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Abstract

The drive to satisfy customers in narrowly defined market seg-
ments has led firms to offer wider arrays of products and ser-
vices. Delivering products and services with the appropriate
mix of features for these highly fragmented market segments
requires understanding the value that customers place on
these features. Conjoint analysis endeavors to unravel the
value, or partworths, that customers place on the product or
service’s attributes from experimental subjects’ evaluation of
profiles based on hypothetical products or services. When the
goal is to estimate the heterogeneity in the customers’ part-
worths, traditional estimation methods, such as least squares,
require each subject to respond to more profiles than product
attributes, resulting in lengthy questionnaires for complex,
multiattributed products or services. Long questionnaires
pose practical and theoretical problems. Response rates tend
to decrease with increasing questionnaire length, and more
importantly, academic evidence indicates that long question-
naires may induce response biases.

The problems associated with long questionnaires call for
experimental designs and estimation methods that recover the
heterogeneity in the partworths with shorter questionnaires.
Unlike more popular estimation methods, Hierarchical Bayes
(HB) random effects models do not require that individual-
level design matrices be of full rank, which leads to the pos-
sibility of using fewer profiles per subject than currently used.
Can this theoretical possibility be practically implemented?

This paper tests this conjecture with empirical studies and
mathematical analysis. The random effects model in the paper
describes the heterogeneity in subject-level partworths or re-
gression coefficients with a linear model that can include
subject-level covariates. In addition, the error variances are
specific to the subjects, thus allowing for the differential use
of the measurement scale by different subjects.
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In the empirical study, subjects” responses to a full profile
design are randomly deleted to test the performance of
HB methods with declining sample sizes. These simple ex-
periments indicate that HB methods can recover hetero-
geneity and estimate individual-level partworths, even when
individual-level least squares estimators do not exist due to
insufficient degrees of freedom.

Motivated by these empirical studies, the paper analytically
investigates the trade-off between the number of profiles per
subject and the number of subjects on the statistical accuracy
of the estimators that describe the partworth heterogeneity.
The paper considers two experimental designs: each subject
receives the same set of profiles, and subjects receive different
blocks of a fractional factorial design. In the first case, the op-
timal design, subject to a budget constraint, uses more subjects
and fewer profiles per subject when the ratio of unexplained,
partworth heterogeneity to unexplained response variance is
large. In the second case, one can maintain a given level of
estimation accuracy as the number of profiles per subject de-
creases by increasing the number of subjects assigned to each
block.

These results provide marketing researchers the option of
using shorter questionnaires for complex products or services.
The analysis assumes that response quality is independent of
questionnaire length and does not address the impact of de-
sign factors on response quality. If response quality and ques-
tionnaire length were, in fact, unrelated, then marketing re-
searchers would still find the paper’s results useful in improv-
ing the efficiency of their conjoint designs. However, if
response quality were to decline with questionnaire length, as
the preponderance of academic research indicates, then the
option to use shorter questionnaires would become even more
valuable.

(Consumer Preferences; Multi-attributed Models; Consumer Re-
search)
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HIERARCHICAL BAYES CONJOINT ANALYSIS: RECOVERY OF PARTWORTH
HETEROGENEITY FROM REDUCED EXPERIMENTAL DESIGNS

1. Introduction

Over the past three decades, conjoint analysis has
evolved as the primary set of techniques employed by
both academics and practitioners of marketing research
for measuring consumer tradeoffs among multiattri-
buted products and services. Originally devised by
Green and Rao (1971), this decompositional procedure
utilizes overall evaluations of typically hypothetical
products or services defined on experimentally manip-
ulated attributes, and derives quantitative values for at-
tribute levels from these evaluations. Green and Krieger
(1994a), Green and Srinivasan (1978, 1990), and Lou-
viere (1988) have provided summaries of the major
phases and associated methodological decisions em-
ployed in the execution of a typical marketing conjoint
study (see also Rao 1977). Cattin and Wittink (1982),
Wittink and Cattin (1989), and Wittink et al. (1994) have
documented the extensive use of conjoint analyses in-
volving a wide assortment of commercial applications.

In the full profile method of data collection, respon-
dents evaluate hypothetical product or service profiles
described by their attribute levels, which are specified
from an experimental design. Frequently, studies em-
ploying validation with hold-out profiles or market
share choice simulations require individual consumer-
level responses, which are inputs to the simulators. To
obtain subject-level estimates, subjects often must rank,
rate, or choose among a large number of profiles, es-
pecially if there is a large number of attributes and lev-
els, if traditional estimation techniques are used. Even
for the most involved respondents, the task is often
characterized as excessively demanding, time consum-
ing, boring, and frustrating (Malhotra 1986). The bur-
den of data collection is further accentuated in studies
involving complex interaction terms.

Efficient experimental designs are particularly impor-
tant in conjoint studies for financial reasons as well as
maintaining response quality. A large body of research
in psychology and marketing indicates that question-
naire length, complexity, relevance, and interest affect
response rates and can potentially introduce response
biases. The preponderance of evidence indicates that, all
else being equal, longer questionnaires have lower re-
sponse rates than shorter ones (Adams and Gale 1982,
Bean and Roszkowski 1995, Brown et al. 1989, Dillman
1991, Dillman et al. 1993, Heberline and Baumgartner
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1978, Lockhart 1990, and Roszkowski and Bean 1990).
Berdie (1989) found that response rates and response
bias are related. Low response rates can be partly ame-
liorated in conjoint studies by using paid subjects (Biner
1988, Biner and Barton 1990, Biner and Kidd 1994, Bren-
nan 1992, Gunn and Rhodes 1981, Hansen 1980, Huck
and Gleason 1974, Paolillo and Lorenzi 1984, and Yu
and Cooper 1983).

A more subtle challenge arises due to response bias
or response quality. Kraut et al. (1975) showed an in-
creasing tendency on the part of subjects to use the mo-
dal response category instead of the extreme ones in
later parts of a lengthy questionnaire. Herzog and Bach-
man (1981) confirmed this result and dubbed it,
“straight-line stereotyping.” In a different venue, Dong
(1983) investigated the quality of subjects’ responses in
judging triads and found more violations of the triangle
inequality occurred toward the end of a long experi-
ment.

One response to the problems of using a long ques-
tionnaire has been to select a few attributes that the re-
searcher believes a priori most salient to the decision
process. This culling of attributes presents its own prob-
lems. Jacoby et al. (1977), Payne (1976), and Wright
(1974) found that subjects faced with multiattribute de-
cisions use simplifying heuristics that do not simulta-
neously consider the value of all options on all attri-
butes. The implication for conjoint studies is that the
profiles presented to the subject should be congruent,
with respect to their attributes, to those in the market-
place, or else the decision process during the conjoint
study may substantially differ from that during the ac-
tual purchase occasion. Therefore, attempts to restrict
the conjoint study to relatively few attributes risk bias-
ing the subjects” evaluations by directing their attention
to an array of attributes that they may not focus on dur-
ing the actual purchase.

The complexity of the task can affect a subjects deci-
sion strategy, but what of the quality of their responses?
Jacoby et al. (1974) and Jacoby et al. (1974) found that
subjects in conjoint studies made “poorer purchase de-
cisions” as the information load, defined to be the num-
ber of brands times the number of dimensions, in-
creases. These papers put forth the hypothesis that de-
cision quality is an inverted ‘‘U” shape with respect to
the amount of information. Too much information,
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called “information overload,” results in less effective
decisions. This hypothesis is difficult to address due to
the difficulty of measuring the quality of a subject’s
preferences and the amount of information, and has not
been without controversy (see Jacoby 1977 and 1984,
Malhotra 1982 and 1984, Malhotra et al. 1982, Summers
1974, and Wilkie 1974). Keller and Staelin (1987) also
examined information overload and found that decision
effectiveness tends to increase with increases of infor-
mation quality and with decreases in information quan-
tity. (Also, see the commentary of Meyer and Johnson
1989 and Keller and Staelin’s 1989 response.) In a more
recent study, Helgeson and Ursic (1993) confirmed the
decline in decision accuracy with the complexity of the
information load.

