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Outline

• Bayesian Decision Theory
• Simple Bayes and Shrinkage Estimates
• Hierarchical Bayes
• Numerical Methods
• Batting Averages
• HB Interaction Model
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Bayesian Decision Model
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Bayes Theorem

• Model for the data given parameters
– f(y |θ) were θ = unknown parameters
– E.g. Yi = µ + εi and θ = (µ,σ)
– Likelihood l(θ) = f(y1 |θ) f(y2 |θ)… f(yn |θ)

• Prior distribution of parameters p(θ)
• Update prior 

– p(θ|Data ) = l(θ)p(θ)/f(y)
– f(y) = marginal distribution of data
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Easy Example:

• Estimate mean from a normal distribution.
• Yi = µ + εi

• Error terms {εi} are iid normal
– Mean is zero
– Standard deviation of error terms is σ.
– Assume that σ is known
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Conjugate Prior for Mean

• Prior distribution for µ is normal
– Prior mean is m0

– Prior variance is v0
2

– Precision is 1/ v0
2
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Posterior Distribution
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Shrinkage Estimators

• Bayes estimators combines prior guesses 
with sample estimates

• If the prior precision is larger than sample 
precision (prior has more information), 
then put more weight on prior mean.

• If the sample precision is larger the prior 
precision (sample has more information), 
then put more weight on sample average
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Example

• Y is normal with mean 10 and Variance 16
• Normal prior for the population mean

– Mean = 5 & Variance = 2
– Prior is informative and way off

• Data
– n = 5, Average = 10.9, Variance = 14.7

• Posterior is normal
– Mean = 7.4 and variance is 1.2
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Prior & Posterior n=5
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Prior & Posterior n=50
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Use Less Informative Prior

• Y is normal with mean 10 and Variance 16
• Normal prior for the population mean

– Mean = 5 & Variance = 10 instead of 2
– Prior is “flatter”

• Data
– n = 5, Average = 10.9, Variance = 14.7

• Posterior is normal
– Mean = 9.6 and variance is 2.3
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Prior & Posterior n=5
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Summary

• Prior has less effect as sample size 
increases

• Very informative priors give good results 
with smaller samples if prior information is 
correct

• If you really don’t know, then use “flatter” 
or less informative priors
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What about Marketing?

• HB revolution in how we think about 
customers
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Henry Ford
All Customers are the Same
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Alfred Sloan
Several Common Preferences
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Continuous Heterogeneity
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Profit Maximization
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It Can Get Wild!
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HB Model for Weekly Spending

• Within-subject model:
Yi,j = µi + εi,j and var(εi,j) = σi

2

• Heterogeneity in mean weekly spending or 
between-subjects

µi = θ + δi and var(δi) = τ2

• Prior Distribution
θ is N(u0,v0

2)
• Variances are known
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Variances & Covariances

• Var(Yi,j| µi) = σi
2 (known µi)

• Var(Yi,j|θ) = τ2 + σi
2 (unknown µi)

• Cov(Yi,j, Yi,k) = τ2 for j not equal to k
• Observations from different subjects are 

independent
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Precisions = 1/Variance
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Joint Distribution
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Bayes Theorem 
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Bayes Estimator

• Posterior means are optimal under 
squared error loss

E(µi|Y) and E(θ|Y)

• Measure of accuracy is posterior variance
var(µi|Y) and var(θ|Y)
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Posterior Distribution of θ

• Normal distribution
• Posterior mean is uN

• Posterior variance is vN
2

• Posterior precision is Pr(θ|Y) = 1/vN
2
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Posterior Precision of θ 
“Pr” = Precision = 1/Variance
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Posterior Mean of θ
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Updating of θ

• Prior Mean Posterior Mean
u0 uN

• Prior Var Posterior Var
v0

2 vN
2
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Posterior Mean of µi
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Between-Subject Heterogeneity in 
Mean Household Spending
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Between & Within Subjects 
Distributions
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2 Observations per Subject
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Subject Averages
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Pooled Estimate of Mean
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Sample Estimates 

• Disaggregate estimate     of µi only uses 
the observations for subject i.
– Super if 30 or more observations per subject

