Hierarchical Bayes

Peter Lenk

Stephen M Ross School of Business at the University of Michigan September 2004

Outline

- Bayesian Decision Theory
- Simple Bayes and Shrinkage Estimates
- Hierarchical Bayes
- Numerical Methods
- Batting Averages
- HB Interaction Model

Bayesian Decision Model

Bayes Theorem

- Model for the data given parameters
 - $f(y \mid \theta)$ were $\theta = unknown parameters$
 - E.g. $Y_i = \mu + \varepsilon_i$ and $\theta = (\mu, \sigma)$
 - Likelihood $I(\theta) = f(y_1 | \theta) f(y_2 | \theta) \dots f(y_n | \theta)$
- Prior distribution of parameters p(θ)
- Update prior
 - $-p(\theta|Data) = I(\theta)p(\theta)/f(y)$
 - f(y) = marginal distribution of data

Easy Example:

- Estimate mean from a normal distribution.
- $Y_i = \mu + \varepsilon_i$
- Error terms {ε_i} are iid normal
 - Mean is zero
 - Standard deviation of error terms is σ .
 - Assume that σ is known

Conjugate Prior for Mean

- Prior distribution for μ is normal
 - Prior mean is m₀
 - Prior variance is $\mathbf{v_0}^2$
 - Precision is 1/ $\mathbf{v_0}^2$

Posterior Distribution

- Observe n data points
- Posterior distribution is normal
 - Mean is m_n
 - Variance is v_n^2

$$m_n = w\overline{y} + (1 - w)m_0$$

$$w = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{v_0^2}} \text{ and } 0 < w < 1$$

$$v_n^2 = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{v_0^2}}$$

Shrinkage Estimators

- Bayes estimators combines prior guesses with sample estimates
- If the prior precision is larger than sample precision (prior has more information), then put more weight on prior mean.
- If the sample precision is larger the prior precision (sample has more information), then put more weight on sample average

Example

- Y is normal with mean 10 and Variance 16
- Normal prior for the population mean
 - Mean = 5 & Variance = 2
 - Prior is informative and way off
- Data
 - n = 5, Average = 10.9, Variance = 14.7
- Posterior is normal
 - Mean = 7.4 and variance is 1.2

Use Less Informative Prior

- Y is normal with mean 10 and Variance 16
- Normal prior for the population mean
 - Mean = 5 & Variance = 10 instead of 2
 - Prior is "flatter"
- Data
 - n = 5, Average = 10.9, Variance = 14.7
- Posterior is normal
 - Mean = 9.6 and variance is 2.3

Summary

- Prior has less effect as sample size increases
- Very informative priors give good results with smaller samples if prior information is correct
- If you really don't know, then use "flatter" or less informative priors

What about Marketing?

HB revolution in how we think about customers

Henry Ford All Customers are the Same

Alfred Sloan Several Common Preferences

Continuous Heterogeneity

Profit Maximization

It Can Get Wild!

HB Model for Weekly Spending

Within-subject model:

$$Y_{i,j} = \mu_i + \varepsilon_{i,j}$$
 and $var(\varepsilon_{i,j}) = \sigma_i^2$

 Heterogeneity in mean weekly spending or between-subjects

$$\mu_i = \theta + \delta_i$$
 and $var(\delta_i) = \tau^2$

Prior Distribution

$$\theta$$
 is N(u₀,v₀²)

Variances are known

Variances & Covariances

- $Var(Y_{i,i}|\mu_i) = \sigma_i^2$ (known μ_i)
- $Var(Y_{i,i}|\theta) = \tau^2 + \sigma_i^2$ (unknown μ_i)
- Cov $(Y_{i,j}, Y_{i,k}) = \tau^2$ for j not equal to k
- Observations from different subjects are independent