While the information overload hypothesis has not
been conclusively answered due to measurement prob-
lems, the preponderance of evidence indicates that bur-
dening the consumer with complex, irrelevant, and
lengthy tasks may negatively affect their response rate
and may introduce biases in their responses. To the ex-
tent that marketing researchers can reduce potential
boredom, fatigue, and disinterest from conjoint studies
(cf. Malhotra 1986), crisper partworth estimates should
be obtained that are more representative of the desired
populations. Jedidi et al. (1995) have also mentioned
this issue and have recommended the use of shorter,
more concise conjoint response tasks.

Researchers have responded in various ways to the
implicit tradeoff between response burden, as measured
by the length and complexity of the conjoint study, and
accurate estimation of individual differences in part-
worths. The work of Allenby et al. (1995), Srinivasn et
al. (1983), and van der Lans and Heiser (1992) address
one aspect of data quality by incorporating either con-
straints derived from the researcher or respondents on
the ordering of partworths. Individually based hybrid
models (Green and Krieger 1994b) and Adaptive Con-
joint Analysis (Johnson 1987) address the problem by
collecting relatively easy-to-obtain, self-explicated data
prior to the collection of a set of full or partial response.
While these procedures do not necessarily force order
constraints on the partworths, in practice the self-
explicated data constitute a significant part of the total
input and, hence, exert a strong influence on the final
partworths (Green et al. 1991). Optimal scaling (Hag-
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erty 1985), clustering and latent class approaches (Ka-
makura 1988, DeSarbo et al. 1989, Wedel and Steen-
kamp 1989, DeSarbo et al. 1992), and empirical Bayes
models (Green et al. 1993) attempt, in various ways, to
pool data across individuals.

This paper continues the investigation of efficient
conjoint design and estimation by empirically and an-
alytically exploring the feasibility of estimating the
heterogeneity of the partworths when fewer profiles
per subject are used as compared to more traditional
methods. Random effects models provide a natural
method to describe the heterogeneity in the individ-
ual level partworths. The model assumes that a sub-
ject’s metric response to a full profile of attributes is
a linear function of these attributes. The individual-
level partworths vary across the population accord-
ing to probability distributions that can depend on
covariates such as demographic variables or prior
usage. Also, we modify the standard model, which
Allenby and Ginter (1995) use, by introducing het-
erogeneity in the error variances. By assuming
individual-specific intercepts and error variances, the
methodology automatically adjusts the estimators for
the subjects’ differential use of the measurement scale
in both location and spread.

Two goals of random effects models are to infer
individual-level parameters and the distributions that
describes their heterogeneity. Estimation accuracy de-
pends on the number of profiles per subject and the
number of subjects in the study. At one extreme, one
subject’s evaluation of a large number of profiles leads
to accurate estimation of that subject’s partworths, but
provides only one data point for estimating the distri-
bution of partworths across the population. If part-
worths are completely homogeneous, then only one
subject is needed in the experiment. At another extreme,
both individual partworths and their heterogeneity can
be accurately estimated when many subjects respond to
a large number of profiles. Unfortunately, such an ex-
periment is often too expensive. In many cases, subjects
may be unwilling to respond to the full set of profiles,
or there may be response biases, as previously docu-
mented. In this situation, it would be desirable to elicit
responses to a reduced set of profiles.

This paper investigates the tradeoff between the num-
ber of profiles per subject and the number of subjects in
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accurately representing customer heterogeneity. We
maintain that it is possible to obtain comparable levels
of accuracy in estimating partworth heterogeneity when
different groups of subjects respond to different subsets
of profiles, each subset having fewer profiles than a
complete design. The tradeoff is that more subjects are
needed for the study.

The model is estimated in a hierarchical Bayes (HB)
framework. Hill (1965) originally presented the Bayes-
ian analysis of random effects models. Lindley and
Smith (1972) and Smith (1973) describe the HB analysis
of linear models. Berger (1985) provides a review of HB
models and their analysis. Recent applications of HB
models to marketing include new product diffusion
(Lenk and Rao 1990), coupon redemptions (Lenk 1992),
and brand choice (Allenby and Lenk 1994 and 1995).

The next section of the paper presents the proposed
model. Section 3 presents two empirical examples. The
first example uses synthetic data with known structure,
and the second reports the results of a conjoint study of
personal computers. The examples test the recovery of
partworth heterogeneity as profiles are randomly de-
leted and demonstrate that of HB models can be used
even when the number of partworths exceed the num-
ber of profiles per subject. Note, however, that the ex-
amples do not investigate the information overload hy-
pothesis. Section 4 analytically describes the depend-
ency of estimation accuracy on the number of subjects
and the number of profiles per subject and recommends
two optimal designs. Finally, the Discussion delineates
some limitations of the hierarchical Bayes methodology,
as well as directions for future research.

2. Hierarchical Bayes Conjoint
Analysis

The random effects model for conjoint analysis de-
scribes the variation in a subject’s responses and the
variation in the subjects’ partworths over the popula-
tion:

Y, =XBi +¢ fori=1,...,n, 1)
Bi=0z;+6 fori=1,...,n. 2)

In Equation (1), Y; is a vector of m; metric responses for
subject 7 to the profiles described by a given design ma-
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trix X;, and B; is the p-dimensional vector of regression
coefficients or partworths for subject i. Equation (2) de-
scribes the heterogeneity of individual-level partworths
via a multivariate regression model with g-dimensional
covariates, z;, and a p by g4 matrix of regression coeffi-
cients, ©. In the simplest case, z; is equal to 1 for all i,
and O is the mean vector for the partworths.

The error terms {¢;} and {6,} in Equations (1) and (2)
are assumed to be mutually independent and from mul-
tivariate normal distributions with zero means and co-
variance matrices {07} and A, respectively: ; is N,,,(0,
o7I) and é; is N,(0, A) where I is the identity matrix, and
A is a p X p positive definite matrix. In addition to het-
erogeneity in the partworths, we assume that the error
variances {07} form a random sample from an inverse
gamma distribution (Zellner 1971) with shape param-
eter /2 and scale parameter /2. That is, the error
precisions, which are the inverse of the error variances,
have a gamma distribution with mean « /¢ and vari-
ance 2a/y*. We use standard prior distributions, which
are given in Appendix A. This appendix also describes
the estimation procedure.

A posterior analysis reveals that the design matrices
X; in Equation (1) can be less than full rank. The HB
estimator of the partworths is a convex function of an
individual-level estimator and a pooled estimator
where the weights depend on the accuracy of these es-
timators. Using standard Bayesian arguments gives the
posterior mean of subject i’s partworth:

E(Bi|Y) = Eioyaiy[Di(ei72X1Y; + A7'U,z))],  (3)

where D; = (62X X; + A~") 7! is the posterior variance
of Bi; U, is the posterior mean of :

n

-1

vec(U,) = V,,[Z (zi QX! Y, Y,-) + V! vec(llo)] ;
i=1 i

vec(U) stacks the columns of U into a vector; “®’’ is the

Kronecker product; Uy is the prior mean of ®; V, is the

prior variance of ©;

n -1 -1
V,,= (Z I:Z,Z:@X{ZX,:I +V0_1>
i=1 i

is the posterior variance of ®; and X, = o?l + X;AX! is
the variance of Y; after integrating over £;.

Because U, is the posterior mean of ® based on all of
the subjects, U,z; is a pooled estimator of ;. Assuming
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that the design matrices have full rank, Equation (3) can
be rewritten:

E@BilY) = E(a,p,z\w[wﬁi + (I - W)U,z)],

where W = (6,2X/X; + A1) 7'0;2X!X;, and B is the
ordinary least square (OLS) estimator of 3, based on the
data from subject i. The tradeoff between the OLS and
pooled estimators is determined by the weights W. If
each subject responds to a large number of profiles, W
is approximately the identity matrix, and the HB esti-
mator is essentially equivalent to the OLS estimator. If
there are few profiles per subject, the OLS is inaccurate,
and the HB estimator relies more heavily on the pooled
estimator, U,z;. HB estimators are more efficient, in
terms of mean squared error, than OLS estimators (cf.
Judge et al. 1985, Chapter 3).

