Introduction to Bayesian Modeling and Inference

Peter Lenk

University of Michigan

plenk@umich.edu

SCECR 2007

Outline

- Motivation
- Bayesian decision theory and inference
- Pooling information and shrinkage
- Markov Chain Monte Carlo
- Hierarchical Bayes (HB) models
- Metropolis Algorhitm
- WinBugs
- Extensive notes and GAUSS code on http://webuser.bus.umich.edu/plenk/downloads.htm

Motivation

- Decision making under uncertainty
 - ➤ How to make good decisions with limited information and high uncertainty
- Disaggregate decisions
 - Need to go beyond simplistic aggregates
- Distribution of heterogeneity
 - ➤ Recognize individual differences among sampling units users, web pages, customers, etc
 - Limited information for each sampling unit

Situations where Hierarchical Bayes Rules

		Breath	
		Number of Units	
		<i>Narrow</i> Few	<i>Broad</i> Many
	Shallow	Only Bayes	HB is Best!
<i>Depth</i> Observations per Units	Few		
	<i>Deep</i> Many	Methods converge	Massive database

Bayesian Decision Theory

Models, Data, and Parameters

• Joint distribution of data given parameters $f[y_1, ..., y_n|\theta]$

- Conditional independence is useful $f[y_1, ..., y_n|\theta] = f[y_1|\theta] f[y_2|\theta]... f[y_n|\theta]$
- The likelihood function is the information in the data about θ

$$I(\theta) = f[y_1, ..., y_n | \theta]$$

Priors and Posteriors

- Beliefs about θ before observing the data are encoded in the prior distribution p[θ]
- Beliefs are updated after observing data through Bayes theorem to obtain the posterior distribution
 - $\triangleright p[\theta|Data] = I(\theta)p[\theta]/f[y_1...y_n]$
 - \succ f[y₁...y_n] is the marginal distribution of the data

Inference: Bayes Rules

- Bayesian inference centers on the posterior distribution
- Given a loss function L(θ,w), the Bayes rule minimizes the expected posterior loss

$$\omega = \arg\max_{w} \int L(\theta, w) p[\theta \mid \text{Data}] d\theta$$

 \triangleright Squared error loss: ω = posterior mean

 \triangleright Absolute error loss: ω = posterior median

 \triangleright 0/1 loss: ω = posterior mode

Measures of Estimation Uncertainty

Posterior Risk

$$\rho(\omega) = \int L(\theta, \omega) p[\theta \mid \text{Data}] d\theta$$

> Squared error loss: risk = posterior variance

Predictive Distribution

Distribution for next observation

$$f[y_{n+1} \mid y_1 \cdots y_n] = \frac{f[y_1 \cdots y_{n+1}]}{f[y_1 \cdots y_n]}$$

Under conditional independence

$$f[y_{n+1} | y_1 \cdots y_n] = \int f[y_{n+1} | \theta] p[\theta | y_1 \cdots y_n] d\theta$$

"Classical" versus Bayes

Classical

- Parameters are fixed
- Data are random
- Centers on sampling distributions
 - Likely values of statistic
- Integrates over sample space
- Protects against sampling errors

Bayes

- Parameters are random
- Data are fixed
- Centers on posterior distributions
 - Likely values of parameters
- Integrates over parameter space
- Learning mechanism

Easy Example Estimate the Mean

Model

- > Y_i \sim N(μ , σ ²) for i = 1, ..., n
- \triangleright Assume that σ is known to keep it simple

- Prior distribution for μ is $N(m_0, v_0^2)$
 - \succ m₀ is your best guess at μ
 - >v₀² is your uncertainty about your guess

Prior, Likelihood, & Posterior

$$p[\mu] \propto \exp\left[-\frac{1}{2v_0^2}(\mu - m_0)^2\right]$$

$$l[\mu] \propto \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right]$$

$$p[\mu | \text{Data}] \propto l[\mu] p[\mu]$$

$$\mu \mid \text{Data} \sim N(m_n, v_n^2)$$

Posterior Distribution

 Posterior distribution is N(m_n, v_n²)

$$m_n = w\overline{y} + (1 - w)m_0$$

$$w = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{v_0^2}} \text{ and } 0 < w < 1$$

$$v_n^2 = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{v_0^2}}$$

What happens as

- ➤ n becomes large?
- \triangleright v₀ becomes large?
- \triangleright σ becomes small?

