) @
@ fO = prior df, g0 = prior scale matrix Q@

f0 = rankx+2; fOn = f0 + nsub;
g0i = eye(rankx); @ g0~{-1} @
/*

K K K 3K 3K 3K 3K 5K 5k 5k 5k 5k 5k 5k 5k %k %k >k 5K 3K 5K 5k 5k 5k 5k 5k 5k >k 5k %k K kK K >k >k %k

* Initialize MCMC
ook ok ok ook sk o ok ok sk ook sk ok ok ok sk ook sk ok ok ok sk ook ok ok ok

*/

beta = zeros(nsub,rankx) ;

llbeta = loglike(beta); @ Compute log-likelihood at beta @
@ llbeta is used in metropolis c]

theta = zeros(rankz,rankx);

lambda = eye(rankx);

lambdai = invpd(lambda);

@ Define data structures for saving iterates & computing posterior means & std @

betam = zeros(nsub,rankx); @ posterior mean of beta c]
betas = zeros(nsub,rankx) ; @ posterior std of beta ¢]
thetag = zeros(smcmc,thdim);
c = rankx* (rankx+1)/2;

lambdag = zeros(smcmc,c); @ save iterations for lambda @
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/*
sk sk ok o o sk sk ok ok o sk ok ok o sk ok ok sk o sk sk ok sk o ok sk sk ok o ok ok sk ok ok o ok
* Do MCMC
sk sk o ke ok sk ok ok o ok sk sk ok s ok sk ok sk ke ok sk sk sk ke ok sk sk ok s ok ok sk ok sk ok
*/
mixp = 0;
@ Do the initial transition period @
for il (1,nblow,1); imcmc = il;

call getlogit;

endfor;
for i1 (1,smcmc,1); imcmc = il; @ Save smcmc iterations
for i2 (1,skip,1); jmcmc = i2; Q@ Save every skip iterations
call getlogit;
endfor;

@ Save the random deviates @
thetag[imcmc,.] = vecr(theta)’;

betam = betam + beta;

betas = betas + beta”2;

lambdag[imcmc, .]= vech(lambda)’;
endfor;

/*
ook ko ok ook sk o ok ok ok ook sk ok ok ok sk ok ok sk ok ok ok sk ok ok ok ok

*  Compute Posterior Means and STD
skt ok sk skok ok ok sk sk ok ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok sk sk ok

*/

mixp = mixp/ (nmcmc*nsub) ;

betam = betam/smcmc;

thetam = reshape (meanc(thetag) ,rankz,rankx) ;
lambdam = xpnd(meanc(lambdag)) ;

betas = sqrt( abs(betas - smcmc*betam”2)/smcmc) ;
thetas = reshape(stdc(thetag) ,rankz,rankx) ;

lambdas = xpnd(stdc(lambdag));
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/*
ook sk ok ok ook sk ok ok sk ok ok ok sk ok ok ok ok ok sk ook ok ok ok ok ok

* Do some output
skt ok skskok o ok sk sk ok ok sk sksk sk ok sk sk sk ok sk sk sk ok sk ok

*/

call outputanal;

@ Plot saved iterations against iterations number @

t = seqa(nblow+skip,skip,smcmc); @ saved iteration number @
title("Theta versus Iteration");

xy(t,thetag) ;

title("Lambda versus Iteration");

xy(t,lambdag) ;

graphset;

end;

/*

s ok sk 3 ok K oK ok ok K 3k ok 3 ok sk 3 ok 3 3k ok 3 ok ok ok 3k 3k ok 3 ok ok ok

* GETLOGIT

*  Does one iteration of the HB regression model.
* INPUT

* Global Variables

* QUTPUT

* Global Variables

ook ok ok ok ok oK 3 ok sk sk ok 3 ok ok 3 ok K sk ok ok ok ok 3k ok ok ok K ok

x/

PROC (0) = getlogit;

local

thz,bnew,1llbnew,i0,i,mui,testp,vibnl2,ebin,resid,gni,gn,gnl2,w, u;

thz = zdataxtheta;

/%

stk ok sk ok ok ok sk K o ok ok Kk ok ok sk ok ok ok 3k ok ok ok ok ok ok k ok K

* Generate beta

* Use symmetric random walk metropolis
ok ok ok K ok ok ok K ok ok 3 K ok ok ok K K ok ok 3 ok ok K K ok ok ok koK

*/

bnew = beta + metstd*rndn(nsub,rankx) ;

llbnew = loglike(bnew); @ Get log likelihood at new beta @
u = 1n(rndu(nsub,1));

