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Abstract

This paper investigates the ability of mixtures of a3ne, quadratic, and non-linear models to
track the volatility in the term structure of interest rates. Term structure dynamics appear to ex-
hibit pronounced time varying or stochastic volatility. Ahn et al. (Rev. Financial Stud. xx (2001)
xxx) provide evidence suggesting that term structure models incorporating a set of quadratic fac-
tors are better able to reproduce term structure dynamics than a3ne models, although neither
class of models is able to fully capture term structure volatility. In this study, we combine a3ne,
quadratic and non-linear factors in order to maximize the ability of a term structure model to
generate heteroskedastic volatility. We show that this combination entails a tradeo: between
speci;cation of heteroskedastic volatility and correlations among the factors. By combining fac-
tors, we are able to gauge the cost of this tradeo:. Using e3cient method of moments (Gallant
and Tauchen, Econometric Theory 12 (1996) 657), we ;nd that augmenting a quadratic model
with a non-linear factor results in improvement in ;t over a model comprised solely of quadratic
factors when the model only has to confront ;rst and second moment dynamics. When the full
dynamics are confronted, this result reverses. Since the non-linear factor is characterized by
stronger dependence of volatility on the level of the factor, we conclude that ?exibility in the
speci;cation of both level dependence and correlation structure of the factors are important for
describing term structure dynamics.
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1. Introduction

Academic researchers and investment institutions have devoted a signi;cant amount
of their e:ort over the past two decades to developing and testing sophisticated models
of the term structure of interest rates. These models are important both to academics
and practitioners because the dynamics of interest rates have important implications
for macroeconomic policy and the microeconomic decisions of agents in an economy.
Studying this issue is particularly pressing in light of the drastic ?uctuations in U.S.
interest rates over the past three decades. These ?uctuations demonstrate the need for
a robust model that captures term structure dynamics.
An important issue in describing interest rate movements is modeling their volatility.

Several empirical studies suggest that the volatility in the dynamics of interest rates are
time-varying, and most likely stochastic (e.g. Longsta: and Schwartz, 1992; Engle and
Ng, 1993; Gallant and Tauchen, 1998). This literature relies upon the premises that
(i) term premia exhibit strong time variation and (ii) time variation in these premia are
induced by time variation in interest rates and/or the state variables that govern their
stochastic dynamics. These studies have been followed by a stream of research that
investigates the empirical goodness-of-;t of alternative speci;cations of the stochastic
di:erential equations of the state variables for the short rate, concentrating largely on
explaining its time-varying volatility. 1 These studies represent an in-depth analysis of
the performance of alternative models under the physical probability measure.
A smaller set of studies investigate the properties of alternative models under both

the physical and risk-neutral probability measures, exploiting the information in both
the time series and cross-section of bond yields. Because these studies gauge model
performance based on both the physical measure and the equivalent martingale measure,
they are able to empirically discriminate between models more rigorously. Representa-
tive studies in this vein include Dai and Singleton (2000) and Ahn et al. (2001). Dai
and Singleton ;nd that a3ne term structure models (hereafter referred to as ATSMs)
are able to ;t the unconditional term structure of volatility based on data from the
late 1980s through the 1990s. Ahn et al. (2001) document that quadratic term struc-
ture models (QTSMs) empirically outperform ATSMs. However, the authors ;nd that
neither set of models can explain the stochastic features of the volatility of bond yields.
These empirical studies represent major progress in documenting the dynamics of

the second moment of Treasury securities. However, despite this empirical progress,
less e:ort has been made to connect the empirical dynamics of the second moment to
a theoretical model. The empirical research suggests several dimensions along which
existing models fail to ;t the observed volatilities of yields to maturity. Ahn et al.
(2001) observe that ATSMs generally produce a lower level of yield volatility and
fall short in capturing its dynamic characteristics. QTSMs improve upon the ATSMs
performance in both directions, but while the maximal QTSM model matches volatility
dynamics fairly well, it fails to generate the high level of volatility observed in interest
rates over di:erent horizons. These ;ndings suggest that, in order to understand the

1 See Chan et al. (1992), AJKt-Sahalia (1996a, b), Andersen and Lund (1997), and Gallant and Tauchen
(1998) among many others for empirical investigations of the volatility of the short rate.
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shortcomings of extant parametric models in volatility speci;cation, we need to inves-
tigate existing models and their relative strengths and weaknesses by considering their
implications for term structure volatility and its dynamics. In this paper, we conduct
such an investigation.
Our starting point for investigating this issue is the set of equilibrium term structure

models that have been developed over the past two decades. 2 This literature can be
broadly separated into three alternative classes. The ;rst and most popular class of
term structure models are ATSMs, which designate an a3ne association between a set
of underlying state variables and bond yields. This class includes the seminal works
of Vasicek (1977) and Cox et al. (1985, CIR hereafter). 3 The class is generalized by
Du3e and Kan (1996), who summarize the primitive assumptions underlying this set of
models. Dai and Singleton (2000) characterize the admissibility of ATSMs and further
contribute to the empirical literature by implementing ATSMs based on a theoretical
analysis of the minimal conditions neccessary for identifying this class of models.
Thus, the authors are able to specify restrictions on the Du3e and Kan framework that
produce a maximally ?exible and empirically identi;able ATSM. Following Dai and
Singleton, denote an ATSM with m state variables with square-root processes (which
can be potentially correlated) and n−m Gaussian state variables as an Am(n). While the
Gaussian factors are homoskedastic, the state variables with square-root process induce
stochastic volatility with an order of 1