Precisions = 1/Variance

$$Pr(\theta) = \frac{1}{v_0^2}$$
 is prior precision

$$\Pr(\mu_i \mid \theta) = \frac{1}{\tau^2}$$

$$\Pr(Y_{i,j} \mid \mu_i) = \frac{1}{\sigma_i^2} \text{ and } \Pr(Y_{i,j} \mid \theta) = \frac{1}{\tau^2 + \sigma_i^2}$$

$$\Pr(\overline{Y}_i \mid \mu_i) = \frac{n}{\sigma_i^2} \text{ and } \Pr(\overline{Y}_i \mid \theta) = \frac{1}{\tau^2 + \frac{\sigma_i^2}{n}}$$

Joint Distribution

$$P(Y, \mu, \theta) =$$

$$h(\theta | u_0, v_0^2) \prod_{i=1}^{N} g(\mu_i | \theta, \tau^2) \prod_{j=1}^{n_i} f(y_{i,j} | \mu_i, \sigma_i^2)$$

Prior

Between Subjects

Within Subjects

Bayes Theorem

$$P(\mu,\theta \mid Y) = \frac{P(Y,\mu,\theta)}{\int \int P(Y,\mu,\theta) d\mu \, d\theta}$$

$$P(\mu,\theta \mid Y) = \frac{P(Y,\mu,\theta)}{P(Y)} Constant because Y is fixed & known$$

$$P(\mu,\theta \mid Y) \propto P(Y,\mu,\theta)$$

Bayes Estimator

 Posterior means are optimal under squared error loss E(μ_i|Y) and E(θ|Y)

 Measure of accuracy is posterior variance var(μ_i|Y) and var(θ|Y)

Posterior Distribution of θ

- Normal distribution
- Posterior mean is u_N
- Posterior variance is v_N²
- Posterior precision is $Pr(\theta|Y) = 1/v_N^2$

Posterior Precision of θ

"Pr" = Precision = 1/Variance

$$\Pr(\theta \mid Y) = \Pr(\theta) + \sum_{i=1}^{N} \Pr(\overline{Y}_i \mid \theta)$$

$$\Pr(\theta) = \frac{1}{v_0^2} \text{ and } \Pr(\overline{Y}_i \mid \theta) = \frac{1}{\tau^2 + \frac{\sigma_i^2}{n_i}}$$

Posterior Mean of θ

$$u_N = w_0 u_0 + \sum_{i=1}^N w_i \overline{Y}_i$$

$$w_0 = \frac{\Pr(\theta)}{\Pr(\theta \mid Y)} \text{ and } w_i = \frac{\Pr(\overline{Y}_i \mid \theta)}{\Pr(\theta \mid Y)}$$

Updating of θ

- Prior Mean
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 <l
- Prior Var \Rightarrow Posterior Var $v_0^2 \Rightarrow v_N^2$

Posterior Mean of μ_i

$$E[\mu_i \mid Y] = \alpha_i \overline{Y}_i + (1 - \alpha_i) u_N$$

$$\alpha_{i} = \frac{\Pr(\overline{Y}_{i} \mid \mu_{i})}{\Pr(\mu_{i} \mid \theta) + \Pr(\overline{Y}_{i} \mid \mu_{i})} = \frac{\frac{n_{i}}{\sigma_{i}^{2}}}{\frac{1}{\tau^{2}} + \frac{n_{i}}{\sigma_{i}^{2}}}$$

Between-Subject Heterogeneity in Mean Household Spending

Between & Within Subjects Distributions

2 Observations per Subject

Subject Averages

Pooled Estimate of Mean

Sample Estimates

- Disaggregate estimate Y_i of μ_i only uses the observations for subject i.
 - Super if 30 or more observations per subject
- Pooled or aggregate estimator \overline{Y} of θ
 - Smaller sampling error
 - Ignores individual difference

HB Shrinkage Estimator

Take combination of individual average and pooled average

$$w_i \overline{Y}_i + (1 - w_i) \overline{\overline{Y}}$$

- What are the correct weights?
- HB automatically gives optimal weights based on
 - Prior variance of μ_i
 - Number of observations for subject i
 - Variance of past spending for subject i
 - Number of subjects
 - Amount of heterogeneity in household means

Shrinkage Estimates

20 Observations per Subject

Bayes & Shrinkage Estimates

- Bayes estimators automatically determine the optimal amount of shrinkage to minimize MSE for true parameters and predictions
- Borrows strength from all subjects
- Tradeoff some bias for variance reduction

Good & Bad News

- Only simple models result in equations
- Models we use in marketing require numerical methods to compute posterior mean, posterior standard deviations, predictions and so on.