@ Do metropolis step @
for i0 (1,nsub, 1); i = i0;
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mui = thz[i,.]’;

testp = llbnew([i] - llbetal[il @log Likelihood @
- ( bnew[i,.]’ - mui )’lambdai*( bnew[i,.]’ - mui )/2 @ "Priors" Q
+ ( betal[i,.]’ - mui )’lambdai*( betali,.]’ - mui )/2;

if uli] < testp; @ Accept Candidate @

mixp = mixp + 1;
betali,.] = bnewl[i,.];
1lbetalil] = llbnew([i];
endif; Q@ else reject candidate & stay pat @
endfor;
/*

ok ok sk ok ok ok ok ok ok ok ok ok o o o ok ok ok sk ok ok ok sk sk sk ok ok ok ok ok
* Generate Theta and Lambda from multivariate model:

* B = Z*Theta + N(O,Lambda)

3K 3K 3K 3K 3K 3Kk 3Kk 3K 3K 3k 3k >k 3k 3k 3k K 3k kK k >k >k sk sk k k kkkk

*/

{theta, lambda, lambdai} =
getmulreg(beta,zdata,ztz,theta,lambda,lambdai,v0i,v0iu0,f0On,g0i);

endp;

/*

okokok ok skokok ok ok sk okok ok ok okokok ok skokok ok sk okok ok ok ok

* GETMULREG

*  Generate multivariate regression parameters.

* Yd = Xd*parmat + epsilon

*

*  INPUT

* yd = dependent variables

* xd = independet variables

* xdtxd = xd’xd

*

* parmat = current value of coefficient matrix

* var = current value of covariance matrix

* vari = its inverse

* vOi = prior precisions for bmat

* v0iu0 = prior precision*prior mean for bmat
* fOn = posterior df for sigma

* g01i = prior scaling matrix inverse for sigma
*

*  OUTPUT
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* parmat = updated rankx x mvar coefficient matrix
* var = updated variance

* vari = updated inverse of sigma

*

* Calling Statement:

{parmat, var, vari} = getmulreg(yd,xd,xdtxd,parmat,var,vari,v0i,v0iu0,fOn,g0i);
sk stk ok ok stk ok o ok sk sk sk sk sk sk sk sk ok sk sk sk ok sk sk sk ok sk ok

*/

PROC (3) = getmulreg(yd,xd,xdtxd,parmat,var,vari,v0i,v0iu0,fOn,g0i);

local vbl2, ubn, par, pdim, resid, gni, gn, rp, cp;

rp = rows(parmat) ;
cp = cols(parmat) ;
pdim = rp*cp;

/*

KKKk KKK KK KR KKK KKK KKK KKK Ko
* Generate parmat from N_{rp x cp}(M,v)
* par = vecr(parmat)

* par is N(u,V) whee u = vec(M’);

*

*

V = (Xd’Xd.*.Var~{-1} + V_0"{-1})~{-1}
u = Vx( (Xd’.*.Var~{-1})*vec(¥Yd’) + V_0"{-1}u_0 )
sk sk sk sk sk sk sk sk ok ok ok ok ok ok o o o ok ok ok ok sk sk sk sk ok ok ok ok ok

*/

vb12 = chol(xdtxd.*.vari + vO0i);

ubn = ( (xd’).*x.vari )*vecr(yd) + vOiuO;

par = cholsol(ubn + vb12’rndn(pdim,1), vbl2);
parmat = reshape(par,rp,cp);

/*

stk sk sk ook ok o ok sk sk ok ok o ok s sk sk ok o ok ok ok ok ok
* Generate Var

*  Var~{-1} is Wishart df = fOn, scale matrix = gn
stk sk sk R sk ok ok ok sk ok K R ok R ok ok ok ok K ok ok K ok ok oK

*/

resid = yd - xd*parmat;
gni = g0i + resid’resid;
gn = invpd(gni);

{vari, var} wishart(cp,fOn,gn) ;

retp(parmat,var,vari);
endp;
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/%

stk sk sk sk sk sk sk sk sk sk ok ok o ok sk okok ok ok sk sk sk sk sk sk sk sk sk sk ok ke kokokok ok ok kok

* LOGLIKE

*  Computes multinomial-logit log-likelihood at parameter beta
*  INPUT:

* beta

*  OUTPUT:

* Log likelihood

*

K3k ok ok K ok ok K ok ok oK K ok ok ok K ok ok Kk ok ok ok K ok ok Kk ok ok ok K ok ok K