2 as their name implies. This speci;cation results
in a “level” e:ect in the underlying state variables that generates stochastic volatility
in the yields.
While the ATSM is able to generate stochastic volatility in yields, constraints im-

posed by its functional form limit its ability to generate stochastic volatility. First, only
m of the n state variables may contribute to stochastic volatility of interest rates. This
problem cannot be trivially solved by setting m to n because, as noted in Dai and Sin-
gleton (2000) and stressed in Ahn et al. (2001), while m= n maximizes the ATSMs
?exibility in specifying heteroskedastic volatility, it limits its ?exibility in specifying
conditional/unconditional correlations among state variables. Second, the dependence
of volatility to level is restricted by an a3ne relationship between yields and interest
rates. This issue may be important in light of studies (e.g. AJKt-Sahalia, 1996b) that
suggest a stronger order dependence of yield volatility on level.
The limitations in the speci;cation of ATSMs are driven by its a3ne functional

form. Ahn et al. (2001) demonstrate that these limitations can be overcome by

2 We focus on equilibrium models in contrast to arbitrage models. The equilibrium approach is, as its
name implies, an attempt to endogenize the term structure of interest rates by specifying an underlying
economy using assumed preferences of either a representative agent or a stand-in aggregate household, his/her
monetary and/or information constraints, and imposing market clearing. In contrast, the arbitrage approach
relies upon extracting no arbitrage constraints from observed term structures and using this information to
price contingent claims on either interest rate or ;xed-income securities. Thus the latter approach is less
suitable for interpreting model implications for the determination of the characteristics of the dynamics of
the term structure of interest rates.

3 These single-factor models are extended to multivariate versions by Langetieg (1980), Chen and Scott
(1992), Longsta: and Schwartz (1992), Sun (1992), Pearson and Sun (1994), Balduzzi et al. (1996), Chen
(1996), Andersen and Lund (1997), and Jegadeesh and Pennachi (1996).
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eliminating the a3ne restriction. Compared to ATSMs, non-a3ne term structure mod-
els have evolved much more slowly. The representative non-a3ne term structure mod-
els are QTSMs. This class of models was ;rst launched by Longsta: (1989) and
pioneered by Beaglehole and Tenney (1991, 1992) and Constantinides (1992). Ahn
et al. (2001) consolidate and systematically compare these models in a general frame-
work by formally de;ning the QTSMs and building a maximally ?exible QTSM
which can be identi;ed empirically. 4 The authors clarify the exact restrictions which
reduce the general QTSM to existing sub-class models. The advantage of the QTSM
relative to the ATSM in specifying heteroskedastic volatility comes from the inclusive-
ness of all state variables in generating the stochastic volatility. Ahn et al. (2001) also
demonstrate that the QTSM is free of the trade-o: between heteroskedastic volatility
of interest rates and negative correlation among the state variables, while maintaining
admissibility. However, the QTSM is isomorphic to the ATSM in its mechanism for
generating volatility; the volatility of the interest rate is proportional to the level of
the state variables. Although there is no strict one-to-one correspondence between the
square root factors in the ATSM and the Gaussian factors in the QTSM, it is easily
demonstrated that the contribution of an square root factor to volatility is equivalent
to the contribution of the square of a Gaussian factor. 5 Thus in terms of generating
volatility, An(n) is equivalent to Q(n). 6

The last and least developed class of equilibrium term structure models are fully
non-a3ne models, in which the state variables themselves evolve according to non-a3ne
stochastic processes. The only model of which we are aware in this class is the in-
verted square-root model (ISRM) of Ahn and Gao (1999). This model is based on
the notion that the interest rate is the inverse of a state variable which follows a
square-root process. The framework is unique because the drift of the interest rate is
a quadratic function of the underlying state variables and its volatility is governed by
a power function of the state variable with an exponent of 3

2 . The advantage of this
model is that it has the potential to magnify stochastic volatility by leveraging the
interest rate in the volatility speci;cation. However, one drawback of this model is
that a closed-form solution (even in ordinary di:erential equation terms) does not exist
once we incorporate non-trivial correlation among state variables.
From this starting set of equilibrium term structure models, we investigate whether

a mixture of these three di:erent classes of models can outperform purebred models
in explaining the high volatility of interest rates in the US. Put di:erently, this paper
explores the potential positive (or negative) synergy in combining heterogeneous para-
metric models, particularly in specifying the volatility of interest rates. If the hybrid
model can improve upon the performance of parametric models in volatility speci;ca-
tion, there might be an o:setting cost, which is of central importance to this paper.

4 Leippold and Wu (2000) also characterize the QTSMs in a general framework but do not focus on
empirical implementation.

5 Using this concept, Ahn et al. (2001) formally prove that a particular version of the CIR model coincides
with a constrained version of QTSM under certain relevant restrictions.

6 However, this equivalence does not hold in a discrete horizon because of the feedback e:ect in the drift
term of interest rates.
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None of these questions have been addressed in the extant literature. 7 We denote a
hybrid model with m square root factors, n− m Gaussian factors, h quadratic factors,
and k inverted-square root factors by Am(n)Q(h)I(k). Consequently the total num-
ber of state variables is n + h + k. With this purpose, we investigate di:erent hybrid
models and compare their overall performance in explaining the transition distribution
of yields and in particular the ;t of the volatility speci;cation. We use the e3cient
method of moments (EMM) of Gallant and Tauchen (1996) to estimate a wide variety
of Am(n)Q(h)I(k). Following Dai and Singleton (2000) and Ahn et al. (2001), we
simultaneously use time series data on short- and long-term Treasury bond yields to
explore the empirical properties of Am(n)Q(h)I(k). We focus primarily on hybrid mod-
els with h=2, namely, models with two quadratic factors augmented by one orthogonal
a3ne (square-root or Gaussian) or inverted-square root factor.
We ;nd several interesting results. First, when we focus on capturing just the ;rst