In HB estimation the design matrices do not have to
have full rank, unlike OLS applied at the individual
level. In particular, Equation (3) can be computed for
design matrices with less than full rank because D;
= (0;2X!X; + A") ! exists even if X|X; is singular.
This fact leads to the possibility of giving each subject
fewer profiles to evaluate than the number of part-
worths. The hierarchical Bayes analysis creates the op-
portunity to recover both the heterogeneity in part-
worths and individual-level partworths, even when the
number of responses per subject is less than the number
of parameters per subject. The following sections em-
pirically and analytically explore this property.

3. Empirical Examples

This section presents an empirical investigation of the
recovery of partworth heterogeneity as the number of
observations per subject are decreased. The first exam-
ple is a simulation study using synthetic data, and the
second is a study of personal computer design. After
obtaining responses from the full design, both studies
randomly delete profiles. The random deletion provides
an acid test for the recovery of heterogeneity because it
does not take advantage of a particular experimental
design or individual-level features in allocating profiles
to subjects. The personal computer survey does not ma-
nipulate the number of profiles presented to the subjects
and, thus, cannot be used to determine possible biases
due the length of the survey.

MARKETING SCIENCE/Vol. 15, No. 2, 1996

3.1. Synthetic Data Example

This section uses synthetic data generated from a
known model to illustrate the recovery of partworth
heterogeneity. The intent of this study is not to dem-
onstrate that Bayes estimators are superior to ordinary
least squares (OLS) estimators because that issue has
been conclusively settled elsewhere (cf. Judge et al.
1985, Chapter 3). The intent is to demonstrate that HB
methods can be used when OLS fails due to insufficient
data. The synthetic data were constructed so that the
individual-level OLS estimators of the partworths
would be accurate when using the full design matrix.

In the full design, simulated responses from 100 sub-
jects with 16 profiles per subject were generated from a
common design matrix. The experiment employed five
binary attributes for a 2°~! fractional factorial design in
which the last factor is confounded with the four-way
interaction, assumed to be zero, of the first four factors.
The effects-coded design matrix accommodates main ef-
fects for the five factors. The OLS estimates of six pa-
rameters using 16 observations in an orthogonal design
are accurate. The study also uses a validation sample in
which each subject responds to four profiles. The vali-
dation design was selected to generate unequal market
shares.

Individual-level partworths and error variances were
independently generated from normal and inverse
gamma distributions, respectively, for each subject. The
means and variances that were used to generate the in-
dividual-level parameters are: ® = (10, 1, 2, 3, -1, 0)’;
diag(A) = (1,4, 4,16,25, 1)\;; = 28ifi=2,j=3ori
= 3, j = 2 and 0 otherwise; E(0?) = 5 and var(c?) = 9.
In Equation (2), the covariate z; is equal to one, and ©
is the population mean of the individual-level part-
worths. After generating the individual level part-
worths and error variances, the calibration and valida-
tion data were generated from Equation (1) using the
common design matrix and validation profiles.

The full dataset with 16 profiles per subject was first
analyzed by ordinary least squares (OLS) for each subject
and then by hierarchical Bayes (HB) methods. Next, two
observations per subject were randomly deleted. The HB
model was refitted using the new design matrices. This
procedure was repeated, so that the number of profiles
per subject decreased from 16 to two in increments of
two. Because observations were randomly deleted, some
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of the subject-level design matrices were less than full
rank with 10 observations per subject. Up to this point,
the OLS and HB estimates were fairly similar.

Table 1 presents performance measures for the cali-
bration sample in the top half and for the validation
sample in the bottom half. Columns two to five for the
calibration sample gives the root-mean-squared error
(RMSE) and correlation between the true, individual
level parameters and their estimates, and the sixth and
seventh columns list the RMSE between the true and
estimated partworths” means, ®, and the nonzero ele-
ments of the covariance matrix, A. (We excluded the
zero elements because their prior means are zero.) For
OLS these heterogeneity parameters were estimated by
the mean and covariance of the individual level esti-
mates. With 16 profiles per subject, there is little to dis-
tinguish between the OLS and HB estimators. As the
number of profiles decreases, the individual-level esti-
mates become less accurate, as one would expect. Com-
paring the accuracy of the individual-level estimates
(column 2) with that of heterogeneity parameters, ®
and A (last two columns), indicates that HB is substan-
tially more accurate in estimating the heterogeneity pa-
rameters. The RMSEs are lower and increase more grad-
ually than those for the individual-level partworths.

The lower half of Table 1 presents out-of-sample per-
formance measures based on the validation sample. The
RMSE and the correlation of the actual and predicted
responses are equivalent for the OLS and HB estimates
using the full dataset. The correlation is above 0.8 until
there are two profiles per subject, and the average
change in RMSE is 6% until four profiles and 9% until
two profiles. The fourth column reports the “hit rate,”
which is the proportion of times that the predicted max-
imum utility profile corresponds to the actual maxi-
mum in the validation sample. The hit rate for the HB
is 93% compared to 90% for the OLS, and it tends to
decrease as profiles are deleted, reaching a low of 60%
with only two profiles per subject. The RMSE between
the observed and predicted market shares is given in
the last column. OLS and HB have similar performance
with 16 profiles, and HB actually is better with eight to
14 profiles, which is an anomaly due to randomly de-
leting calibration profiles.

Two points from the simulation should be empha-
sized. First, HB provides both individual-level estimates
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Table 1 Calibration and Validation Performance Measures for the
Simulation Study
Calibration Sample
RMSE of
Partworths Error Variance Partworths
Profiles RMSE Corrt RMSE Corr Mean Cov
Ordinary Least Squares
16 0.581 0.945 2.980 0.742 0.175 1.540
Hierarchical Bayes
16 0.540 0.946 2.790 0.704 0.178 1.442
14 0.580 0.940 3.136 0.661 0.179 1.388
12 0.621 0.931 3.612 0.579 0.189 1.411
10 0.723 0.912 4.346 0.549 0.174 1.380
8 0.866 0.876 5.080 0.506 0.190 1.737
6 1.074 0.826 6.615 0.365 0.205 1.803
4 1.591 0.710 6.954 0.127 0.280 2.578
2 2.435 0.484 4973 0.167 0.410 6.444
Validation Sample
Prediction
Market Shares
Profiles RMSE Corr Hit Ratest RMSE
Ordinary Least Squares
16 2.603 0.939 0.90 0.051
Hierarchical Bayes
16 2.605 0.938 0.93 0.051
14 2.676 0.934 0.95 0.024
12 2.694 0.933 0.95 0.045
10 2.846 0.925 0.91 0.024
8 3.181 0.906 0.86 0.047
6 3.465 0.887 0.84 0.079
4 4.305 0.821 0.68 0.065
2 6.271 0.593 0.60 0.158

t Average correlation across factors.

1 Proportion of subjects where the maximum predicted validation re-
sponse corresponded to the actual maximum.

and partworth heterogeneity estimates even when OLS
cannot. Second, the heterogeneity estimators are more
accurate than the individual ones. These observations
imply that properly designed, short questionnaires can
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be used to obtain heterogeneity estimates, even though
the individual-level estimates are not accurate. In the
simulation, we randomly deleted profiles, but we do not
recommend this as a design strategy. Based on the anal-
ysis in §4, we recommend using blocked factorial de-
signs.

3.2. Conjoint Analysis of Personal Computers

This section describes a conjoint study that utilizes
individual-level covariates to describe the heterogeneity
in the partworths. The subjects were first-year students
in the Masters of Business Administration program at
the University of Michigan. The data were collected
during the 1994 fall semester. The subjects rated the like-
lihood of purchasing hypothetical personal computers
on an 11-point scale (0 to 10) and provided information
about their experience with computers, self-assessments
of their expertise, and demographic information. A lot-
tery system with cash prizes encouraged participation.
Of a class of approximately 425 students, 201 re-
sponded. After eliminating subjects with missing re-
sponses, 179 subjects are used in the following analysis.
By industrial standards, our conjoint study had a small
number of profiles—only 20. Yet the response rate was
less than 50%, and 10.9% of those who responded did
not complete the questionnaire.