*/

PROC (1) = loglike(beta);

local 1lbeta,i0,i,fj,j,xij,cij,zij,muij,emuij;

llbeta = zeros(nsub,1); @ In(Likelihood x prior) of beta for each subject @
for i0 (1, nsub, 1); i = 1i0; @ loop over subjects 6]
for £fj (1,yrows[i]l,1); j = £j; @ loop over selections @
xij = xpdata[lxyl[i,j]:uxyli,j],1:rankx]; @ Get design matrix (¢
cij = xpdata[lxyl[i,j]:uxyl[i,j],rankxp]; @ Get vector of choices @
if maxc(cij) == 0; @ Picked base brand @
zij = mvar+i;
else; @ Picked one of brands 1 to mvar @
zij = maxindc(cij);
endif;
muij = xij*(betali,.]’); @ logits @
muij = muijlo;
emuij = exp(muij);
emui j = sumc(emuij);
llbetal[i] = 1lbetali] + muij[zij]l - 1n(emuij);
endfor;
endfor;
retp(llbeta);
endp;
/*

ok sk o ok K ok sk 3 ok K 3 ok 3 ok sk 3 ok K o ok 3 ok sk 3 ok K ok ok 3 ok 3k 3k ok K ok ok 3 ok 3k 3k ok 3 ok ok ok ok ok K

* OUTPUTANAL

* Does analysis of output and save some results

ok sk ok ok ok ok 3 ok K ok oK 3 ok ok sk ok ok ok 3 ok ok sk ok ok ok s ok K ok ok ok sk sk ok 3k ok ok 3 ok k sk ok ok K

*/

PROC (0) = outputanal;

format 10,5;

local bout, sout, ebeta, sbeta, cb, rmse, fmtsl,fmts2, fmtnl, fmtn2, a,b, flag, iO, i,
betat, thetat, lambdat;
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@ Get true parameters if simulation @
if flagtrue == 1;

load betat = betat;

load thetat = thetat;

load lambdat = lambdat;
endif;
let fmtni[1,3] = "x.x1f" 10 5; @ Format for printing numeric variable Q
let fmtn2[1,3] = "x.*x1f" 10 O; @ Format for numeric variable, no decimal Q
let fmts1[1,3] = "-*.*s" 10 9; @ Format for alpha, left justify Q
let fmts2[1,3] = "*.*xs" 10 9; @ Format for alpha, right justify @
format 10,5; @ Default pring format Q

output file = “outfile reset; @ outfile is the file handle for the output file Q
@ Route printed output to the defined by outfile Q

print "Results from LOGIT1.GSS";

print "Hierarchical Bayes Multivariate LOGIT";

print;

print "Select one of " mvar+l " alternatives.";

print;

print "beta_i = Theta’z_i + delta_i";

print "delta_i is N(O, Lambda)";

print;

print "Ouput file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data Q
print;

print;

print "--———---------— "

print;

print "MCMC Analysis";

print;

print "Total number of MCMC iterations = " nmcmc;

print "Number of iterations used in the analysis = " smcmc;

print "Number in transition period = " nblow;

print "Number of iterations between saved iterations = " skip-1;

print "Proportion of Metroplis Steps Accepted = " mixp;

print;

print "--——-----—--—— "

print "Number of subjects = " nsub;

print "Number of observations per subject:";

print " Average = " meanc(yrows);

print " STD = " stdc(yrows);
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print " MIN = " minc(yrows) ;

print " MAX = " maxc(yrows);

print;

print "Total number of Choices = " ntot;

print "Number of Alternatives = " mvar+l;

print "Number of dependent variables X = " rankx " (including intercept)";
print "Number of dependent variables Z = " rankz " (including intercept)";
print;

print "Dependent variables are " $xpnames[rankxp];

print " Summary Statistics for Choices (excluding Base)";
call sumstats(ynames,reshape(xpdatal.,rankxp],ntot,mvar),fmtsl,fmts2,fmtnl);
print;

print "First level equation for Logits";
print "logit_{ij} = X_{ij}*beta_i + epsilon_{ij}";

print;

print " Summary Statistics for X";

call sumstats(xnames[mvar+l:rankx],xpdatal.,mvar+l:rankx],fmtsl,fmts2,fmtnl);
print;

print "Second level equation:";

print "beta_i = Thetax*z_i + delta_i";

print;

print " Summary Statistis for Z:";

call sumstats(znames[2:rankz],zdatal.,2:rankz],fmtsl,fmts2,fmtnl);
print;

print;
print "Statistics for Individual-Level Regression Coefficients";
if flagtrue == 1;

ebeta = meanc(betat);

sbeta = stdc(betat);

print "True Beta";

sout = {"Variable" "Mean" "STD"};

call outitle(sout,fmtsl,fmts2);

bout = xnames~ebeta”sbeta;

call outmat(bout,fmtsl,fmtnl);
endif;

print "HB Estimates of Beta";
sout = {"Variable" "PostMean" "PostSTD" };