Updating Conjugate Models

Posterior distribution is in same family as prior

Prior Parameters

Posterior Parameters

$$\mathbf{m}_0 \longrightarrow m_n = w\overline{y} + (1 - w)m_0$$

$$V_0^2 \longrightarrow v_n^2 = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{v_0^2}}$$

Predictive Distribution

• Predictive distribution for Y_{n+1} is normal with mean m_n and variance $\sigma^2 + v_n^2$

Shrinkage Estimators

- In the previous example, the Bayes estimator combines the prior mean with sample mean
- The Bayes estimate "shrinks" the sample mean towards your prior guess
- The amount of shrinkage depends on the relative amount of sample information and prior information

Do it with Data

- The truth is that Y ~ $N(\mu=10,\sigma^2=16)$
- Prior for $\mu \sim N(m_0=5, v_0^2=2)$
 - ➤ Prior is informative and way off
- Data

 \triangleright n = 5, Average = 10.9, Variance = 14.7

• Posterior for $\mu \sim N(m_0 = 7.4, v_0^2 = 1.2)$

Less Informative Prior

- The truth is that $Y \sim N(\mu=10, \sigma^2=16)$
- Prior for $\mu \sim N(m_0=5, v_0^2=10)$
 - ➤ Prior variance is 10 instead of 2

Data

 \triangleright n = 5, Average = 10.9, Variance = 14.7

• Posterior for $\mu \sim N(m_0 = 7.4, v_0^2 = 1.2)$

Summary

- Prior has less effect as sample size increases
- Very informative priors give good results with smaller samples if prior information is correct
- If you really don't know, then use "flatter" or less informative priors

Good & Bad News

- Only simple models result in closed-form equations
- Most models require numerical methods to compute posterior mean, posterior standard deviations, predictions and so on

Monte Carlo

• Compute posterior mean of function $T(\theta)$.

$$E[T(\theta)|y] = \int T(\theta)p(\theta|y)d\theta$$

• Generate random draws $\theta_1, \theta_2, ..., \theta_m$ from posterior distribution using a random number generator.

$$E[T(\theta)|y] \approx \frac{1}{m} \sum_{j=1}^{m} T(\theta_j)$$

Good & Bad News

- If your computer has a random number generator for the posterior distribution,
 Monte Carlo is a snap to do
- Your computer almost never has the correct random number generator

Importance Sampling Approximation: Generate from g instead of f

$$\int T(\theta)f(\theta)d\theta = \int T(\varphi)\frac{f(\varphi)}{g(\varphi)}g(\varphi)d\varphi$$

$$\approx \frac{\sum_{i=1}^{m} T(\varphi_i) r(\varphi_i)}{\sum_{i=1}^{m} r(\varphi_i)} = \sum_{i=1}^{m} T(\varphi_i) w(\varphi_i)$$

$$r(\varphi_i) \propto \frac{f(\varphi_i)}{g(\varphi_i)}$$
 and $w(\varphi_i) = \frac{r(\varphi_i)}{\sum_{j=1}^m r(\varphi_j)}$ Don't need constants for f and g to compute weights w!

weights w!

Markov Chain Monte Carlo

- Extension of Monte Carlo
- Random draws are not independent
- Joint distribution f(β,σ|Y) does not have a convenient random number generator
- Useful if "full" conditional distributions g(σ|β,Y) and h(β|σ,Y) have known random number generators

Iterative Generation from Full Conditionals

- Start at σ₀
- Generate $\beta_1 \sim h(\beta | \sigma_0, Y)$
- Generate $\sigma_1 \sim g(\sigma | \beta_1, Y)$

. . .

- Generate $\beta_{m+1} \sim h(\beta | \sigma_m, Y)$
- Generate $\sigma_{m+1} \sim g(\sigma | \beta_{m+1}, Y)$

. . .

Markov Chain Theory

- $\{(\beta_m, \sigma_m)\}$ forms a Markov chain with stationary distribution $f(\beta, \sigma|Y)$
 - Feventually (β_m, σ_m) are draws from the stationary distribution
 - ➤ Delete the first k draws because chain has not converted to the stationary distribution
 - ➤ How to pick k?