Table 2 presents the 13 factors used to describe the
personal computers and the six individual-level covar-
iates. The experiment is an orthogonal, effects-coded de-
sign with main effects only and 16 calibration profiles
and four validation profiles, which were selected to
mimic computer systems advertised in major trade
magazines. The means and standard deviations for the
covariates are also reported.

The computer descriptions involved both intrinsic
(technical) features, such as the amount of RAM and
CPU speed, and extrinsic features, such as telephone
support and distribution channel. As purported in
DeSarbo et al. (1990), our presupposition was that stu-
dents with higher computer expertise and technical
backgrounds would find the intrinsic factors more im-
portant than those with less computer expertise and
nontechnical backgrounds.

Table 3 presents the posterior means and standard
deviations of the regression coefficients © that relate the
individual-level covariates to the partworths in the HB

MARKETING SCIENCE/Vol. 15, No. 2, 1996

Table 2 MBA Computer Conjoint Analysis

A. Telephone Service Hot Line H. Color of Unit

-1 =No —1 = Beige
1 = Yes 1 = Black
B. Amount of RAM I. Availability
-1=8MB —1 = Mail order only
1=16 MB 1 = Computer store only
C. Screen Size J. Warranty
—1 =14inch -1 =1 year
1 =17inch 1 = 3 year
D. CPU Speed K. Bundled Productivity Software
—1 =50 MHz -1=No
1 =100 MHz 1 =Yes
E. Hard Disk Size L. Money Back Guarantee
-1 =340 MB —1 = None
1 =730 MB 1 = Up to 30 days
F. CD ROM/Multimedia M. Price
-1=No —1 = $2000
1= Yes 1 = $3500
G. Cache
-1 =128 KB
—1 = 256 KB
Subject Level Covariates
Variable Description Mean  STD
FEMALE 0 if male and 1 if female 027 045
YEARS Years of full-time work experience 44 2.4
OWN 1 if own or lease a microcomputer and 0 0.88 0.33
otherwise
TECH 1 if engineer or computer professional 0.27 0.45
0 otherwise
APPLY Number software applications 4.3 1.6
EXPERT  Sum of two self-evaluations. Each evaluation 7.6 1.9

in on a five-point scale with 1 = Strongly
Disagree, 3 = Neutral, and 5 = Strongly
Agree. The first evaluation is, “When it
comes to purchasing a microcomputer, |
consider myself pretty knowledgeable
about the microcomputer market.” The
second is, “when it comes to using a mi-
crocomputer, | consider myself pretty
knowledgeable about microcomputers.”

Number of subjects: 179
Number of calibration profiles per subject: 16
Number of validation profiles per subject: 4

model. Many of the coefficients have posterior means
that are one or more posterior standard deviations from
zero. Although none of the covariates are definitive
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Table 3 Sensitivity of Partworths to Subject Level Covariates Using 16 Profiles per Subject (posterior standard deviations are in parentheses)
Covariate
Variable Intercept FEMALE YEARS OWN TECH APPLY EXPERT
Intercept 3.698** —0.043 —-0.111** —0.158 —0.248 0.112* 0.167**
. (0.598) (0.271) (0.049) (0.347) (0.271) (0.080) (0.071)
A Hot Line —0.047 0.226** —0.002 —0.105 -0.019 —0.004 0.026*
(0.195) (0.087) (0.016) (0.115) (0.084) (0.025) (0.023)
B RAM 0.515** —0.085 —0.003 0.139* 0.168* 0.043* —0.065**
(0.208) (0.093) (0.017) (0.127) (0.086) (0.027) (0.024)
C Screen Size 0.058 —0.055 —0.009 0.044 0.109* 0.005 0.013
) (0.176) (0.079) (0.014) (0.102) (0.078) (0.022) (0.020)
D CPU -0.167 -0.101 —-0.026* 0.158 0171* 0.014 0.059*
(0.279) (0.131) (0.023) (0.172) (0.127) (0.038) (0.033)
E Hard Disk 0.013 -0.157* —0.014 0.037 0.060 0.017 0.015
(0.183) (0.082) (0.014) (0.105) (0.080) (0.023) (0.021)
F CD ROM 0.591** —-0.164* -0.010 —0.062 —0.075 0.015 0.001
(0.251) (0.113) (0.020) (0.148) (0.107) (0.033) (0.029)
G Cache —0.266* —0.043 —0.004 0.127* 0.019 —0.036* 0.049**
(0.192) (0.092) (0.015) (0.118) (0.087) (0.026) (0.023)
H Color 0.274* —0.047 —0.004 0.017 —0.095* —-0.014 -0.019*
(0.160) ©(0.070) (0.013) (0.093) (0.072) (0.021) (0.019)
| Availability 0.157* 0.037 0.021* 0.138* -0.097* —0.011 —0.029*
(0.156) (0.068) (0.013) (0.092) (0.070) (0.021) (0.018)
J Warranty —0.089 0.149* 0.024* 0.029 0.008 0.026* —0.010
(0.167) (0.079) (0.015) (0.100) (0.072) (0.022) (0.020)
K Software 0.315* 0.009 -0.032** —0.034 0.101* 0.010 —0.004
(0.179) (0.081) (0.014) (0.104) (0.079) (0.023) (0.020)
L Guarantee 0.023 0.031 0.025* -0.117* —-0.081 0.013 0.004
(0.185) (0.085) (0.015) (0.107) (0.081) (0.025) (0.022)
M Price —1.560** 0.385** 0.040* —0.176 —0.064 0.001 0.041
(0.398) (0.173) (0.031) (0.233) (0.170) (0.052) (0.047)

* The posterior mean is at least one posterior standard deviation from zero.
** The posterior mean is at least two posterior standard deviations from zero.

drivers of the variation in the partworths, at least two
broad themes emerge. The first is that technically
knowledgeable users tend to value intrinsic features,
such as CPU speed, more than less knowledgeable
users. The second theme, which we did not anticipate,
is that students with more work experience value ex-
trinsic features more than those with less work experi-
ence. One is tempted to conjecture that more experi-
enced students have a broader view of purchasing a
computer and believe that extrinsic support services are
important components of the productive use of their
capital investment.
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As a basis of comparison, we fitted a latent class met-
ric (LCM) conjoint model (DeSarbo et al. 1992) to the
full data. LCM is a competing semi-parametric meth-
odology for full profile conjoint analysis. It represents
heterogeneity with discrete support points (market seg-
ments) where partworths are estimated by latent
classes, and each individual belongs to each class with
some probability. Four latent classes are optimal using
the CAIC criterion.

Next, we investigated the HB and LCM procedures’
ability to recovery partworth heterogeneity as profiles
were randomly deleted from each subject. Table 4 re-
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Table 4 Calibration and Validation Sample Performance Measures
for the Computer Survey
Calibration Sample Validation Sample
RMSET for
Partworth Prediction Market
Hit Shares
Profiles Means STD RMSE Corr Ratest RMSE
Ordinary Least Squares Ordinary Least Squares
16 0.010 0.180 1.998 0.7152 0.637 0.088
Hierarchical Bayes Hierarchical Bayes
16 0.000 0.000 1.811 0.7530 0.670 0.069
12 0.020 0.041 1.851 0.7425 0.687 0.123
8 0.045 0.064 1.983 0.7029 0.654 0.106
4 0.066 0.137 2.262 0.5877 0.587 0.223
Latent Class Latent Class
16 0.009 0.221 4.048 0.6834 0.380 0.448
12 0.027 0.210 4194 0.6496 0.408 0.330
8 0.046 0.158 4.470 0.5838 0.291 0.268
4 0.094 0.283 4928 0.4800 0.374 0.148

1 Root mean squared error with respect to the hierarchical Bayes estimate
using 16 profiles.

1 Proportion of subjects where the maximum predicted validation re-
sponse corresponded to the actual maximum.

ports the performance of OLS, HB, and LCM in the cal-
ibration and the validation samples. The true partworth
means and standard deviations are not known, so the
RMSEs were computed with respect to the HB estimates
with 16 profiles per subject. The OLS, HB, and LCM es-
timates of the partworths’ means are equivalent when
using 16 profiles, while there are systematic differences
in the standard deviations of the partworths in the sam-
ple. The HB estimates of the partworths’ standard devi-
ations tend to be slightly less than the OLS. This result is
expected because one motivation for using HB or other
shrinkage estimators is to decrease the sampling varia-
tion when estimating many parameters. Thus, OLS tends
to overstate the heterogeneity in the partworths because
of larger sampling variation. LCM greatly understates
the heterogeneity in the partworths as compared to OLS
and HB because LCM does not admit individual part-
worths outside of the convex hull of the support points.
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We then refitted the model using 12, 8, and 4 profiles
per subject where profiles were randomly deleted. In-
dividual level OLS estimates do not exist for the these
sample sizes. The LCM estimates of the standard devi-
ations continue to be much less than the HB estimates.

