Corrigendum

Corrigendum to ‘Informative trading or just costly noise? An analysis of Central Bank interventions’

Paolo Pasquariello
Ross School of Business, University of Michigan

This Corrigendum corrects a portion of the robustness Section 3.3 in Pasquariello (2007), where there is a typo in Eqs. (3) and (4), and Figure 4 does not plot the ensuing cumulative impulse-response functions, as instead discussed in its last two paragraphs (pp. 130-131).

1 Typos in Section 3.3 and Figure 4

Differently from the discussion in Section 3.3, Figures 4a and 4c to 4f on p. 132 plot cumulative sums of the coefficients b_l (up to $\sum_{l=0}^{20} b_l$) for a signed 50 million SNB intervention at $t = 0$ ($\Delta T_0 = 50$) from the SUR estimation of

$$X_t = \alpha_1 + \sum_{l=1}^{20} a_l X_{t-l} + \sum_{l=0}^{20} b_l T_{t-l} + \sum_{i=1}^{4} \psi_{1,i} D_t (i) + \sum_{k=1986}^{1997} \vartheta_{1,k} Y_t (k) + \varepsilon_{1,t},$$

(3)

while Figure 4b on p. 132 plots cumulative sums of the coefficients d_t (up to $\sum_{l=0}^{20} d_t$) for a signed 1% CHFUSD return shock at $t = 0$ ($\Delta X_0 = 0.01$) from the SUR estimation of:

$$T_t = \alpha_2 + \sum_{l=1}^{20} c_l T_{t-l} + \sum_{l=0}^{20} d_l X_{t-l} + \sum_{i=1}^{4} \psi_{2,i} D_t (i) + \sum_{k=1986}^{1997} \vartheta_{2,k} Y_t (k) + \varepsilon_{2,t}.$$

(4)

Thus, Figures 4a and 4c to 4f on p. 132 capture the permanent impact of a signed 50 million SNB intervention on Y_t (i.e., the portion of that impact more likely due to information effects than

1The author is affiliated with the department of Finance at the Ross School of Business, University of Michigan. Please address comments to the author via email at ppasquar@umich.edu.
to inventory control; e.g., see Hasbrouck, 1991) under the assumption that such intervention is exogenous and fully unanticipated — consistent with the plots of cumulative sums of the coefficients δ_j of unsigned daily intervention dummies $I_t(j, h)$ from the OLS estimation of Eq. (2), in Figures 2 and 3 — while Figure 4b on p. 132 captures the permanent impact of a signed 1% shock to CHFUSD returns on SNB intervention T_t under the assumption that such shock is exogenous and fully unanticipated.

Instead, the bivariate VAR described in Section 3.3 is identified with the restriction of not allowing Y_t to have a contemporaneous impact on signed aggregate daily SNB trades T_t (under the assumption, common in the microstructure literature, that trades cause price changes, as in Hasbrouck, 1991), i.e., is given by Eq. (3'), where T_t should be replaced by T_{t-1} in Eq. (3) as follows:

$$X_t = \alpha_1 + \sum_{l=1}^{20} a_l X_{t-l} + \sum_{l=0}^{20} b_l T_{t-l} + \sum_{i=1}^{4} \psi_{1,i} D_t(i) + \sum_{k=1986}^{1997} \vartheta_{1,k} Y_t(k) + \varepsilon_{1,t}, \quad (3')$$

and Eq. (4'), where $\sum_{l=0}^{20} d_l X_t$ should be replaced by $\sum_{l=1}^{20} d_t X_{t-1}$ in Eq. (4) as follows:

$$T_t = \alpha_2 + \sum_{l=1}^{20} c_l T_{t-l} + \sum_{l=1}^{20} d_l X_{t-l} + \sum_{i=1}^{4} \psi_{2,i} D_t(i) + \sum_{k=1986}^{1997} \vartheta_{2,k} Y_t(k) + \varepsilon_{2,t}. \quad (4')$$

The attached Corrected Figure 4 — which replaces Figure 4 on p. 132 — plots the cumulative impulse-response functions from the OLS estimation of the bivariate VAR of Eqs. (3') and (4'). Specifically, Figures 4a and 4c to 4f below plot the cumulative response of Y_t to a signed 50 million shock to the unanticipated component of SNB intervention at $t = 0$ from its linear projection on past SNB trades and CHFUSD returns (i.e., from Eq. (4)). Figure 4b below plots the cumulative response of T_t to a signed 1% shock to the unanticipated component of CHFUSD returns at $t = 0$ from its linear projection on past SNB trades and CHFUSD returns (i.e., from Eq. (3')). These plots are generally similar to those on p. 132 as both Figures 1 and 4b and the untabulated estimation of Eq. (4') suggest that linear projection to be a generally poor predictor of current SNB interventions.
References

Corrected Figure 4. Bivariate VAR: impulse-response functions

These figures plot OLS estimates of the cumulative revisions in X_t subsequent to an initial USD 50 million signed SNB trade $T_t = I_t > 0$, $I_t < 0$, C_t, or $I_t^{K,C} + C_t^{K,C} > 0$ ($\Delta T_0 = 50$) implied by the bivariate VAR model

$$X_t = \alpha_1 + \sum_{l=1}^{20} a_l X_{t-l} + \sum_{l=0}^{20} b_l T_{t-l} + \sum_{i=1}^{4} \psi_{1,i} D_t(i) + \sum_{k=1986}^{1997} \vartheta_{1,k} Y_t(k) + \varepsilon_{1,t}, (3')$$

$$T_t = \alpha_2 + \sum_{l=1}^{20} c_l T_{t-l} + \sum_{l=1}^{20} d_l X_{t-l} + \sum_{i=1}^{4} \psi_{2,i} D_t(i) + \sum_{k=1986}^{1997} \vartheta_{2,k} Y_t(k) + \varepsilon_{2,t}, (4')$$

for each variable X_t defined in Section 2.2. Specifically, Figures 4a and 4b plot estimated cumulative impulse-response functions for both $X_t = r_t$ and T_t (for a signed 1% shock to r_t, $\Delta r_0 = 0.01$) while Figures 4c to 4f plot estimated cumulative impulse-response functions for X_t from each bivariate VAR model with either $X_t = r^2_t$, S_t, s_t, or f_t, respectively.

a) Return r_t

b) Intervention I_t

c) Square Return r^2_t

d) Spread S_t

e) Logarithmic Spread s_t

f) Frequency f_t