Regression Model

Model:

$$> Y_i = x_i'\beta + \varepsilon_i$$
 and $\varepsilon_i \sim N(0, \sigma^2)$

Priors

$$> \beta \sim N_p(b_0, V_0)$$

 $> \sigma^2 \sim IG(r_0/2, s_0/2)$ the Inverted Gamma Dist

$$f\left(\sigma^{2} \mid \frac{r}{2}, \frac{s}{2}\right) = \frac{\left(\frac{s}{2}\right)^{\frac{r}{2}}}{\Gamma\left(\frac{r}{2}\right)} \left(\sigma^{2}\right)^{-\left(\frac{r}{2}+1\right)} \exp\left(-\frac{s}{2\sigma^{2}}\right) \text{ for } \sigma^{2} > 0$$

MCMC Steps 1 & 2

• Step 1: joint distribution $[y_1|\beta,\sigma^2] \dots [y_n|\beta,\sigma^2] [\beta][\sigma^2]$

■ Step 2: full conditional for β $[\beta|Y, \sigma^2] \propto [y_1|\beta,\sigma^2] \dots [y_n|\beta,\sigma^2] [\beta][\phi^2]$ $\geqslant \beta|Y, \sigma^2 \sim N(b_n, V_n)$

$$V_n^{-1} = X'X/\sigma^2 + V_0^{-1}$$

$$>b_n = V_n(X'Y/\sigma^2 + V_0^{-1}b_0)$$

MCMC Step 3

Step 3: full conditional for σ²

$$[\sigma^2 | Y, \beta] \propto [y_1 | \beta, \sigma^2] \dots [y_n | \beta, \sigma^2] [N] [\sigma^2]$$

$$> \sigma^2 | Y, \beta \sim IG(r_n/2, s_n/2)$$

$$> r_n = r_0 + n$$

$$>$$
s_n = s₀ + SSE

$$\gt$$
SSE = (Y-X β)' (Y-X β)

MCMC Steps 4 to 6

- Step 4:Initialize β_0 and σ_0 . To what?
- Step 5: Recursively generate

Step 6: Stop when _____

MCMC Finished

- Drop first k iterations for burn-in of Markov chain to stationary distribution
- Use remainder of draws to compute
 - > Statistics for the posterior distributions
 - Means, variances, quartile, etc
 - Historgrams or Box-Plots
 - > Predictive distributions
 - > Other decision variables
 - Elasticities
 - Market shares
 - Live-time value
 - Network connectivity

Regression Example

- Movie box office revenue for 2004
 - > http://www.boxofficeprophets.com
 - > N = 349 releases
 - ➤Y = In(Total Revenue \$m)
 - ➤X1 = In(Number Opening Screens)
 - >X2 = In(Opening Weekend Revenue \$m)
- Log-log model

$$Y = b0 + b1*X1 + b2*X2 + \varepsilon$$

Prior Distributions

- Regression coefficients are normal with mean 0 and standard deviation 100
- 1/error variance is gamma with parameters 0.1 and 0.1
- Used WinBugs

MCMC Iterations for b0 and b1

MCMC Iterations for b2 and σ

Posterior Distributions

Histograms from MCMC Iterations

Estimates Computed from MCMC Iterations

Note: Multicolinearity problem with X1 and X2 and possible endogeneity issues, but this is just an example.

ACF for Parameters

The greater the autocorrelation in the draws, the longer you need to run the chain to obtain a level of numerical accuracy.

Running Quartiles for MCMC

These graphs demonstrates that the estimates are stable over iterations.

FAQ about MCMC

- How should I initialize the parameters?
- How long of a burn-in period?
- How many iterations should I use for estimation?
- What does "mixing" mean?

Initialize Parameters

- Need to be careful that you don't start chain in a bad area of the parameter space
- Try multiple runs with different starting values
- Use estimates from previous analysis (OLS or MLE), if you have them
- Initialize parameters to reasonable values

Burn-In Period

- Trace of MCMC draws versus iteration should stabilize (not to a constant)
- Gelman & Rubin convergence diagnostic is popular. It requires multiple chains
- Try simulated data where you know the answer
- Hard question in general

Number of Iterations for Estimation

- MC Error gives numerical accuracy of the MCMC estimator of the posterior mean
 - > ± 2*(MC Error) is how far off the estimate should be if you reran the MCMC
- Depends on mixing
 - >See next slide
- Try simulated data where you know the true value
- Hard question in general

Mixing

- How well the MCMC algorithm covers the parameter space
- ACF (autocorrelation function)
 - ➤ Correlation over time in MCMC draws
 - ➤ Large values of ACF (after lag 0) indicates poor mixing
- Need to use more iterations to compensate for large poor mixing