Numerical Integration

Compute posterior mean of function T(θ).

$$E[T(\theta)|y] = \int T(\theta)p(\theta|y)d\theta$$

Trapezoid Rule

Grid Methods

- Very accurate with few functional evaluations
- Need to know where the action is
- Does not scale well to higher dimensions
- You need to be very smart to make it work

Monte Carlo

• Generate random draws $\theta_1, \theta_2, ..., \theta_m$ from posterior distribution using a random number generator.

$$E[T(\theta)|y] \approx \frac{1}{m} \sum_{j=1}^{m} T(\theta_j)$$

• What happened to the density of θ ?

Good & Bad News

- If your computer has a random number generator for the posterior distribution, Monte Carlo is a snap to do.
- Your computer almost never has the correct random number generator.

Importance Sampling

- Would like to sample from density f
- You have a good random number generator for the density g
- Importance sampling lets you generate random deviates from g to evaluate expectations with respect to f.
- Generate ϕ_1, \ldots, ϕ_m from g

Importance Sampling Approximation

$$\int T(\theta)f(\theta)d\theta = \int T(\varphi)\frac{f(\varphi)}{g(\varphi)}g(\varphi)d\varphi$$

$$\approx \frac{\sum_{i=1}^{m} T(\varphi_i) r(\varphi_i)}{\sum_{i=1}^{m} r(\varphi_i)} = \sum_{i=1}^{m} T(\varphi_i) w(\varphi_i)$$

$$r(\varphi_i) \propto \frac{f(\varphi_i)}{g(\varphi_i)}$$
 and $w(\varphi_i) = \frac{r(\varphi_i)}{\sum_{i=1}^m r(\varphi_i)}$

Markov Chain Monte Carlo

- Extension of Monte Carlo
- Random draws are not independent
- Joint distribution f(β,φ) does not have a convenient random number generator.
- Conditional distributions $g(\phi|\beta)$ and $h(\beta|\phi)$ are easy to generate from.

Iterative Generation from Full Conditionals

- Start at ϕ_0
- Generate β_1 from $h(\beta|\phi_0)$.
- Generate ϕ_1 from $g(\phi|\beta_1)$.
- •
- Generate β_{m+1} from $h(\beta|\phi_m)$
- Generate ϕ_{m+1} from $g(\phi|\beta_{m+1})$

Baseball Example

- 90 MLB Players in 2000 season.
- Observe at bats (AB) and hits (BA) in May
- Infer distribution of batting averages across players.
- Predict batting averages in October using data from May.

Baseball Batting Averages

	The Cleveland Indians - 1995			
	May		October	
	BA	AB	BA	AB
Murray	.442	43	.323	436
Belle	.400	45	.317	546
Vizquel	.204	49	.260	542
Pena	.148	27	.262	263

Estimating a Probability

- n at bats in May
- X = number of hits
- p = batting average for season
- X has a binomial distribution
 - mean np
 - variance np(1-p)

Binomial Distribution

Need Prior for Batting Average p

- 0 < p < 1
- Beta distribution is popular choice
- It has two parameters: α and β
- Density is proportional to $p^{\alpha-1}(1-p)^{\beta-1}$
- Prior Mean = $\alpha/(\alpha+\beta)$

Beta Prior for p

$$f[p \mid \alpha, \beta] = Beta(p \mid \alpha, \beta)$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} \quad \text{for} \quad 0 \le p \le 1$$