two conditional moments of the distribution of yields, we ;nd that a model that com-
bines quadratic and inverted square root factors outperforms the remaining models.
We conclude that in this scenario, the loss in terms of modeling correlation among
the state variables is outweighed by amplifying the e:ect of factor levels on yield
volatility. The results suggest that, in modeling the conditional mean and volatility of
interest rates, accounting for this strong level dependence is at least as important as
?exibility in specifying correlations among the state variables. However, when we in-
vestigate a more complicated auxiliary model for the conditional density, we ;nd that
the pure QTSM model outperforms the hybrid Quadratic-Inverted-Square-Root model.
This result suggests that the additional ?exibility provided by the correlation structure
of the QTSM is important in capturing shape deviations from conditional normality.
In conjunction, the results suggest that a model that is able to incorporate correlations
among the state variables and strong level dependence in volatility would ;t the term
structure data better.
The paper is organized as follows. In Section 2, we introduce the hybrid models,

Am(n)Q(h)I(k), based on a combination of alternative purebred parametric models,
ATSMs, QTSMs, and ISRMs. The following section provides a discussion of the
term structure data and the EMM methodology that we use for examining the ;t of
the Am(n)Q(h)I(k). The empirical results of the EMM estimation coupled with their
implication for heteroskedastic volatility are provided in Section 4, and Section 5 makes
some concluding remarks and the implication of the paper for future studies.

2. Models

We de;ne an economy represented by the augmented ;ltered probability space
(	;Ft ; F;P), where F = {Ft}06t6T. We assume the existence of a stochastic dis-
count factor, �(t), which de;nes the canonical valuation equation under the physical

7 Strictly speaking, Am(n) itself can be viewed as a hybrid model of the CIR model and the Vasicek
model. However, this class of hybrid models reside within the a3ne framework.
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probability measure P:

x(t) = EPt

[
�(T )
�(t)

x(T )
]
;

where x(t) is the price of an asset, with x(t; !) : [0;∞) × 	 → R+. It is well known
that alternative asset pricing models di:er in their description of the time-series evolu-
tion of the stochastic discount factor or pricing kernel, �(t). The absence of arbitrage
opportunities coupled with the assumption of a complete market ensures the existence
of a unique equivalent probability measure, Q, under which a pure discount bond price
is given by

PB(t; T ) = EQ
t

[
exp

(
−
∫ T

t
r(s) ds

)]
: (1)

where r(t) is the instantaneous risk free interest rate. The change of measure is dictated
by the Radon-Nikodym derivative

�(t; T ),
dQ(t; T )
dP(t; T )

= exp
(∫ T

t
’(s) dwq(s)− 1

2

∫ T

t
’(s)2 ds

)
;

where ’(s) denotes a vector of di:usion parameters in �(t; T ) and wq(t) denotes a
vector of independent standard Brownian motions. The uniqueness of the pricing kernel
guarantees that

�(T )
�(t)

= �(t; T ) exp
(
−
∫ T

t
r(s) ds

)
:

From the bond valuation equation (1), it is clear that only the factor dynamics
under the Q measure have an impact on bond prices. However, to completely specify
a term structure model with both time series and cross-sectional implications, we need
to specify � as well. To see this, we express the stochastic di:erential equation of the
pricing kernel as follows:

d�(t)
�(t)

=−r(s) dt + d�(t; t+) =−r(s) dt + ’(t; t+) dwq(t):

We claim that three assumptions completely specify a term structure model:

(A1) The relationship between the interest rate, r(t) and the underlying state vari-
ables, Y (t)

(A2) The stochastic di;erential equations of the state variables, dY (t)
(A3) The di;usion process of the stochastic discount factor, ’(t)

Note that (A1) determines the drift of the stochastic discount factor, (A2) dictates the
stochastic evolution of the drift of the stochastic discount factor, and (A3) governs
its di:usive evolution or equivalently the market price of factor risks since the fac-
tor risk premium is −covt(d�(t)=�(t); dY (t))=−covt(’(t) dwq(t); dY (t)) as shown by
Merton (1973) and Cox et al. (1985). To construct a term structure model, we have
discretion over the choice of (A1)–(A3) subject to (i) the regularity conditions for the
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existence of solutions to each stochastic di:erential equation, and (ii) admissibility of
the stochastic discount factor. 8

In this study, we investigate hybrid models based on three representative term struc-
ture models: ATSM, QTSM, and ISRM from the viewpoint of their underlying
assumptions regarding (A1)–(A3). Without loss of generality, we make a simplify-
ing assumption about (A3) by directly specifying the market price of factor risks,
� = −covt(d�(t)=�(t); dY (t)). By assuming that N unobserved state variables Y (t) =
(Y1(t); Y2(t); : : : ; YN (t)) follow various stochastic processes, we then investigate the
relationship between pure discount bond prices and factors under di:erent model spec-
i;cations. In addition, we analyze the canonical representation of term structure models
which lend themselves to empirical implementation in the presence of the unobservable
state variables.
The hybrid model is based on the following assumptions:

A1. The nominal instantaneous interest rate is a function of the underlying state
variables:

r(t) = �0 + �′AYA(t) + YI (t)′1k + YQ(t)′�YQ(t) (2)

where �0 is a constant; �A ¿ 0n; Dim(YA) = n, Dim(YQ) = h, and Dim(YI ) = k.
We set the total number of state variables N = n + h + k. � is a symmetric
h-dimensional matrix with unit diagonal elements. A, I , and Q represent a?ne,
inverted square root, and quadratic factors, respectively.