Hierarchical Bayes Model

- Two level model when there are repeated measurements on each unit (subject)
 - Subject level model describes variation of observations within subjects
 - Population level model describes variation of subjectlevel parameters across the population
- Population-level model
 - Allows sharing of information or pooling across subjects
 - Acts as a "prior" for estimating subject-level parameters

HB Model for Weekly Spending

- Household-level model: Household i and week j
 - $ightharpoonup Y_{i,j} \sim N(\mu_i, \sigma_i^2)$ for i = 1...N and $j = 1...n_i$
 - \triangleright Household mean μ_i depends on household
- Heterogeneity in household means
 - $\rightarrow \mu_i \sim N(\theta, \tau^2)$
 - $\triangleright \theta$ is population mean
- Priors
 - $\rightarrow \theta \text{ is N}(u_0, v_0^2)$
 - \triangleright Variances σ_i^2 and τ^2 are known

Precisions = 1/Variance

$$Pr(\theta) = \frac{1}{v_0^2}$$
 is prior precision

$$\Pr(\mu_i \mid \theta) = \frac{1}{\tau^2}$$

$$\Pr(Y_{i,j} \mid \mu_i) = \frac{1}{\sigma_i^2} \text{ and } \Pr(Y_{i,j} \mid \theta) = \frac{1}{\tau^2 + \sigma_i^2}$$

$$\Pr(\overline{Y}_i \mid \mu_i) = \frac{n}{\sigma_i^2} \text{ and } \Pr(\overline{Y}_i \mid \theta) = \frac{1}{\tau^2 + \frac{\sigma_i^2}{n}}$$

Joint Distribution

$$P(Y, \mu, \theta) = h(\theta \mid u_0, v_0^2) \prod_{i=1}^{N} g(\mu_i \mid \theta, \tau^2) \prod_{j=1}^{n_i} f(y_{i,j} \mid \mu_i, \sigma_i^2)$$

Prior

Between Subjects

Within Subjects

Posterior Distribution $\theta \mid Data \sim N(u_N, v_N^2)$

$$v_N^{-2} = \frac{1}{v_0^2} + \sum_{i=1}^N \frac{1}{\tau^2 + \frac{\sigma_i^2}{n_i}}$$

$$u_N = w_0 u_0 + \sum_{i=1}^N w_i \overline{Y}_i$$

Shrinkage between weighted average of household means and prior mean. Weights depend on relative precisions.

$$w_0 = \frac{\Pr(\theta)}{\Pr(\theta \mid Y)} \text{ and } w_i = \frac{\Pr(\overline{Y_i} \mid \theta)}{\Pr(\theta \mid Y)}$$

Posterior Mean of μ_i

$$E[\mu_i \mid Y] = \alpha_i \overline{Y}_i + (1 - \alpha_i) u_N$$

$$\alpha_{i} = \frac{\Pr(\overline{Y}_{i} \mid \mu_{i})}{\Pr(\mu_{i} \mid \theta) + \Pr(\overline{Y}_{i} \mid \mu_{i})} = \frac{\overline{\sigma_{i}^{2}}}{\frac{1}{\tau^{2}} + \frac{n_{i}}{\sigma_{i}^{2}}}$$

Fantastic!

Shrinkage between individual household average and *population estimate*.

Weights depend on relative precisions.

Between-Subject Heterogeneity in Household Mean Spending

Between & Within Subjects Distributions

— Heterogeneity — Subject 1 — Subject 2 — Subject 3

2 Observations per Subject

Subject Averages

Pooled Estimate of Mean

Shrinkage Estimates

20 Observations per Subject

Bayes & Shrinkage Estimates

- Bayes estimators automatically determine the optimal amount of shrinkage of household estimates to population estimate to minimize MSE
- Borrows strength from all subjects
- Tradeoff some bias for variance reduction
- Allows estimation of models with more parameters than observations!

HB Regression Example

- Metric conjoint
- PC Profiles
- 190 subjects
- 20 profiles per subject
- 7 binary attributes
- 0 to 10 scale for how likely to buy

Variables

- Y = likelihood of purchase
- Attributes

Demographics

$$>$$
Z1 = Intercept

$$X2 = RAM$$

$$X6 = Warranty$$

$$X8 = Price$$

$$Z4 = Expertise$$

Model

Within-Subjects: Subject i, Profile j

$$>Y_{ij} = x_i'\beta_i + \varepsilon_{ij}$$
 where $\varepsilon_{ij} \sim N(0,\sigma^2)$