The second part of Table 4 compares the predictive
performance of the OLS, HB, and LCM estimators with
the validation sample. The HB predictions of the sub-
jects’ responses to the validation profiles using 16 and
12 calibration profiles have larger correlations and
smaller RMSEs than the OLS predictions using 16 pro-
files. In fact, there is no noticeable decline in the predic-
tive accuracy of HB until there are only 4 calibration
profiles per subject, at which point the RMSE increases
by less than 25% despite having 75% fewer observa-
tions. The HB hit rate with eight or more profiles ex-
ceeds the OLS hit rate using 16. This result may be due
to HB incorporating the information from the multi-
variate regression of the partworths on the covariates in
Equation (2). The RMSE between the actual and pre-
dicted market shares is better for HB than OLS when
using the entire dataset. Not surprisingly, the RMSE in-
creases as profiles are deleted. HB with 12 profiles is off
by nearly twice the percentage points as HB with 16
profiles.

If the information overload hypothesis were true, it
may be the case that the predictive accuracy actually
increases with a decrease in the number of profiles per
subject in a study that varied the number of profiles.
This study remains silent on the impact of questionnaire
length on response quality because a subject’s responses
were randomly deleted after he or she responded to the
entire questionnaire, and the number of profiles were
not physically manipulated during the experiment.

The LCM predictions perform substantially worse
than HB across all measures. As previously noted, the
estimated individual-level partworths in LCM must be-
long to the convex hull of the support points for the
market segments. Thus, LCM does reasonably well in
estimating the mean partworth but tends to underesti-
mate their dispersion. Consequently, predictions using
LCM fail for subjects” whose true preferences are out-
side the convex hull.

In conclusion, hierarchical Bayes models can recover
heterogeneity even when there are not sufficient obser-
vations to obtain subject level estimates by more stan-
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dard methods. The next section generalizes these em-
pirical observations with an analytical analysis of the
tradeoff between the number of subjects and the num-
ber of profiles per subject.

4. Subject-profile Tradeoff

Section 3 provided some empirical evidence that HB
conjoint analysis is capable of estimating the heteroge-
neity in the partworths when each subject receives rel-
atively few profiles in relation to the number of attri-
butes. This section generalizes these observations by in-
vestigating the effect of varying the number of subjects
and the number of profiles per subject on the Fisher’s
information of the design. The asymptotic variance of
the estimated heterogeneity is the inverse of the Fisher’s
information. We compute the Fisher’s information for
the general case, then we find the D-optimal design for
two cases: orthogonal designs and blocked factorial de-
signs. A design, within a given class, is D-optimal if it
maximizes the determinant of the Fisher’s information
subject to a cost constraint. Pilz (1991) considers the
Bayesian design of experiments for the fixed effects, lin-
ear model; this section considers random effects models.

In the context of the random effects model specified
by Equations (1) and (2), we focus on the information
matrix for ® and A, the parameters that describe the
heterogeneity of the partworths. The Fisher’s informa-
tion matrix has cells:

2

FI(Y]/ 72) = _E[ log f(YlG)r A)] ’

07107,
where y; and 7, are any of the parameters in ® and A;
the expectation is with respect to Y given ® and A; and
f(Y]©, A) is the marginal density of Y given ® and A.
This information matrix implicitly depends on the num-
ber of subjects and the number of profiles per subject.
Thus, the tradeoff between the number of subjects and
profiles can be evaluated for different conjoint studies.

THEOREM 1. Write the design matrices, {X;}, as column
vectors: X; = [x;1, ..., x;,), and define Z; = o071, + X;AX].
The Fisher's information matrix has the following entries:

FI(®,08) = Y (ziz] @ X/Z;'X),

i=1

FI(®, A) = 0 = FI(A, O)/,
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FI()\u,u/ >\r,r) = % 2 (x;,zlzflxi,r)zl

i=1

n

FI()\u,u/ )\r,s) = z (x{,uzflxi,r)(x{,ltzflxi,s) lfr + S/

i=1

n

FION, M) = Y (L 27 ) (x 2 )

i=1

+ (L2 ) LET ) ifu v Es.

The proof is in Appendix B. The Fisher’s information
depends on unknown variances, which can be provided
by expert opinion, from past data, or through a pilot
experiment.

The next corollary computes the Fisher’s information
when all subjects respond to a common orthogonal de-
sign.

COROLLARY 1. Assume: (i) all subjects receive a com-
mon, orthogonal design matrix X where X'X = ml; (ii) the
error variances for all subjects is 0§, and (iii) A = NjI. Define
Z to be the n by q matrix of covariates with Z' = [z,, ...,
z,]. Then, the determinant of the Fisher's information is

nm
log|FI| = plog|ln™'Z'Z)| + pq log<02 " )\(z)m)
0

3 pip+ 1) m 2
p log(2) + B — log[n<—0_% T )\(%m) Y

Equation (4) separates the covariates Z from the ex-
perimental design X, which greatly simplifies the anal-
ysis. It is well known from D-optimal designs for linear
models that the first term, log(n~'Z’Z), is maximized
by setting the covariates at their extreme values, al-
though in practice experimenters may not have the lux-
ury of setting all of the covariates and, even if they can,
may decide to sample intermediate values to detect non-
linearities or appropriate transformations of the covar-
iates. Because the elements of n~'Z’Z are averages of
the covariates over subjects, it does not play an impor-
tant role in determining the number of subjects. Also, Z
does not depend on the number of profiles per subject.

The next theorem computes the D-optimal design
when all subjects respond to a common orthogonal de-
sign subject to the budget constraint:

cn + dmn = cr, 5)

MARKETING SCIENCE/Vol. 15, No. 2, 1996



LENK, DESARBO, GREEN, AND YOUNG
Hierarchical Bayes Conjoint Analysis

where ¢ is the total budgeted cost, ¢ is cost for one sub-
ject, and d is the cost for one profile per subject; n is the
total number of subjects, and m is the number of profiles
per subject. There does not exist orthogonal design for
every integer. Recall that the dimension of the part-
worths is p, so m = p. Define L to be the smallest m that
admits an orthogonal design. Similarly, there has to be
at least one subject, which implies an upper bound on
m due to the budget constraint. Let U be the largest m
that admits an orthogonal design and meets the budget
constraint.

THEOREM 2. Assume that the conditions of Corollary 1
hold and that the cost constraint is given in Equation (5).
Define

p+1+lp+1?+8(p+q+1)
X (p +29 + D(c/d)N/aP]'?
200 + 29 + DG/ 0D) /

m* =

_2(p+q+Dc/d+ Up+1)
- Up + 29 + 1) ’

_2(p+g+Dc/d+L(p+1)

b L*p+29+1)

(6)

Given Z, the optimal number of profiles per subject, 11, is the
lower bound, L, if Nj/ 0§ = b; the upper bound, U, if \j/o§
= a; or one of the two orthogonal designs with m closest to
m*ifa < Nj/og < b. The optimal number of subjects is the
greatest integer that satisfies the budget constraint given the
optimal number of profiles. That is, the optimal n is the great-
est integer less than or equal to cr/(c + di).