$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx$$

Mean and Variance

$$E(p) = \frac{\alpha}{\alpha + \beta}$$

$$V(p) = \frac{E(p)[1 - E(p)]}{\alpha + \beta + 1}$$

Bayes Theorem:

Update prior for p after observing n and x

$$f[p \mid x, \alpha, \beta] = \frac{\Pr[x \mid p] f[p \mid \alpha, \beta]}{\int_{0}^{1} \Pr[x \mid q] f[q \mid \alpha, \beta] dq}$$

$$\propto \Pr[x \mid p] f[p \mid \alpha, \beta]$$

$$\propto p^{\alpha+x-1}(1-p)^{\beta+n-x-1}$$

$$= Beta (p | \alpha + x, \beta + n - x)$$

Inference About P: Posterior is also Beta

Prior	Posterior	
Parameters	Parameters	
α	$\alpha+x$	
β	β+n-x	

Posterior Mean of p: Its another shrinkage estimator

$$w_n \hat{p}_n + (1-w_n)$$
 (Prior Mean)

$$\hat{p}_n = \frac{x}{n}$$
 and $w_n = \frac{n}{\alpha + \beta + n}$

prior mean = 0.25

p=Beta & x=Binomial

Hierarchical Bayes Model

- Variation within batter i:
 - X_i given p_i has a binomial distribution
- Variation among batters:
 - p_i is a beta distribution with parameters α and β .
- Prior distribution for α and β
 - Gamma (chi-square) distribution

Gamma Distribution

$$g(y) = G(y \mid r, s)$$

$$=\frac{s^r}{\Gamma(r)}y^{r-1}e^{-sy} \quad for \quad y>0$$

$$E(Y) = \frac{r}{s}$$
 and $V(Y) = E(Y) \frac{1}{s}$

Specify Prior Parameters: r, s, u & v

- Priors: α is G(r,s) & β is G(u,v).
- $E(\alpha) = r/s$ and $V(\alpha) = E(\alpha)/s$.
- s determines variance relative to mean.
- I used s = 0.25 or the variance is four times larger than the mean.
- Same for v.

$$E(p) = E\left[E(p \mid \alpha, \beta)\right]$$

$$= \frac{r}{r+u}$$

$$= p_0$$

$$r = p_0 \left(\frac{p_0(1-p_0)}{c} - 1\right) \quad and$$

$$u = (1-p_0)\left(\frac{p_0(1-p_0)}{c} - 1\right)$$

Specify Prior Parameters

Guess a mean of all batting averages:

$$p_0 = 0.25$$

Measure of my uncertainty of that guess:

$$c = 0.01$$

- Parameter r = 4.4
- Parameter u = 13.3

MCMC for Batting Averages

- Need full conditionals for p_i give α and β
 - Beta distribution
- Need full conditionals for α and β given p_i .
 - Unknown distribution
 - Use Metropolis algorithm

MCMC: Full Conditionals for Player i Batting Average p_i

$$f[p_i \mid x_i, \alpha, \beta] \propto \Pr(x_i \mid p_i) f(p_i \mid \alpha, \beta)$$

$$\propto p_i^{a+x_i-1} (1-p_i)^{\beta+n_i-x_i-1}$$

$$= Beta(p_i \mid \alpha + x_i, \beta + n_i - x_i)$$

MCMC: Full Conditional for α and β

$$g(\alpha,\beta \mid x_1,...x_n,p_1,...p_n)$$

$$\propto \prod_{i=1}^{n} p_i^{\alpha-1} (1-p_i)^{\beta-1} g(\alpha | r, s) g(\beta | u, v)$$

Metropolis Algorithm

- Want to generate θ from f
- Instead, generate candidate value φ from g(.|θ)
 - Density g can depend on θ
 - eg Random walk: $\phi = \theta + \delta$
- With probability α(θ, φ) accept φ as the new value of θ
- With probability $1-\alpha(\theta,\phi)$ keep θ