- >i = 1 ...n and j = 1 ... J_i
- Between-Subjects or population model
 - $> \beta_i = \Theta'z_i + \delta_i$ where $\delta_i \sim N(0, \Lambda)$
- Priors
 - → Θ is matrix normal
 - Λ is inverted Wishart
 - $> \sigma^2$ is inverted gamma

MCMC Full Conditionals

Joint distribution

• Full conditional of β_i for i = 1...n

$$[\beta_i | \text{Rest}] \propto [Y_i | \beta_i, \sigma^2] [\beta_i | \Theta, \Lambda] \sim \text{Normal}$$

MCMC Full Conditionals (2)

■ Full Conditional of Θ

$$[\Theta | \text{Rest}] \propto [\beta_1 | \Theta, \Lambda] \dots [\beta_n | \Theta, \Lambda] [\Theta] \sim \text{Normal}$$

Full Conditional of Λ

```
[\Lambda| Rest] \propto [\beta_1|\Theta,\Lambda]... [\beta_n|\Theta,\Lambda] [\Lambda] \sim Inverted Wishart
```

■ Full Conditional of σ²

```
[\sigma^2 | Rest ] \propto [Y_1|\beta_1,\sigma^2]... [Y_n|\beta_n,\sigma^2] [\sigma^2]
```

~ Inverted Gamma

MCMC Iterations

Constant and Coefficient Price x Expert

Posterior Density

Constant and Price x Expert

ACF Constant and Price x Expert

Estimates Constant and Price x Expert

node	mean	sd	MC error	2.5%	median	97.5%
theta[1,1]	3.377	0.448	0.02831	2.514	3.373	4.281
theta[4,8]	0.047	0.037	0.002639	-0.023	0.045	0.118

Metropolis Algorithm Baseball Example

- 90 MLB Players in 2000 season.
- Observe at bats (AB) and hits (BA) in May
- Infer distribution of batting averages across players.
- Predict batting averages over season using data from May.

Baseball Batting Averages

	May			Season		
Player	At Bats	Hits B	atting Avg	At Bats	Hits E	Batting Avg
Martinez	99	22	0.222	569	147	0.258
Jeter	54	15	0.278	593	201	0.339
O'Neil	109	29	0.266	566	160	0.283
Williams	106	30	0.283	537	165	0.307
Pasada	82	27	0.329	505	145	0.287

In Major League Baseball a batting average above 0.300 is outstanding! Batting averages around 0.250 are typical.

Notation

- Player i for i = 1...N
- n_i at-bats in may
- x_i hits in May
- x_i/n_i observed batting average
- p_i "true" batting average for player i
 - ➤ Assumed to be constant over time and unobserved
 - ➤ Varies across players

Model

- x_i | p_i, n_i is Binomial(p_i,n_i)
 - >This is a strong assumption
- p_i varies across players according to a
 Beta distribution with parameters α and β
 - $>p_i \sim Beta(\alpha,\beta)$
- Priors
 - $> \alpha \sim Gamma(r,s)$
 - $> \beta \sim Gamma(u,v)$

Binomial Distribution

Beta Distribution

$$f[p \mid \alpha, \beta] = Beta(p \mid \alpha, \beta)$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} \quad \text{for} \quad 0 \le p \le 1$$

$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx$$

Mean and Variance

$$E(p) = \frac{\alpha}{\alpha + \beta}$$

$$V(p) = \frac{E(p)[1 - E(p)]}{\alpha + \beta + 1}$$

Gamma Distribution

$$g(y) = G(y \mid r, s)$$

$$= \frac{s^r}{\Gamma(r)} y^{r-1} e^{-sy} \quad for \quad y > 0$$

$$E(Y) = \frac{r}{s}$$
 and $V(Y) = E(Y) \frac{1}{s}$

Specify Prior Parameters: r, s, u & v

- Priors: α is G(r,s) & β is G(u,v).
- Skip to MCMC

- $E(\alpha) = r/s$ and $V(\alpha) = E(\alpha)/s$.
- s determines variance relative to mean.
 - ➤I used s = 0.25 or the variance is four times larger than the mean.
 - >Same for v.