A2. The stochastic di;erential equations for each set of state variables are identical
to the speci*cations of those in Dai and Singleton (2000), Ahn et al. (2001),
and Ahn and Gao (1999). 9

A3. The market prices of factor risk are also identical to the speci*cation of those
in each of the respective papers above.

Thus de;ned, the instantaneous interest rate follows a hybrid process of a3ne, quadratic
and inverted square root factors. One crucial assumption embedded in A2 is that the
set of state variables in di:erent set of models are orthogonal to each other. That is,

〈dYi; dYj〉= 0 ∀i 
= j; where i; j = A;Q; I:

These assumptions are necessary for us to have an analytical representation for the bond
prices. In some cases, the inter-orthogonality conditions are necessary for identi;cation
reasons. For example, in the presence of unobservable state variables, a combination of
the Gaussian ATSMs and the QTSMs requires orthogonality among the ATSM state
variables and the QTSM state variables for an empirical identi;cation of the model. 10

It is true that we may still have an admissible term structure model with non-trivial
cross-model correlations, however, the model will not be solvable in closed-form.

8 A su3cient condition for (i) is that both drift and di:usion coe3cients satisfy the Lipschitz and growth
conditions. A su3cient condition for (ii) is the satisfaction of Novikov condition.

9 For details, see Dai and Singleton (2000) for ATSMs, Ahn et al. (2001) for QTSMs and Ahn and Gao
(1999) for ISRMs.
10 Please contact authors for the proof.
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Given the speci;cation of the interest rate structure (2), and the independent nature
of factors from di:erent model families, it is easy to show that the price of a pure
discount bond is given by

PB(t; #) = PA(t; #)PQ(t; #)PI (t; #)

where # is the bond maturity. PA(t; #), PQ(t; #), and PI (t; #) are de;ned by the following
equations,

PA(t; #) = exp[$0A(#) + $1A(#)′YA(t)]; (3)

PQ(t; #) = exp[$0Q(#) + $1Q(#)′YQ(t) + YQ(t)′$2Q(#)YQ(t)]; (4)

PI (t; #) =%k
i=1

&('i − ’i)
&('i)

M (’i; 'i;−x(YIi(t); t; #))x(YIi(t); t; #)’i : (5)

where

M (a; b; y) =
&(b)

&(b− a)&(a)

∫ 1

0
eyzza−1(1− z)b−a−1 dz;

and

x(YIi(t); t; #) =
2bi

-2ii[exp(bi#)− 1]YIi(t)
;

with $A, and $Q being governed by two sets of ordinary di:erential equations, bi, Aii,
and -ii, being constants, and 'i, ’i, and .i being functions of these constants. 11

In the following subsections, we specify each of the models that we investigate
and discuss their implications for heteroskedastic volatility. As in Dai and Singleton
(2000) and Ahn et al. (2001), we focus only on three factor models, but our primary
interest is in the performance of models with di:erent factor combinations. There are
two issues that must be considered in constructing hybrid models in order to maintain
both tractability and ?exibility:

• Tractability: Dai and Singleton (2000) emphasize that correlation among factors is
an important ingredient in describing bond price dynamics. Consequently, an ideal
framework is driven by three correlated factors. However, analytical solutions to
multivariate correlated cases are available only for ATSMs and QTSMs. In order
to ensure tractability, we assume that factors of di:erent types (a3ne, quadratic, and
inverted square root) are independent.

• Correlation Structure: As noted above, Dai and Singleton (2000) suggest that it is
important to have maximal ?exibility in the speci;cation of correlated factors in
order to generate the correlations observed in bond yields. In order to maximize this
?exibility, we examine models that have at least two correlated factors of the same
type. In particular, we emphasize models with two quadratic factors augmented by an

11 For details, see Dai and Singleton (2000) about ATSMs, and Ahn et al. (2001) about QTSMs. Ahn
and Gao (1999) presents the bond price for single factor ISRM. We extend their model to an independent
multifactor solution. Details available upon request from the authors.
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additional independent factor of type either ATSM or ISRM and contrast our results
with those of maximally ?exible quadratic and/or a3ne models.

2.1. Two quadratic and one a?ne (square root) model: A1(1)Q(2)I(0)

With two quadratic and one square-root factor, this model is expected to underper-
form the quadratic model. In terms of volatility speci;cation, this model has the same
order of volatility contribution to the three-factor QTSM. However, the loss of corre-
lation structure between the square root factor and the quadratic factors will hurt the
model’s performance. However, this model provides some insight into the actual cost
of weakening the correlation structure among the state variables.
The underlying factor process is represented by two quadratic factors and one square-

root factor under the equivalent martingale measure Q:

dY (t) =






b1

b2

/̃0̃


+




A11 0 0

A21 A22 0

0 0 −/̃


Y (t)


 dt

+




-11 0 0

0 -22 0

0 0 -
√

Y3(t)


 dZ̃(t)

and under the physical process

dY (t) =






20;1

20;2

/0


+




21;11 0 0

21;21 21;22 0

0 0 −/


Y (t)


 dt

+




-11 0 0

0 -22 0

0 0 -
√

Y3(t)


 dZ(t)

with prices given by

PB(t; #) = PQ(t; #)PA(t; #)

where PQ represents the price for a two-factor quadratic bond price and PA represents
the price for a one-factor Square-Root bond price presented in (4) and (4) with m=n=1,
and h=2. The parameters under Q and P measures are linked by /̃0̃=/0, and /̃=/−�1.