• Pooled or aggregate estimator    of θ
– Smaller sampling error
– Ignores individual difference

iY

Y
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HB Shrinkage Estimator
• Take combination of individual average and pooled 

average

• What are the correct weights?
• HB automatically gives optimal weights based on 

– Prior variance of µi

– Number of observations for subject i 
– Variance of past spending for subject i 
– Number of subjects
– Amount of heterogeneity in household means

( )YwYw iii −+ 1
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Shrinkage Estimates
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20 Observations per Subject
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Bayes & Shrinkage Estimates

• Bayes estimators automatically determine 
the optimal amount of shrinkage to 
minimize MSE for true parameters and 
predictions

• Borrows strength from all subjects
• Tradeoff some bias for variance reduction
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Good & Bad News

• Only simple models result in equations
• Models we use in marketing require 

numerical methods to compute posterior 
mean, posterior standard deviations, 
predictions and so on. 
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Numerical Integration

• Compute posterior mean of function T(θ).

( )[ ] ( ) ( ) θθθθ dypTyTE ∫= ||
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T(x) and f(x)
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Trapezoid Rule
T(x)f(x)
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Grid Methods

• Very accurate with few functional 
evaluations

• Need to know where the action is
• Does not scale well to higher dimensions
• You need to be very smart to make it work
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Monte Carlo

• Generate random draws θ1, θ2, …, θm from 
posterior distribution using a random number 
generator.

• What happened to the density of θ?
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Good & Bad News

• If your computer has a random number 
generator for the posterior distribution, 
Monte Carlo is a snap to do.

• Your computer almost never has the 
correct random number generator.
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Importance Sampling

• Would like to sample from density f
• You have a good random number 

generator for the density g
• Importance sampling lets you generate 

random deviates from g to evaluate 
expectations with respect to f.

• Generate φ1, …, φm from g
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Importance Sampling 
Approximation
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Markov Chain Monte Carlo

• Extension of Monte Carlo
• Random draws are not independent
• Joint distribution f(β,φ) does not have a 

convenient random number generator.
• Conditional distributions g(φ|β) and h(β|φ) 

are easy to generate from.
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Iterative Generation from 
Full Conditionals

• Start at φ0

• Generate β1 from h(β|φ0) .
• Generate φ1 from g(φ|β1).
• …
• Generate βm+1 from h(β|φm)
• Generate φm+1 from g(φ|βm+1)
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Baseball Example

• 90 MLB Players in 2000 season.
• Observe at bats (AB) and hits (BA) in May
• Infer distribution of batting averages 

across players.
• Predict batting averages in October using 

data from May.
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Baseball Batting Averages

263.26227.148Pena

542.26049.204Vizquel

546.31745.400Belle

436.32343.442Murray

ABBAABBA

OctoberMay

The Cleveland Indians - 1995
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Estimating a Probability

• n at bats in May
• X = number of hits 
• p = batting average for season
• X has a binomial distribution

– mean np
– variance np(1-p)
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Binomial Distribution
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Need Prior for Batting Average p

• 0 < p < 1
• Beta distribution is popular choice
• It has two parameters: α and β
• Density is proportional to   pα-1(1-p)β-1

• Prior Mean = α/(α+β)
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Beta Prior for p
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Mean and Variance
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Beta Distribution
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Beta Distribution
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Beta Distribution
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Beta Distribution
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Beta Distribution
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Bayes Theorem: 
Update prior for p after observing n and x
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Inference About P:
Posterior is also Beta

Prior
Parameters

Posterior
Parameters

α α+x

β β+n-x
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Posterior Mean of p:
Its another shrinkage estimator
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p=Beta & x=Binomial
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Hierarchical Bayes Model

• Variation within batter i:
– Xi given pi has a binomial distribution

• Variation among batters:
– pi is a beta distribution with parameters

α and β.
• Prior distribution for α and β

– Gamma (chi-square) distribution
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Gamma Distribution
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Gamma Distribution
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Gamma Distribution
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Specify Prior Parameters:
r, s, u & v

• Priors: α is G(r,s) & β is G(u,v).
• E(α) = r/s and V(α) = E(α)/s.
• s determines variance relative to mean.
• I used s = 0.25 or the variance is four 

times larger than the mean.
• Same for v.
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Specify Prior Parameters

• Guess a mean of all batting averages: 
p0 = 0.25

• Measure of my uncertainty of that guess:
c = 0.01

• Parameter r = 4.4
• Parameter u = 13.3
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MCMC for Batting Averages

• Need full conditionals for pi give α and β
– Beta distribution

• Need full conditionals for α and β given pi
.