$$E(p) = E\left[E(p \mid \alpha, \beta)\right]$$

$$= \frac{r}{r+u}$$

$$= p_0$$

$$r = p_0 \left(\frac{p_0(1-p_0)}{c} - 1\right) \quad and$$

$$u = (1-p_0)\left(\frac{p_0(1-p_0)}{c} - 1\right)$$

Specify Prior Parameters

• Guess a mean of all batting averages:

$$p_0 = 0.25$$

Measure of my uncertainty of that guess:

$$c = 0.01$$

- Parameter r = 4.4 and s = 0.25
- Parameter u = 13.3 and v = 0.25

MCMC for Batting Averages

- Need full conditionals for p_i give α and β
 - ➤ Beta distribution
- Need full conditionals for α and β given p_i .
 - >Unknown distribution
 - ➤ Use Metropolis algorithm

MCMC: Full Conditionals for Player i Batting Average p_i

$$f[p_i \mid x_i, \alpha, \beta] \propto \Pr(x_i \mid p_i) f(p_i \mid \alpha, \beta)$$

$$\propto p_i^{a+x_i-1} (1-p_i)^{\beta+n_i-x_i-1}$$

$$= Beta(p_i \mid \alpha + x_i, \beta + n_i - x_i)$$

MCMC: Full Conditional for α and β

$$g(\alpha,\beta | x_1,...x_n, p_1,...p_n)$$

$$\propto g(\alpha \mid r, s)g(\beta \mid u, v) \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\alpha)} \right]^n \prod_{i=1}^n p_i^{\alpha - 1} (1 - p_i)^{\beta - 1}$$

Metropolis Algorithm

- Want to generate θ from f
- Instead, generate candidate value φ from g(.|θ)
 - \triangleright Density g can depend on θ
 - \triangleright eg Random walk: $\phi = \theta + \delta$
- With probability ξ(θ,φ) accept φ as the new value of θ
- With probability $1-\xi(\theta,\phi)$ keep θ
- Markov chain with stationary distribution f

Transition Probability

$$\xi(\theta, \varphi) = \min \left\{ \frac{f(\varphi)g(\theta \mid \varphi)}{f(\theta)g(\varphi \mid \theta)}, 1 \right\}$$

- f is the full conditional density of θ
- g is the generating density for φ
- Ratios: do not need to know constants
- "Works" if densities are not zero
- Works better if g is close to f

Alpha and Beta vs Iteration

Posterior of Alpha

Posterior of Beta

Parameters Estimates

	Prior	Posterior
α	17.8	26.2
(std)	(8.4)	(4.6)
β	53.2	68.2
(std)	(14.6)	(11.7)

Distribution of Batting Averages

Prediction of Season Averages

	RMSE	MAPE
MLE	0.060	17.0%
Bayes	0.032	9.4%

SCECR 2007

Batting Averages Bayes Shrinks MLE

Choice Based Conjoint Example

- Data provided by Sawtooth Software
- Joint work with Robert Zeithammer
- 326 IT purchasing manager
- 5 brands of personal computers
- 8 choice tasks per subject
- 4 alternatives per choice task
 - ≥3 brands and "None"
 - Choice tasks do not have every brand

Random Utility Model (RUM)

- Subject i has latent utility U for profile j in choice task k: U_{i,i,k} = x'_{i,k}β_i + ε_{i,i,k}
 - $> x_{i,j,k}$ = attribute levels for profile j
 - $\triangleright \beta_i$ = individual level parameters
 - $\succ \varepsilon_{i,j,k}$ = normal distribution with mean 0
 - Errors are associated with brands
 - Σ is error covariance among brand preferences
- Pick profile j* if U_{i,j*,k} > U_{i,j,k}
 - ➤ Observed data are the choices
 - ➤ Utility "None" = 0

Heterogeneity

- Individual-level parameters follow a multivariate regression model
- Θ = matrix of regression coefficients
- z_i = observed covariates for subject i
- δ_i = multivariate normal errors
 - \triangleright mean 0 and covariance Λ

Prior Distributions

- Σ, the error covariance matrix for the 5 brands preferences, has an inverted Wishart distribution
- ⊕, the regression parameters for heterogeneity, has a matrix normal distribution
- A, the error covariance for heterogeneity, has an inverted Wishart distribution.

Probit Model

- Probit probabilities are hard to compute
- Easy fix:
 - ➤ Generate latent utilities at each stage
 - ➤ Given latent utilities, which are multivariate normal distribution, the rest is easy
- Generate latent utilities
 - >Truncated normal distributions
 - ➤ Utility for selected profile > Other Utilities.