2.2. Two quadratic and one inverted square-root model: A0(0)Q(2)I(1)

Of the models we consider, this one o:ers potential trade-o: between correlation
and level dependence. By replacing a correlated quadratic factor with an independent
inverted-square-root factor, we lose ?exibility in correlation structure. However, as
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strongly evidenced by Chan et al. (1992), AJKt-Sahalia (1996a, b), and Ahn and Gao
(1999), interest rate volatility increases at an increasing rate in interest rate levels with
a level dependence on the order of approximately 1.5. The inverted-square-root factor
exhibits this stronger level dependence (the order of the di:usion term is 1.5), and
thus may potentially result in better goodness-of-;t.
The model is based on two quadratic factors and one inverted square-root factor

following the risk-neutral process

dY (t) =






b1

b2

/̃0̃Y3(t)


+




A11 0 0

A21 A22 0

0 0 −/̃Y3(t)


Y (t)


 dt

+




-11 0 0

0 -22 0

0 0 -
√

Y3(t)3


 dZ̃(t)

and the physical process

dY (t) =






20;1

20;2

/0Y3(t)


+




21;11 0 0

21;21 21;22 0

0 0 −/Y3(t)


Y (t)


 dt

+




-11 0 0

0 -22 0

0 0 -
√

Y3(t)3


 dZ(t)

with prices given by

PB(t; #) = PQ(t; #)PI (t; #)

where PQ represents the price for a two-factor quadratic bond price and PI represents
the price for a one-factor Inverted-Square-Root bond price presented in (4) and (5)
with h= 2, and k = 1. The restrictions imposed by the market price of risk manifests
themselves as /̃0̃= /0, and /̃ = / − �1.
For the completeness of model speci;cations, we also present the two benchmark

models as special cases of hybrid models.

2.3. Hybrid ATSMs: A2(3)Q(0)I(0)

Following Dai and Singleton (2000), we choose A2(3) as the benchmark case. In
this case, the underlying factor process is governed by two Square-Root factors and
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one Gaussian factor following the risk-neutral process

dY (t) =




/̃11 0 0

/̃21 /̃22 0

0 0 /̃33









0̃1

0̃2

0


− Y (t)


 dt

+




√
311Y1(t) 0 0

0
√

322Y1(t) 0

-31
√

311Y1(t) 0
√

Y1(t)


 dZ̃(t)

and the physical process

dY (t) =




/11 0 0

/21 /22 0

0 0 /33









01
02
0


− Y (t)


 dt

+




√
311Y1(t) 0 0

0
√

322Y1(t) 0

-31
√

311Y1(t) 0
√

Y1(t)


 dZ(t)

with prices given by

PB(t; #) = PA(t; #)

and PA(t; #) given by (3) when m= 2, and n= 3. The restrictions by the market price
of risk are /̃0̃ = /0, and /̃ = / − �, where � is a 3 × 3 matrix with �11, �22, �33 as
diagonal elements and zero otherwise.

2.4. Quadratic models: A0(0)Q(3)I(0)

QTSMs are the representative non-a3ne class models. These models are attributable
to Longsta: (1989), Beaglehole and Tenney (1991, 1992), Constantinides (1992). The
maximally ?exible QTSMs which lend themselves to identi;cation are developed by
Ahn et al. (2001).
The underlying factor process is determined by two quadratic factors and one Square-

Root factor following the risk-neutral process

dY (t) =






b1
b2
b3


+




A11 0 0

A21 A22 0

A31 A32 A33


Y (t)


 dt +




-11 0 0

0 -22 0

0 0 -33


 dZ̃(t)

and the physical process

dY (t) =






20;1

20;2

20;3


+




21;11 0 0

21;21 21;22 0

21;31 21;32 21;33


Y (t)


 dt
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+




-11 0 0

0 -22 0

0 0 -33


 dZ(t)

with prices given by

PB(t; #) = PQ(t; #):

and PQ(t; #) given by (4) when h= 3.
In our empirical implementation we emphasize the two hybrid models, A1(1)Q(2)I(0)

and A0(0)Q(2)I(1). These two models are similar in that they sacri;ce some ability to
model correlations among the state variables. However, the incorporation of the inverted
square root factor in A0(0)Q(2)I(1) allows us to capture greater level dependence of
volatility on the factor. Thus, comparing these two models shows us just what bene;t
(or cost) is provided by using a higher order level dependence in volatility. This ben-
e;t or cost is isolated from the cost of ?exibility in correlation speci;cation that arises
from comparison with a pure Quadratic or hybrid Square-Root/Gaussian model. 12

3. Data and methods

3.1. Term structure data

In order to investigate the implications of the models for the term structure of interest
rates, we combine two sets of data. The ;rst data set is the McCulloch and Kwon
(1993) zero coupon yields, which cover the period January, 1952 through February,
1991, and are sampled at a monthly frequency. The second data set used is zero-coupon
yield data covering the period November, 1971, through December, 1999. These data
are formed using the methods in Bliss (1997). 13 For the overlap period of November,
1971, through February, 1991, the data were combined by using a convex combination

� ∗ (McCulloch-Kwon data) + (1− �) ∗ (Waggoner data)

where � declines linearly from one in October, 1971, to zero in March, 1991. The
data used in the analysis and shown in the plots are from 1953 onward; initial lags for
estimation are taken from the 1952 data.
For the purposes of the analysis of the model’s ability to ;t the term structure of

interest rates, we utilize three yields; the 6-month T-Bill yield and the 3-year and
10-year bond yield. These maturities are similar to those examined in comparable
studies, e.g. Dai and Singleton (2000), Ahn et al. (2001). As these yields cover short-,
intermediate-, and long-term bonds, we feel that they provide a reasonable description
of the term structure of interest rates at a given point in time. The data are plotted
in Fig. 1, which shows that the sample period covers a wide range of interest rate

12 Along with the aforementioned hybrid models, we implemented many other hybrid models. The empirical
performance of these models is not as good as the models reported. We do not report the description of
these models and their performance for brevity of the paper.
13 Thanks to Daniel Waggoner for making these data available.