– Unknown distribution
– Use Metropolis algorithm
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MCMC: Full Conditionals for 
Player i Batting Average pi
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MCMC: Full Conditional for α and β
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Metropolis Algorithm

• Want to generate θ from f
• Instead, generate candidate value φ from 

g(.|θ)
– Density g can depend on θ
– eg Random walk: φ = θ + δ

• With probability α(θ,φ) accept φ as the new 
value of θ 

• With probability 1−α(θ,φ) keep θ
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Transition Probability
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• Ratios: do not need to know constants
• Usually compute α on log scale.
• Works if densities are not zero
• Works better if g is close to f
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Alpha and Beta vs Iteration
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Posterior of Alpha
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Posterior of Beta
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Parameters Estimates

(11.7)(14.6)(std)

68.253.2β
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Distribution of Batting Averages
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Prediction of Season Averages

9.4%0.032Bayes

17.0%0.060MLE

MAPERMSE
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Batting Averages
Bayes Shrinks MLE
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HB Conjoint
Lenk, DeSarbo, Green, Young (1996)

• Evaluated computer profiles on a 0 to 10 
scale for “likelihood to purchase”
– 0 = Would not buy
– 10 = Would definitely buy

• Design
– 178 subjects
– 13 attributes with two levels each
– 20 profiles per subject
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Attributes: Effect Coding

1. Hotline support
2. RAM
3. Screen Size
4. CPU
5. Hard Disk
6. Multimedia
7. Cache

8. Color
9. Retail Store
10.Warrantee
11.Software
12.Guarantee
13.Price
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Subject-Covariates

• Female: 1 if female and 0 if male
• Years: # years of work experience
• Own: 1 if has computer & 0 else
• Nerd: 1 if technical background & 0 else
• Apply: # of software applications
• Expert: self-report expertise rating
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Summary Statistics for Covariates

Variable Mean Std Dev MIN MAX
FEMALE 0.275 0.448 0 1
YEARS 4.416 2.369 1 18
OWN 0.876 0.330 0 1
NERD 0.275 0.448 0 1
APPLY 4.287 1.574 1 9
EXPERT 7.618 1.902 3 10
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Interaction Model

• Within-Subjects

• Between-Subjects Heterogeneity
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Average over Posterior Means and 
Std Dev of Partworths Across 

Subjects

PostMean PostSTD PostMean PostSTD
CNST 4.757 1.404 Cache 0.031 0.461
HotLine 0.095 0.487 Color 0.026 0.371
RAM 0.347 0.467 Dstrbtn 0.078 0.378
ScrnSz 0.193 0.405 Wrrnty 0.124 0.392
CPU 0.392 0.646 Sftwr 0.196 0.399
HrdDsk 0.171 0.501 Grntee 0.112 0.427
MultMd 0.494 0.574 Price -1.127 0.873
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Impact of Covariates on Partworths

CNST RAM CPU Dstrbtn Wrrnty Grntee Price
CNST 3.74 0.52 -0.15 0.05 -0.01 0.03 -1.55
FEMALE -0.10 0.06 0.12 0.40
YEARS -0.11
OWN -0.10 0.17 0.17 0.20 -0.12 -0.20
NERD -0.27 0.15 0.16 -0.14
APPLY 0.10
EXPERT 0.17
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Summary

• HB allows individual-level coefficients
• Two level model

– With-in subjects
– Between subjects (heterogeneity)

• HB shrinks unstable, subject-level 
estimators to population mean
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Summary

• BDT provides integrated framework for 
making decisions and inference

• Good models consider all sources of 
uncertainty

• Good methods keep track of all sources of 
uncertainty

• Bayes does both
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