Transition Probability

$$\alpha(\theta, \varphi) = \max \left\{ \frac{f(\varphi)g(\theta \mid \varphi)}{f(\theta)g(\varphi \mid \theta)}, 1 \right\}$$

- f is the full conditional density of θ
- Ratios: do not need to know constants
- Usually compute α on log scale.
- Works if densities are not zero
- Works better if g is close to f

Alpha and Beta vs Iteration

Posterior of Alpha

Posterior of Beta

Parameters Estimates

	Prior	Posterior
α	17.8	26.2
(std)	(8.4)	(4.6)
β	53.2	68.2
(std)	(14.6)	(11.7)

Distribution of Batting Averages

Prediction of Season Averages

	RMSE	MAPE
MLE	0.060	17.0%
Bayes	0.032	9.4%

Batting Averages Bayes Shrinks MLE

HB Conjoint

Lenk, DeSarbo, Green, Young (1996)

- Evaluated computer profiles on a 0 to 10 scale for "likelihood to purchase"
 - -0 = Would not buy
 - 10 = Would definitely buy
- Design
 - 178 subjects
 - 13 attributes with two levels each
 - 20 profiles per subject

Attributes: Effect Coding

- 1. Hotline support
- 2. RAM
- 3. Screen Size
- 4. CPU
- 5. Hard Disk
- 6. Multimedia
- 7. Cache

- 8. Color
- 9. Retail Store
- 10. Warrantee
- 11. Software
- 12. Guarantee
- 13. Price

Subject-Covariates

- Female: 1 if female and 0 if male
- Years: # years of work experience
- Own: 1 if has computer & 0 else
- Nerd: 1 if technical background & 0 else
- Apply: # of software applications
- Expert: self-report expertise rating

Summary Statistics for Covariates

Variable	Mean	Mean Std Dev		MAX
FEMALE	0.275	0.448	0	1
YEARS	4.416	2.369	1	18
OWN	0.876	0.330	0	1
NERD	0.275	0.448	0	1
APPLY	4.287	1.574	1	9
EXPERT	7.618	1.902	3	10

Interaction Model

Within-Subjects

$$Y_{i} = X_{i}\beta_{i} + \varepsilon_{i} \text{ for } i = 1,...,n$$
$$\left[\varepsilon_{i}\right] = N_{m}\left(\varepsilon_{i} \mid 0, \sigma^{2}I_{m}\right)$$

Between-Subjects Heterogeneity

$$\beta_{i} = \Theta' z_{i} + \delta_{i}$$
$$[\delta_{i}] = N_{p}(\delta_{i} \mid 0, \Delta)$$

Average over Posterior Means and Std Dev of Partworths Across Subjects

	PostMean	PostSTD		PostMean	PostSTD
CNST	4.757	1.404	Cache	0.031	0.461
HotLine	0.095	0.487	Color	0.026	0.371
RAM	0.347	0.467	Dstrbtn	0.078	0.378
ScrnSz	0.193	0.405	Wrrnty	0.124	0.392
CPU	0.392	0.646	Sftwr	0.196	0.399
HrdDsk	0.171	0.501	Grntee	0.112	0.427
MultMd	0.494	0.574	Price	-1.127	0.873

Impact of Covariates on Partworths

	CNST	RAM	CPU	Dstrbtn	Wrrnty	Grntee	Price
CNST	3.74	0.52	-0.15	0.05	-0.01	0.03	-1.55
FEMALE	-0.10			0.06	0.12		0.40
YEARS	-0.11						
OWN	-0.10	0.17	0.17	0.20		-0.12	-0.20
NERD	-0.27	0.15	0.16	-0.14			
APPLY	0.10						
EXPERT	0.17						

Summary

- HB allows individual-level coefficients
- Two level model
 - With-in subjects
 - Between subjects (heterogeneity)
- HB shrinks unstable, subject-level estimators to population mean

Summary

- BDT provides integrated framework for making decisions and inference
- Good models consider all sources of uncertainty
- Good methods keep track of all sources of uncertainty
- Bayes does both