D.-H. Ahn et al. / Journal of Econometrics 116 (2003) 147–180 159

1955 1960 1965 1970 1975 1980 1985 1990 1995

2

4

6

8

10

12

14

16

Zero Coupon Six-Month Treasury Bill Yields, 1953-1999

1955 1960 1965 1970 1975 1980 1985 1990 1995

2

4

6

8

10

12

14

16

Zero Coupon Three-Year Treasury Bill Yields, 1953-1999

1955 1960 1965 1970 1975 1980 1985 1990 1995

2

4

6

8

10

12

14

16

Zero Coupon Ten-Year Treasury Bond Yields, 1953-1999

Fig. 1. Zero coupon yield data. The plots present the zero coupon yield data used in the study. The data
are a combination of the data from McCulloch and Kwon (1993) and data produced using the methods in
Bliss (1997).

regimes, from very low levels in the 1950s to the high rate regime of the early 1980s.
Thus, the sample captures periods of relative stability in interest rates as well as periods
punctuated by high volatility.
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3.2. The e?cient method of moments

One of the features of the term structure models investigated in this paper is that the
state variables in the models are latent. As a result, estimation of the parameters of the
model is complicated by the need to estimate the parameters of an unobserved stochastic
process. Furthermore, since the model is expressed in continuous time, it is necessary to
avoid issues of discretization bias (AJKt-Sahalia, 1996a, b). Recent econometric advances
have allowed researchers to address both of these issues through the use of simulated
method of moments techniques. The simulated method of moments procedure that we
employ here is e3cient method of moments (EMM).
The theory of EMM estimation is developed in Gallant and Tauchen (1996) and

is extended to non-Markovian data with latent variables in Gallant and Long (1997).
An expository discussion of the method is in Gallant and Tauchen (2001). Brie?y the
ideas are as follows.
Suppose that f(yt |xt−1; 0) is a reduced form model for the discretely sampled data,

where xt−1 is the state vector of the observable process at time t − 1 and yt is the
observable process, which is a vector of three bond yields in our application. An
example of such a reduced form model is a GARCH(1,1), which is actually one of
our choices below. If this reduced form model, which we shall call a score generator,
is ;tted by maximum likelihood to get an estimate 0̃n, then the average of the score
over the data {ỹ t}nt=1 satis;es

1
n

n∑
t=1

@
@0

logf(yt |xt−1; 0̃n) = 0

because these are the ;rst order conditions of the optimization problem. If p(yt |xt−1; 7)
represents a structural model with parameter vector 7, such as our model A2(3)Q(0)I(0)
with 7 = (/11; /21; /22; /33; 01; 02; 311; 322; -31; �11; �22; �33), then one would expect that
a similar average over a long simulation {ŷ t}Nt=1 from the structural modal, namely

m(7; 0) =
1
N

N∑
t=1

@
@0

logf(ŷ t |x̂t−1; 0);

would satisfy m(7o; 0̃n) = 0, where 7o denotes the true but unknown value of 7. 14

One can try to solve m(7; 0̃n) = 0 to get an estimate 7̂n of the parameter vector of the
structural model. In general this cannot be done because the dimension of 0 is larger
than the dimension of 7 in most applications. To compensate for this, one estimates 7
by 7̂n that minimizes the GMM criterion

m′(7; 0̃n) (Ĩn)−1 m(7; 0̃n)

with weighting matrix

Ĩn =
1
n

n∑
t=1

[
@
@0

logf(ỹ t | x̃t−1; 0̃n)
] [

@
@0

logf(ỹ t | x̃t−1; 0̃n)
]′

:

14 This condition will hold exactly in the limit as N and n tend to in;nity under the standard regularity
conditions of quasi maximum likelihood.
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This choice of weighting matrix presupposes that the score generator ;ts the data well.
If not, then one of the more complicated weighting matrices in Gallant and Tauchen
(1996) should be considered. The estimator 7̂n is asymptotically normal.
If the structural model is correctly speci;ed, then the statistic

L0 = nm′(7̂n; 0̃n) (Ĩn)−1m(7̂n; 0̃n)

has the chi-squared distribution on dim(0) − dim(7) degrees freedom. This is the fa-
miliar test of overidentifying restrictions in GMM nomenclature and is used to test
model adequacy. A chi-squared is asymptotically normally distributed as degrees free-
dom increase. Therefore, for ease of interpretation, the statistic L0 is often redundantly
reported as a z-statistic, as we do in our tables.
The vector m(7̂n; 0̃n) can be normalized by its standard error to get a vector of

t-statistics. These t-statistics can be interpreted much as normalized regression residuals.
They are often very informative but are subject to the same risk as the interpretation of
regression residual; namely, a failure to ;t one characteristic of the data can show up
not at the score of the parameters that describe that characteristic but elsewhere due to
correlation. Nonetheless, as with regression residuals, inspecting normalized m(7̂n; 0̃n)
is usually the most informative diagnostic available.
If the score generator is a poor ;t to the data or the chi-squared test of model

adequacy L0 is not passed, then the analysis must be viewed as a calibration exercise
rather than classical statistical inference. One might, for instance, deliberately choose a
score generator that represents only some characteristics of the data to study the ability
of a structural model to represent only those characteristics. We do this below. One
might also use a rejected model to price options, arguing that it is the best available
even though it was rejected. The use of EMM for calibration is discussed in Gallant
et al. (1999).
Gallant and Tauchen (2001) recommend the seminonparametric (SNP) model as a