The optimal number of profiles per subject in Theo-
rem 2 has an intuitive interpretation. If the unexplained
heterogeneity \j relative to the error variance 0§ exceeds
a linear function of the cost ratio c/d, then the optimal
design uses the minimum m and the maximum 7 to
obtain the best estimate of the heterogeneity, even
though the individual-level partworths may not be es-
timated with great precision. If the unexplained hetero-
geneity is small relative to the error variance, then the
optimal design uses the maximum m and the minimum
n. Here, accurately estimating the individual-level part-
worths for only a few subjects leads to accurate esti-
mators of their heterogeneity.
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For the computer survey, the average error variance
across subjects is 1.668, and the average of the \; ;s is
0.3431 for a A3/ o5 of 0.2057. Figure 1 graphs m* in Equa-
tion (6) as a function of the relative costs c/d. If the
relative cost is less than 29.25, then the optimal number
of profiles per subject is 16, the minimal orthogonal de-
sign.

The previous analysis assumed that all subjects re-
ceive a common, orthogonal design matrix where the
number of profiles per subject is greater than the num-
ber of regression parameters. Next, we will investigate
a more complex example of incomplete designs where
subjects receive fewer profiles than regression parame-
ters. In this case, different sets of profiles have to be
administered to different groups of subjects to acquire
information about the heterogeneity in all of the part-
worths. For the important special case of blocked fac-
torial designs, explicit expressions of the Fisher’s infor-
mation as functions of the number of subjects and the
number of observations per subject are presented in
Theorem 3. The main conclusion of this analysis is that
it is possible to estimate accurately the partworth het-
erogeneity in situations where OLS at the subject level
do not exist.

A blocked design is a subset of a full factorial design
where the profiles for the design are selected by one or
more blocking variables. f binary attributes lead to 2
profiles for the full design X. The profiles in the full
design are divided into 2’ blocks with 2/~* profiles per
block where b factors are used as blocking variables. Let
X;, fori =1to 2%, be the design matrices for the blocks
with their columns arranged by the alias classes
generated by the blocking scheme. Then the inner-
product of X; is a block diagonal matrix:

Figure 1 Optimal Number of items per Subject as a Function of Relative
Cost per Subject to Cost per ltem for Computer Survey
30 —
. { Minimal Orthogonal Desigﬂ
20 /
% 15 +
-9
10 +
5 4
0
0 20 40 60 80 100

Relative Cost
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X! X; =2""block(P;, ..., P),

and P; is a 2" x 2" matrix of positive and negative ones
(John 1971, p. 158-165).

Next, we compute the Fisher’s information for the
class B that has the following structure. Each subject
belongs to one of q classes, such as gender and age
group. The individual-level covariates,

Zi = (1/ Gi,l/ cecy Gi,qfl),/

denote subject i's class membership based on the
dummy variables: G;, = 1 if subject i belongs to class k,
and 0 otherwise. The design has 2/ parameters. It could
have f binary attributes and estimate all of the main
effects and iteractions, or it could have more than f at-
tributes and identify some of the main effects with
higher order interactions. Each of the 2% blocks of a
2/~% factorial experiment are allocated 1, subjects in
class k fork = 1 to g.

THEOREM 3. Consider the class BF of blocked factorial
designs described above. Assume that the error variances for
all subjects within class k is o3, and that A = NjI. Then the
Fisher’s information for © and its determinant follow:

r g -
Z nde  map N Ny—185-1
k=1
FI(@ @) n1a1 n1a1 0 0 ® I
’ - n,a, 0 n)a, -°-* 0 4
| 91451 0 0 Mg-184-1 |

q
det[FI(©, ®)] = (H nkak>p,

k=1
where a, = 203, + \3)™', and p = 2/. The Fisher’s infor-

mation for N, is

q
Y m2 %af.

k=1

-FI()\u,lu )\u,u) =

NI

The proof is in Appendix B.

Theorem 3 can be used to compare two experiments
when g = 1: (1) n; subjects each evaluate the full 2/ de-
sign, and (2) 152" subjects evaluate the blocked 2/~* de-
signs where each of the 2" blocks is administered to 15
subjects. The Fisher’s information matrices for ® for the
two experiments are equal if nz = ny and for the part-
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worths’ variances if nz = 1n;:2%. In other words, if there
are a total of n2/ profiles to be allocated among subjects,
then the estimation accuracy for the means of the part-
worths remains constant whether n subjects each re-
spond to 2/ profiles from the full design or n2" subjects
respond to 2/~ profiles from the blocked designs with
n subjects per block. However, the second experiment
would have less accuracy in estimating the partworths’
variances.

A slightly different analysis is to consider values of n
and b that lead to the same value of the information
measure:

q 1 q

g(n, b) =v Y log(na) + w log(i > nk2‘bka£> , D
k=1 k=1

where v and w are nonnegative constants that balance

the relative importance of estimating ® and the unex-

plained variances {\,,} of the partworths. When g =1,

setting ¢(n, b) = ¢, and solving for n results in

n= 2(b+1)w/(u+w)(2—fo.% + )\5)(U+2w)/(v+w) exp[c/(v + w)].

This equation gives n, the number of subjects per block,
to maintain a given information content for different
numbers of blocks. As the number of blocks 2" increases
and the number of profiles 2/~ per subject decreases,
the number of subjects per block increases. The main
conclusion is that by carefully deploying blocked fac-
torial design, the marketing researcher can recover part-
worth heterogeneity while using fewer observations per
subject than regression parameters.

One method to determine the design requires the
specification of the widths of the approximate 95% high-
est posterior Bayesian (HPB) intervals (cf. Berger 1985)
for the mean partworth and the unexplained heteroge-
neity. HPB intervals are the Bayesian counterpart to
confidence intervals. Using the normal approximation
to the posterior distribution, they have the form: the
posterior mean plus and minus 2 times the square root
of the inverse Fishers’ information. Consider the simple
case when g is one in Theorem 3. If the total width of
the 95% HPB interval for 6, is 2v, then the minimum
number of subjects per block 1 to meet this requirement
is the smallest integer greater than or equal to 4(27 /o
+ \3)/v?. Figure 2a graphs the number of subjects ver-
sus the half-width v for the computer survey. Similarly,
the number of blocks 2” can be determined by specifying
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the total width, 2w for the approximate 95% interval for
Mix- Then b is the minimum of f — 1 and the smallest
nonnegative integer greater than

In(0.5(2 753 + N3) " 'w?/v?) /In(2).

Figure 2b graphs b as a function of the relative widths
w/v for the computer survey. In this example, if the
required width for the variance is one-half that of the
mean, then the full design should be used, while if it is
twice that of the mean, the optimal number of blocks
is 8.
The D-optimal design maximizes the determinant, or
a function thereof, of the Fisher’s information for the
heterogeneity parameters ® and A subject to a cost con-
straint:
q
cr = Y, m2%c, + di(277)], (8)

k=1

where cy is the total cost; ¢, is the cost of obtaining one
subject from group k, and the function di(x) is the cost
of x profiles per subject in group k. The next theorem
provides a procedure for the optimal design.

THEOREM 4. Suppose that the assumptions of Theorem 3
hold. For nonnegative constants v and w the D-optimal con-
joint study that maximizes Equation (7) among the class BF
subject to the cost constraint in Equation (8) can be deter-
mined by the following procedure: (1) Fix values of by, . . .,
b,. (2) The optimal n)’s satisfy the following system of quad-
ratic equations for j = 1 to gq:

q
v Y, m27%ag + wn2 %7
k=1

q

_vtw (Z nkZ‘bka£>n,-2"i[c,- +d (2] = 0.
Cr k=1

(3) Repeat steps (1) and (2) for all values of b, . .

select the design that optimizes g.

The proof is in Appendix B. The procedure requires
an exhaustive search over the blocking variables, which
is not too punitive because they can take at most fq
values.