Posterior Mean of ⊕

	CNST	ExPayLow	ExPayHig	Expert	Female	SmallCo	LargeCo
BrandA	0.768				-0.421		0.302
BrandB	0.882		-0.382		-0.406		
BrandC	0.459	0.455	-0.458		-0.471		
BrandD	0.400		-0.584		-0.544		
BrandE			-0.597	-0.354	-0.691		
LowPerfo	-1.574						-0.326
HighPerf	0.566		0.267			0.371	
TeleBuy	-0.192	0.231					
SiteBuy		0.328					
ShortWar							
LongWar	0.401						
MFGFix	-0.679	-0.399					
SiteFix	0.342						
Price2	0.315			-0.291			-0.291
Price3	-0.723	-0.296					
Price4	-0.977	-0.661			0.287		

SCECR 2007

Bayes Rules! Lenk

Brand Preference Covariance Matrix

	BrandA	BrandB	BrandC	BrandD	BrandE
BrandA	1.02	0.01	-0.12	-0.16	-0.41
BrandB	0.01	0.95	0.08	-0.13	-0.45
BrandC	-0.12	0.08	1.18	-0.44	-0.53
BrandD	-0.16	-0.13	-0.44	1.21	-0.08
BrandE	-0.41	-0.45	-0.53	-0.08	1.00

If subject likes Brand A more than expected, he or she will like Brands D and E less than expected.

Not IIA

Attribute Significance

- Heterogeneity in partworths β_i
 - \succ "Explained" Θ 'z_i
 - \succ "Unexplained" δ_i
- $\theta_{uv} = 0$ is not enough to conclude insignificant partworth.
- Also need var(δ_i) close to zero

Simulated Market Share

- Fix 5 product specifications
- During each iteration
 - Generate subject's latent utility for each product
 - ➤ Pick the product with maximum utility
 - ➤ Compute market share
- Distribution of market shares

Iteration Plots of Market Shares

Posterior Means and STD DEV

Brand	Mean	STD DEV
A	0.45	0.030
В	0.04	0.014
С	0.26	0.028
D	0.20	0.029
E	0.05	0.015

Histogram of Posterior Distribution for Market Shares

WinBugs

- Free download for Bayesian inference
- Website http://www.mrc-bsu.cam.ac.uk/bugs/
- Brief overview of how to run examples provided with WinBugs
- Interpretation of output
- Trying it

Pros and Cons of WinBugs

Pros

- > Slick software
- > Fairly flexible
- Comprehensive output
- Extensive series of examples
- Large user community
- Extensive documentation

Cons

- Needs some programming skills
- Does not work for all problems
- Not designed for "production runs"
- May be too slow for very large datasets and complex models

WinBugs Language

- WinBugs does not have "canned" models
 - ➤ Unlike SAS or SPSS, you cannot use a pull down menu to run standard models
- WinBugs requires some "programming" to specify your model
 - > For loops
 - > Defining distributions
 - Matrices
 - > Variable definitions
- You need to compile your model

Compound Documents

- Examples in manual are written in "compound documents" – way cool
- Text document
 - Describes the model and data
 - > Includes model statement
 - ➤ Includes data file
 - >Includes initial values
- WinBugs runs model from text document

Process

- Specify model
- Attach data
- Attach initial conditions
- Select "nodes" to monitor
- Run MCMC: Winbugs handles the details
 - ➤ Conjugate, log-convex, Metropolis
- Analyze output

Back to the Regression **Example**

- Movie box office revenue for 2004
 - http://www.boxofficeprophets.com
 - > N = 349 releases
 - ➤Y = In(Total Revenue \$m)
 - ➤X1 = In(Number Opening Screens)
 - >X2 = In(Opening Weekend Revenue \$m)
- Log-log model
 - Y = b0 + b1*X1 + b2*X2 + e

See compound document "Movie BO.odc"

Prior Distributions

- Regression coefficients are normal with mean 0 and standard deviation 100
- 1/error variance is gamma with parameters
 0.1 and 0.1

Step 1: Model Specification

- Tool bar
 - **≻**Model
 - ➤ Specification
- Highlight "model" at beginning of code
- Click "check model"
- Look for a happy message at bottom left

Step 2: Load Data

- If you use data list
 - ➤ Highlight "list"
 - Click "load data"
- If data are in rectangular file
 - ➤ Make the window with the data active
 - ➤ Put cursor at beginning of file
 - Click "load data"
- You can have multiple loads

Step 3: Compile Model

- Specification Tool
- Compile
- Keep your fingers crossed
 - ➤ Either a happy message, or
 - Vague message that is very hard to use in debugging

🔆 WinBUGS14 - [Movie BO]