general purpose score generator and that is our choice here. The SNP model is a
vector autoregression (VAR) on Lu lags with a GARCH(Lg; Lr) conditional variance.
The innovation density is a Hermite density of degree Kz. A Hermite density has the
form of a polynomial times the multivariate standard normal density, which product
then normalized to integrate to one. Too allow for conditional heterogeneity over and
above that allowed by GARCH, the coe3cients of the polynomial in the Hermite
density are themselves polynomials of degree Kx in Lp lags of the data. Because
the number of terms in a polynomial expansion become exponentially large as the
dimension increases, two additional tuning parameters are introduced: Iz ¿ 0 implies
that all interactions larger than Kz − Iz are suppressed; similarly for Ix. The tuning
parameters of an SNP model are, therefore, (Lu; Lg; Lr; Lp; Kz; Iz; Kx; Iz) and they are
selected by following an upward model expansion path, using the BIC criterion to
select the best model along the path.
The auxiliary model can be viewed as a summary of the data. It is accomplished by,

in e:ect, projecting the data onto the SNP model and is therefore called the projection
step of an EMM investigation. Extraction of structural parameters from the summary by
minimizing the chi squared criterion is called the estimation step. In a later section, we
shall describe a third step, reprojection, that often accompanies an EMM investigation.
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With respect to our data, i.e. the McCulloch-Kwon-Waggoner data, among other
things, we want to explore the ability of hybrid models to represent the ;rst and second
conditional moments of the data while ignoring other characteristics, such as a fat-tailed
innovation density. For this, we ;t a GARCH(1,1) score to the data as implemented
by the (Lu; Lg; Lr; Lp; Kz; Iz; Kx; Iz) = (11110000) SNP speci;cation. 15 Following the
upward BIC selection protocol, (Lu; Lg; Lr; Lp; Kz; Iz; Kx; Iz) = (11114300) is selected.
To compare, Dai and Singleton (2000) select a 10214000 score for yt comprised of
the six-month LIBOR, two-year swap yield, and ten-year swap yield over the period
1987–1996; Ahn et al. (2001) select a 10414300 score for the McCulloch-Kwon data
at 3-month, 12-month, and ten-year maturities over the period 1946–1991. We expect
inferences with respect to the 11114300 score to have classical statistical validity.
Inferences with respect to the 11110000 score must be viewed as a calibration exercise.
To compute m(7; 0), we set the simulation length to N = 50; 000. We repeated the

computations for the 11114300 score with a simulation length T=100,000 to check
for robustness. The results were materially unchanged: the parameter estimates remain
virtually the same and the z-statistics increase by no more than 1.0. The public domain
EMM package that we use, which includes SNP, is available at ftp.econ.duke.edu in
directory pub/get/emm.

4. Estimation results

In this section we discuss various diagnostics for the set of term structure models in-
vestigated in the paper. In particular, we focus on speci;cation testing using the EMM
procedure (Gallant and Tauchen, 1996) and qualitative analysis using the reprojection
methodology of Gallant and Tauchen (1998). We ;rst focus on the simpler SNP spec-
i;cation to isolate the implications of the term structure models for conditional means
and volatilities. This must be viewed as a calibration exercise. We then proceed to in-
vestigate the Schwartz-preferred speci;cation in order to gauge the impact of deviations
from conditional normality. This may be viewed as asymptotically justi;ed classical
statistical inference.

4.1. EMM speci*cation tests

4.1.1. Results with the 11110000 score
In this subsection, we investigate the simpler 11110000 score generator that incor-

porates only VAR and GARCH e:ects. As mentioned above, we investigate this score
because of an interest in the ability of hybrid models to ;t the conditional mean and
volatility characteristics of the data, as the title of the paper suggests. Because the
conditional ;rst and second moments completely characterize the conditional normal
density, the assumption of normality focuses attention on those conditional character-
istics alone.

15 Due to a quirk in the public domain SNP code that we use, Lp must be positive even though Kx = 0.
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Table 1
Speci;cation tests of term structure models 11110000 Score, N = 50000

Coe3cient A0(0)Q(3)I(0) A1(1)Q(2)I(0) A0(0)Q(2)I(1) Coe3cient A2(3)Q(0)I(0)

�0 0.0409 (0.0136) 0.0663 (0.0396) 0.0652 (0.0094) /11 0.0148 (0.0019)
�21 −0.4732 (1.7933) −8.7812 (12.2071) −9.2078 (0.5624) /21 0.1069 (0.1284)
�31 0.2409 (1.6110) /22 0.2876 (0.0508)
�32 −0.9395 (0.1227) /33 4.6249 (0.8871)
b1 −0.0907 (0.2696) 0.0536 (0.0076) −0.0035 (0.0000) 01 0.0061 (0.0016)
b2 0.0551 (0.0080) 0.0544 (0.0097) 0.0421 (0.0032) 02 0.0542 (0.0037)
b3 −0.3448 (0.1671) 311 0.0059 (0.0005)
A11 −2.6164 (5.7308) −2.6044 (3.4540) −0.0755 (0.0224) 322 0.0068 (0.0005)
A21 0.3357 (0.6079) −2.6083 (3.4837) 3.9014 (0.3429) -31 11.8613 (11.0421)
A31 −2.7216 (5.2847) �11 −19.3622 (11.0421)
A22 −0.1972 (0.0932) 0.0679 (0.0198) 0.0276 (0.0189) �22 −10.8795 (2.1794)
A32 1.1258 (1.1833) �33 −9.4415 (6.3615)
A33 −0.2212 (0.0925)
-211 6.2951a(8.3510) 0.2144a (0.4572) 0.0038a (0.0014)
-222 0.1603a(0.2357) 2.6092a (0.7205) 3.8301a (1.1867)
-233 0.0000a(0.0295)
20;1 0.1421 (0.0346) 0.1285 (0.2497) 0.0241 (0.0001)
20;2 0.0098 (0.0002) −0.0033 (0.0093) 0.1994 (0.0154)
20;3 0.0624 (0.0197)
21;11 −10.1751 (8.7887) −8.4277 (20.7884) −1.6205 (0.0779)
21;21 −0.3934 (0.5276) 1.4735 (2.6585) −15.1935 (1.0463)
21;31 −6.3263 (7.9648)
21;22 −0.0177 (0.0020) −0.2077 (0.0907) −0.2152 (0.0810)
21;32 0.1650 (0.4384)
21;33 −0.0884 (0.2462)
/ 0.5826 (7.5578) 4.8265 (4.1876)
0 0.0327 (0.0301) 0.0195 (0.0091)
- 0.3969 (21.3490) 0.8931 (0.7155)
�1 −0.3151 (28.9601) 1.0007 (0.0000)
=2 47.504 90.031 45.190 242.160
df 17 24 24 30
z 5.231 9.531 3.058 27.390