The analysis in this section does not include the pos-
sibility that response quality degrades as the question-
naire length increases and the complexity of the product
or service stimuli increases. One possible approach that

., by, and
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Figure 2 Number of Subjects per Block and Number of Blocks for Com-

puter Survey:
(a) number of subjects per block vs. width of 95% HPB interval for mean
partworth
(b) number of blocks vs. ratio of widths of 95% HPB interval for unexplained
heterogeneity and 95% HPB interval of mean partworth

a. Number of Subjects per Block
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includes response bias in the analysis uses cost func-
tions that are convex and increasing in the number of
profiles per subject to reflect the additional motivation
that subjects would require to carefully evaluate all of
the profiles. This cost may be additional monetary
compensation to the subjects or may reflect additional
expense to provide stimuli, such as actual mock-up of
the products or an initial training phase. A different ap-
proach would be to model the error variance or the
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unexplained heterogeneity variance as increasing func-
tions of the number of profiles per questionnaire or the
number of dimensions to be evaluated. This route,
though not without appeal, would first require empiri-
cal evidence about the sensitivity of these parameters to
conjoint design factors.

A different approach, suggested to us by the area ed-
itor and an anonymous reviewer, involves conducting
a pilot study with the full design and then analyzing the
pilot with both the full design and reduced designs. The
accuracy of the reduced design could be evaluated rel-
ative to the full design by considering criteria based on
either the posterior means and standard deviations for
® or A or the predictive accuracy. After selecting the
design based on the pilot, the full scale conjoint study
could be administered. This procedure would be partic-
ularly useful for large studies that use a pilot study. In
this case, the study would not incur additional cost due
to the pilot, and the full study may have increased ef-
ficiency. A possible limitation to this approach is that if
the full design has response bias, such as straight-line
stereotyping, it will carryover to the reduced design,
and the criterion may be misleading.

5. Discussion

Suppose that a marketing researcher is planning a con-
joint study of a complex product or service consisting
of many salient attributes. Traditional estimation meth-
ods, such as ordinary least squares, would require each
subject to evaluate a large number of profiles in order
to obtain individual-level partworths. However, in most
realistic settings the researcher frequently has other con-
siderations, ranging from logistical considerations and
budget constraints to possible biases induced by long
questionnaires, as documented in the Introduction, in
addition to estimation accuracy. Thus, he or she needs
to balance the competing goals of obtaining individual-
level partworth estimates with designing an efficient
and parsimonious experiment that allows for the esti-
mation of partworth heterogeneity.

This paper provides a framework to design and an-
alyze conjoint studies by employing a random effects
model and hierarchical Bayes (HB) methods. It inves-
tigates the tradeoff in the estimation accuracy between
the number of subjects and the number of profiles per
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subject and demonstrates that partworth heterogeneity
can be recovered when the subjects respond to reduced
sets of profiles, even when the number of profiles per
subject is less than the number of attributes. The results
of this paper enhances the marketing researcher’s ability
to obtain information about complex products or ser-
vices.

The results of this paper would be very useful if the
information overload hypothesis were true. If it were
false, then given sufficient resources, the marketing re-
searcher could design a large study and use traditional
estimation techniques. On the other hand, if it were true,
then money alone would not suffice to overcome poten-
tial response biases induced by a long questionnaire.
Despite the preponderance of academic research sup-
porting the information overload hypothesis, it remains
controversial due to measurement issues surrounding
the quantity and quality of information and the quality
of a subject’s responses. Additionally, the subjects” mo-
tivation and innate ability seem to be important factors.
Thus, investigations of the hypothesis should not only
vary the parameters of the conjoint study but also con-
trol for these subject specific factors. The work of Lee
and Yates (1992) may provide useful perspectives on
these issues. Neither the empirical studies nor the
mathematical analysis of this paper addresses or relies
on the information overload hypothesis. The paper ad-
dresses statistical issues of conjoint design and analysis,
not the important, psychological issues about the effects
of the conjoint design on the subjects’ responses.

In addition to further research about information
overload and the psychological affects of conjoint de-
sign parameters, there are a number of interesting sta-
tistical problems remaining for future research. First,
the model in this paper assumes a specific form for the
heterogeneity in the individual-level parameters. Fur-
ther research should investigate alternative specifica-
tions. For example, instead of a multivariate regression
model, the partworths may follow a mixture model that
indicates market segments. The sensitivity of partworth
estimation, prediction of validation responses, and mar-
ket share estimation to the assumptions about the na-
ture of the heterogeneity should be investigated. Sec-
ond, the generalization of this HB framework to adap-
tive conjoint analysis, hybrid models, and choice-based
conjoint analysis would be desirable given the increas-
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ing popularity of these alternative conjoint procedures
with the advent of readily accessible commercial soft-
ware (Johnson 1987 and 1993). Third, a more detailed
study concerning the optimal design of conjoint studies
for broader classes would be useful. For example, what
are the merits of having a “learning” phase, and how
long should it be? Finally, more actual conjoint appli-
cations need to be performed with comparative vali-
dation with other methods (e.g., hybrid models, choice
based conjoint, ACA, bridging designs, etc.) which re-
quire different data collection protocols to assess the
promising benefits of the hierarchical Bayes procedure.

Appendix A

Hierarchical Bayes Estimation

HB inference requires prior distributions on the unknown parameters.
The ones that we employ have been widely used in Bayesian analysis
(Berger 1985, Box and Tiao 1973, DeGroot 1970, and Zellner 1971).
They can flexibly encode prior information about the unknown param-
eters when substantive prior knowledge exists, and they can be se-
lected so that they do not dominate the posterior distributions when
prior knowledge is vague. We assume that the prior for @ is N,,,.,(Uy,
V), the p X g-dimensional matrix normal distribution with mean U,
and covariance matrix V,. Uy is a p X q matrix, and V, is a pg X pgq
positive definite matrix. The matrix normal density is expressed by
stacking the columns of ® and Uy: vec(®) is N, (vec(U,), V). A non-
informative prior for © is symbolically equivalent to setting U, and
V' equal to zero. We use this noninformative prior in the empirical
examples of §3. The prior for A™! is W,(no, A), the p-dimensional
Wishart distribution (Zellner 1971, p. 389-394) with 7, degrees of free-
dom and scale parameter A,. In §3, we set 7o = p and A, = I. The
prior for log(a) is N(ay, d3). In §3, we select a, and d, so that the median
of a is 0.1, and the 97th percentile is 100, implying weak prior knowl-
edge about a. Finally, the prior for ¢ is G(ry/2, s50/2), the gamma
distribution with shape parameter r,/2 and scale parameter s, /2. That
is, the mean of ¢ is ry/s,, and its variance is 2r,/s3. In §3, r, and s, are
set equal to one.

The posterior distributions do not have closed-form expressions.
Fortunately, the model can be analyzed by well-known numerical
methods, such as Markov chain Monte Carlo (MCMC), which exploit
the special structure of HB models. See Arnold (1993), Gelfand and
Smith (1990), Smith and Roberts (1993), Tanner (1993), and Tanner
and Wong (1987) for a description of the general procedure. The
method iteratively generates random deviates from the posterior dis-
tribution of one set of parameters given the current value of all other
parameters and the data. The required conditional distributions are
given in the following steps.

1. Independently generate 8, to 8, from normal distributions: 3
~ Ny(b;, D;) where b; = D;(c;*X!Y; + A7'0z), and D; = (6;2X! X,
+AH
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2. Generate © from N,.,(U,, V,) where V, = [ZZ' ® A’
+ Vi'1™h vec(U,) = V,I(Z ® A7) vec(B) + V' vec(Uy)]; Z = (zy,
..., 2,) s a g X n matrix of subject-level covariates; B = (84, ..., (.),
and “®” is the Kronecker product.

3. Generate A ™' from the Wishart distribution W,(n,, A,) where 7,
=no+mn,and A, = (Ag' + 2, (B — Oz)(B; — Bz)") 7.

4. Independently generate o7 to o} from inverse gamma distribu-
tions: 07 ~ IG(;/2, ¥;/2) where a; = @ + m;, and ¢; = ¢ + (Y;
- XiB)'(Y; — XiB).