Step 4: Initial Values

- You can specify the initial values
 - ➤ Use same format as data
 - Data list
 - Rectangular file
 - ➤ Highlight list or make data window active
 - ➤ Click "load init"
- Alternatively, click "gen inits" and WinBugs will generate initial values from your priors

Step 5: Define Sampling Nodes

- Tell WinBugs which parameters to keep track of in MCMC and report on
- Tool bar
 - >Inference
 - ➤ Samples
- Type parameter names in node box
- The beg and end boxes define iterations to use for estimates
 - >You can change these after MCMC is done

Step 6: Run MCMC

- Tool bar
 - > Model
 - > Update
- Enter number of MCMC iterations in "update" box
- Enter number of iterations used before refreshing the MCMC trace plots
- Enter * in node box of Sample Monitor Tool (see Step 4) to monitor all parameters
- Hit update in Update Tool until you want to stop

Step 7: WinBugs Output

After finishing runs

Modify beg and end values in Sample Monitor Tool to say which iterations you will use

Output

- History shows MCMC iterations from beg to end
- > Density plots histograms of iterations
- Stats give estimates
- > Auto corr gives autocorrelation plots
- Quartiles give running quartiles
- Coda gives values of iterations

Scripting

- After you get your program to run successfully, you will become very bored with this lengthy, 7-step procedure
- WinBugs has a scripting language so you can do these activities in batch model
 - http://www.aims.ac.za/~mackay/BUGS/Manuals/Scripts.html
 - http://web.maths.unsw.edu.au/~scott/price.html

Scripting Language

- Need 4 files (.odc or .txt) with
 - ➤ Script commands
 - ➤ Model commands
 - > Data
 - ➤ Initial values
- Open script command in WinBugs
- Execute from Tool Bar
 - ➤ Model
 - ➤ Script

Model File

moviebo.model.odc

```
model;
 for(i in 1:N) {
   TotalBO.ln[i]~ dnorm(mu[i],y.per)
 for(i in 1 : N) {
   mu[i] <- b0 + b1 * Screens.ln[i] + b2 * OpenBO.ln[i]
 b0 \sim dnorm(0.0, 1.0E-6)
 b1 \sim dnorm(0.0, 1.0E-6)
 b2 \sim dnorm(0.0, 1.0E-6)
 y.per \sim dgamma(0.001, 0.001)
 y.std <- 1 / sqrt(y.per)
```

Data File

moviebo.data.txt

```
list( N = 349,
TotalBO.ln= c(
6.078719644,
5.922596668,
```

```
-4.605170186,
-4.605170186),
OpenBO.ln= c(
4.682501529,
4.752037262,
```

```
-4.605170186,
-4.605170186),
Screens.ln = c(
8.333991247,
8.331345425,
```

2.197224577, 3.091042453))

Initialize Parameters

moviebo.initial.txt

Script File

movie.script.odc

```
display('log') # display the log file as your run it # check your model check('c:/myfiles/mcmc/winbugs/moviebo/moviebo.model.odc') # load the data data('c:/myfiles/mcmc/winbugs/moviebo/moviebo.data.txt') # compile the mode compile(1) # load the initial value for first chain inits(1,'c:/myfiles/mcmc/winbugs/moviebo/moviebo.initial.txt')
```

Script File Continued 1

```
# run 1000 mcmc
update(1000)
# monitor the following nodes
set(b0)
set(b1)
set(b2)
set(y.std)
# udate with 1000 MCMC
update(1000)
```

Script File Continued 2

```
# print the statistics and graphs to the log file
stats(*)
history(*)
density(*)
autoC(*)
# output coda to the following path
coda(*,'c:/myfiles/mcmc/winbugs/moviebo/')
# save the log file
save('c:/myfiles/mcmc/winbugs/moviebo/moviebo.log
```


Log File: Statistics

stats(*)

Node statistics

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
b0	5.739	0.3245	0.009024	5.119	5.737	6.372	1001	1000
b1	-0.8058	0.06266	0.001805	-0.9284	-0.8065	-0.685	1001	1000
b2	1.643	0.06433	0.001759	1.518	1.643	1.769	1001	1000
y.std	0.9789	0.03768	0.001245	0.9084	0.9777	1.059	1001	1000

Log File: History

Summary

- Bayesian methods hold great promise for internet and e-commerce applications
- Particularly appropriate when there are many sampling units and sparse observations per unit
- Unifies statistics and decision models
- Tracks sources of uncertainty