161
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call outitle(sout,fmtsl,fmts2);

ebeta = meanc(betam);

sbeta = sqrt( meanc( (betas”2)) + stdc( betam) 2);
bout = xnames~ebeta”sbeta;

call outmat(bout,fmtsl,fmtnl);

print;

if flagtrue == 1;
print "Comparison of True Beta to Individual Level Estimates";
for i0 (1,rankx,1); i = i0;
print "Variable " $ xnames[i];

cb = corrx( betat[.,i] “betaml[.,i] );
rmse = betat[.,i] - betam[.,i];
rmse = rmse’rmse;
rmse = sqrt(rmse/nsub) ;
print "Correlation between true and HB = " cb[1,2];
print "RMSE between true and HB = " rmse;
print;
endfor;
endif;
print "----—————— ";
print;
print "HB Estimates of Theta";
sout =" "“(xnames’);

if flagtrue == 1;
print "True Theta";
call outitle(sout,fmtsl,fmts2);
bout = znames~thetat;
call outmat(bout,fmtsl,fmtnl);
print;
endif;
print "Posterior Mean of Theta";
print outitle(sout,fmtsl,fmts2);
bout = znames“thetam;
call outmat(bout,fmtsl,fmtnl);
print;
print "Posterior STD of Theta";
call outitle(sout,fmtsl,fmts2);

bout = znames thetas;

call outmat(bout,fmtsl,fmtnl);

print;

Print Memmm e "
print;



8.2. BAYESIAN ANALYSIS 163

print "HB Estimate of Lambda";
if flagtrue == 1;
print "True Lambda";
call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdat;
call outmat (bout,fmtsl,fmtnl);
print;
endif;
print "Posterior Mean of Lambda";
call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdam;
call outmat (bout,fmtsl,fmtnl);
print;
print "Posterior STD of Lambda";
call outitle(sout,fmtsl,fmts2);
bout = xnames~lambdas;
call outmat (bout,fmtsl,fmtnl);
print;
print " ";

output off;

closeall;

endp;

/*

sk ok sk ok ok ok sk 3 ok K ok ok 3 ok 3K 3 ok 3 ok sk 3 ok 3 ok ok 3 ok K 3 ok 3 ok ok 3 ok 3k ok ok 3 ok ok 3k ok 3 ok ok 3 oK
* QUTITLE

* Prints header for columns of numbers.

* INPUT

* a = character row vector of column names
* fmtsl = format for first column

* fmts2 = format for second column

* QUTPUT

* None

ok sk ok ok K ok sk 3 ok K ok ok K ok K 3 ok K ok ok 3 ok K sk ok K ok ok 3 ok K ok ok ok ok ok 3k sk ok ok K

x/

PROC (0) = outitle(a,fmtl,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);

mask = zeros(1,ncols);
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fmt
flag
print;
endp;
/*

stk o o o ok ok ok ok sk sk sk sk o o o ok ok ok ok ok sk sk sk ok o ok ok ok ok ok sk sk sk ok ok ok ok ok kK
* OQUTMAT

* Outputs a matrix:

fmt1l]| (ones(ncols-1,1) .*.fmt2);
printfm(a,mask,fmt);

* (Character Vector)” (Numeric matrix);

* The entries in the numeric matrix have the same format
* INPUT

* bout = matrix to be printed

* fmts = format for string

* fmtn = format for numeric matrix

* QUTPUT

* None

3k 3k 3k 5k 3k 3k 5K 5k 5k 3k 5k 3k %k 5Kk 5k 3k %k 5k 3k 5k 5k 5k 5k %k 5k 3k %k 3k 5K 3k %k 5k 5k 5k %k 5k >k %k >k >k k k >k k %k

x/

PROC (0) = outmat(bout,fmts,fmtn);

local fmt,mask,flag,ncols, nrows;

ncols = cols(bout);

nrows = rows (bout) ;

fmt = fmts| (ones(ncols-1,1) .*.fmtn);
mask = zeros(nrows,1) “ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt) ;

print;

endp;

/*

s 3k ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok sk ok ok sk ok ook ok sk ok ok ok ok ook ok ok

* SUMSTATS

*  Prints summary statistics for a data matrix

INPUT
names
data
fmts1
fmts2
fmtn

QUTPUT
None

st 3k ok ok ok 3 ok ok ok ok ok ok ok 3 ok ok sk ok ok sk ok s ok sk sk ok ok sk ok sk ok ok K ok ok ok ok ook ok ok ok

*/

PROC (0) = sumstats(names,data,fmtsl,fmts2,fmtn);

local a, bout;

a = {"Variable" "Mean" "STD" "MIN" "MAX"};

charater vector of names
data matrix

format for string

format for string

format for numbers

¥ ¥ ¥ X X X *
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call outitle(a,fmtsl,fmts2);

bout = names " meanc (data) “stdc(data) “minc(data) “maxc(data);
call outmat (bout,fmtsl,fmtn);

endp;