5. Generate ¢ from the gamma distribution G(r,,/2, 5, /2) where r,
=71, + na,and s, = s, + =, ;2.

6. The generation of « given the data and the other parameters is
the only non-standard component of the analysis of the model. First,
we approximate the density of « given the current values of {07} by a
lognormal distribution where the mode & and curvature C match.
Then, the approximating lognormal distribution is combined with the
prior distribution for @, which is also a lognormal distribution, to ob-
tain the approximating posterior distribution. A candidate value for «
is generated from this approximating posterior distribution: log(a) is
N(a,, d2) where d2 = (dy*> + 727", a, = d2(r7%u + dg’ay), 12
= —(&*C)"", and p = log(&) + 7°. The Metropolis algorithm (Hastings
1970, Smith and Roberts 1993, and Tanner 1993) is used to accept or
reject the candidate value. The Metropolis algorithm is a general
method of compensating for the fact that the candidate for « was gen-
erated from an approximating distribution. Simulation studies of this
procedure indicate that it generates random deviates from the poste-
rior distribution of a.

The Markov chain Monte Carlo (MCMC) initialized all partworths,
0, and covariances to zero and all variances to one. The MCMC ran
for 11,000 iterates, of which the last 10,000 were used to estimate pos-
terior means and variances.

Appendix B

Fisher’s Information

The first step in computing the information matrix is to obtain the log-
likelihood of the data given the parameters. Because we are interested
in ® and A, we integrate {3;} out of the model to obtain: Y, = X0z,
+ € where ¢/ has a multivariate normal distribution with mean 0 and
covariance X; = 071, + X;AX/. Because the error terms are mutually
independent, so are the {¢; }. The mean of Y; can be expressed as: X;0z;
= (z/ ® X;) vec(®) where “®" is the Kronecker product.

The log-likelihood of ® and A is:

T "
loglf(Y]®, A)] = — 3 log(2m) — % > log| %]
i=1

- % 2V - (2 @ X)O VI, — (2! @ X)0],
i=1
where T = 2L, m;. Because we will compare designs with the same
prior distributions, we will not include the information of the prior
distributions.
The following lemma collects well-known facts from linear algebra
regarding derivatives.
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LEMMA 1. Let x be a J-dimensional vector and let A and B bel X Jand
] X ] matrices that do not depend on x. Then %=Ax = A’, and £x'Bx = 2Bx.
If A is a nonsingular, | X | matrix, then

0A71 g (‘i_AA_1 and dlogl|A|

o ox 0A

=2A"" — diag(A™")

if A is symmetric and A~ otherwise.

PROOF. See Timm (1975, p. 97-103).

The next lemma computes derivatives needed for the Fisher’s infor-
mation.

LEMMA 2. If A is a symmetric p X p matrix and if X is a | X p matrix

with column vectors: X = [xy, ..., x,], then
, .
P X, X ifu=v,
o XAX! { u u 'f (9)
O\ x, X, + x,x, ifu *v.
Define T = o*I + XAX'. Then
dlog(IZ]) _ n(x* oz ) ~ {x;,z—lx,, ifu=v, a0
ONuy Ny 2%, 7 'x, ifu*v.
PrROOF. Use XAX' = E,; \; x;x/ to obtain Equation (9). To show

Equation (10), let 0, ; and o' be the i, j elements of £ and X~
tively. Both = and X' are symmetric. Using the chain rule,

!, respec-

dlog|Z| | L dloglZ| do;;

3)\u,u Z:; E Oo i 8)\11,11
! Jdo; 11 (o)X
g 2 " =tr( 7! R
=Xt X S 2 axw < am)

i=1 j=i+1

PROOF OF THEOREM 1. Define r; = Y; — (z/ ® X;)®". The partial
derivatives of the marginal density of Y with respect to ® are

dlog f(Y|O,A) & s
se—— = L @ ® XD,

i=1

P log f(Y|0,4) ¢
o= T (@ XDI (2 ® X).
PICRE =

The Fisher’s information for ® is

Y (®XNE (2 ®X) =3 (zzl @XIZ'X),

i=1 i=1

FI(®, ©) =

where the last line results from z; being a vector. FI(®, A) is computed
from
log f(Y|®,A) _, 9%

-3z ®X)HZ!

= Tt
907N, . N,

Using E(r;) = 0, FI(®, A) = FI(A, ®)' = 0. The information matrix for
A results from the following computations:
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_li,z lgi’;z,‘ %Z 7
_lir}: Tgifuz,*‘%ﬁlm
FIQ,,, x,x)—litr<2 1%2 155)

Using Equation (9) for the different values of u, v, r, and s results in
the theorem.

PROOF OF COROLLARY 1. X'Y27'X = m/ (03 + Njm)I. The Fisher's
information for ® from Theorem 1 is

FI(O, 0) = ’Z®——I

ob + Nom

The Fisher’s information for the variance A is

—1n m 2
T2 o3+ Nm)/’

m 2
FI()\u,w )\u,u) = n(m) ifu+ v,

FI(\,,, N\..) = 0 otherwise.

FION 0 M)

The logarithm of the determinant of the Fisher’s information is com-
puted by noting that if A is a g X g matrix and if B is a p X p matrix,
then |[A® B| = | A|?| B|".

PROOF OF THEOREM 2. Define g(n, m) = log|FI| — plog|n~'Z'Z|
where log| FI| is given by Equation (4). Assuming that n and m are
real numbers, and not just positive integers, the cost constraint be-
comes an equality. Solve for the number of subjects: n = cr/(c + dm);
substitute into g(n, m); and differentiate to obtain

plp +q+ 1o

plp +29 + 1)d
m(cd + Njm) '

2(c + dm)

The maximizing value of m, without taking into account that the m is
a positive integer such that the design is orthogonal, is m* given by
Equation (6). Because the criterion function is continuous with a global
maximum at m* for positive values of m, the maximizing value of m,
when restricted to feasible values, will either occur at one of the end-
points of the feasible region or at one of the two integer values of the
feasible region that are closest to m*. The optimal m will be at the lower
endpoint, L, if m* = L and at the upper endpoint, U, if m* = U. Re-
writing these inequalities in terms of \j/ o} gives the theorem.
The proof of Theorem 3 uses the next lemma.

LEMMA 3. Suppose that prior estimates of the variances are o and A
= NI Let X; be one of the blocks from a 2" blocked factorial design. Then
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-b

XIE7X = s
g3/2 + N3

block(P;, ..., P)).

PROOF. From the inverse of partitioned matrices,
XIZ7NX = 002X X — 002X XN + 02 X! X) 052 X ! X

Because X!X; = 27" block (P;, ..., P;), we have \g%I + 052X !X; is a
block diagonal matrix with \g2I + 0322/ "*P; along the diagonal. Using
P? = 2'P; (John 1969), it is easy to verify that:

c
I+ cP)'=a'l—-————P;
(al + cF) “ a(a + c2)
by multiplication. Hence,
21700
-2 “2f-bpy-1 — )2 — =™ _p.
WL+ 0072/ 7"P) NI il

Using P? = 2"P,, shows that X! Z;'X; is a block diagonal matrix with
blocks:

f-bya fob
2/~tg52P; — 22f‘2”054P,-()\(2,I— 2N .') ; 2

i = P,
o2 + 2N o2+ 2N

PROOF OF THEOREM 3. Let z; be the common covariate for all of
the subjects in group k. For subjects in block j and group k, define X,
= o5l + NoX;xX /x- Then

Y Y ik @ XZii Xk

n 2h
i=1 j=1

q
FI(B,0)=Y
k=1

20
= Y zzim2 %4 ® Y, block(P;, ..., P)).
1

k

Y

j=1

Because the full design is orthogonal, i.e, X'X = 2/1, and because X'X
=37, X!X,, we see that 2,-2; P; = 2°I. Thus, we have

q
FI(®, ©) = (Z nmmi) I
k=1

A similar argument gives FI(\,., Nu..)-
PROOF OF THEOREM 4. The Lagrangian is

q q
g(n, b) =v Y log(na) + wlog(% > nk2””“a£)
k=1

k=1

q
- 7( > m2 e, + di(27M)] - cT> )

k=1

Given by, .. ., b, the optimal n; satisfies
og(n,b) v w__ 13 o\7! _
T = ;}' + 52 bmiz(iké m2 "*a;) - y2”r[c,- + d,-(2f b/)] =0.

Multiplying the above partial derivative by n;, summing over j, and
solving for 7y results in y = (vg + w)/cr.
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