a×10−4. The table presents results of estimation of four term structure models utilizing the score generator indexed
11110000. The models are indexed as Am(n)Q(h)I(k), where Q(h) denotes h quadratic factors, Am(n) denotes n a3ne
factors of which m are square-root processes, and I(k) denotes k inverted square root processes. The simulation size, N , is
set to 50,000.

Results of speci;cation tests are presented in Table 1. The table displays results
for four models; A0(0)Q(3)I(0), A1(1)Q(2)I(0), A0(0)Q(2)I(1), and A2(3)Q(0)I(0).
The models A0(0)Q(3)I(0) and A2(3)Q(0)I(0) are presented as benchmark cases; the
results of Ahn et al. (2001) suggest that the quadratic model strongly outperforms the
a3ne model in ;tting the yield dynamics. Their results are con;rmed here in a di:erent
data set covering an extended time period. As indicated by the z-statistic, the quadratic
model provides a much better ;t to the data than the a3ne model. The z-statistic
for the quadratic model is 5.231, compared to 27.390 for the preferred a3ne model.
These results suggest that the a3ne model has considerable di3culty in capturing term
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structure dynamics, even for a relatively simple SNP speci;cation. This result supports
the claim of Dai and Singleton (2000), who state that the tradeo: between speci;cation
of heteroskedastic volatility and correlation among the factors signi;cantly impacts the
ability of the a3ne model to ;t term structure dynamics.
The second column presents results for a speci;cation with two quadratic factors

augmented by a square-root factor, A1(1)Q(2)I(0). The results indicate that, while this
model improves upon the A2(3)Q(0)I(0) speci;cation, it clearly sacri;ces ;t relative to
the fully-speci;ed quadratic model. The z-statistic for the model is 9.531, indicating that
the quadratic model is strongly preferred on a degrees-of-freedom-adjusted basis. Since
the A1(1)Q(2)I(0) and A0(0)Q(3)I(0) are similar in their mechanisms and abilities to
generate heteroskedastic volatility, this result indicates that the correlation among the
state variables plays an extremely important role in terms of model ;t.
Results for the fourth model, A0(0)Q(2)I(1) are presented in the third column. The

speci;cation test indicates that this model improves upon the pure quadratic speci;ca-
tion, with a z-statistic of 3.058. The key feature of this model is its speci;cation of
heteroskedastic volatility through the inverted square root factor. Our results indicate
that this feature is quite important for conditional mean and volatility dynamics; the
z-statistic declines substantially relative to the remaining three models. The result also
generally supports the ;ndings of AJit-Sahalia (1996a, b) and Ahn and Gao (1999),
who suggest incorporating nonlinearity in the di:usion of the state variables to bet-
ter describe the dynamics of bond yields. In comparing the results of this model to
the A1(1)Q(2)I(0) model, it becomes apparent how potentially important this magni-
;ed level dependence is. Both models lack the correlation among the state variables,
and this shortcoming severely impacts the A1(1)Q(2)I(0) model’s ;t. However, the
A0(0)Q(2)I(1) model is able to improve upon the quadratic model despite sacri;cing
this correlation structure. This result suggests that ?exibility in the speci;cation of the
level dependence of volatility may be more important in ;tting the term structure than
?exibility in the speci;cation of correlation among the state variables.
To gain some better insight into the dimensions along which these models improve

performance, we examine t-statistics for the scores of the model with respect to the
SNP parameters. Consequently, we are able to analyze which parameters and thus
which features of the data impair a given term structure model’s ability to capture yield
dynamics. These diagnostics are presented in Table 2. For the 11110000 score, there
are two sets of parameters. The parameters  (1) −  (12) represent the VAR terms
in the score generator, and thus represent the conditional mean of the process. The
#(1)− #(30) terms are the GARCH parameters, which model the conditional volatility
in the term structure.
The diagnostics in Table 2 con;rm the conjecture that the incorporation of an in-

verted square root factor improves the ;t of conditional volatility. Six of the scores
with respect to the # terms result in t-ratios greater than 2.0 for the A0(0)Q(3)I(0)
model; in contrast, only two of the t-ratios for the A0(0)Q(2)I(1) model are greater than
2.0. Thus, the diagnostics suggest that while the hybrid quadratic-inverted square root
model cannot completely capture the conditional dynamics of the yield curve, it appears
to capture most of the relevant features of the data. The hybrid quadratic-square-root
model performs much more poorly than the pure quadratic model, with thirteen of the
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Table 2
EMM diagnostics of term structure models 11110000 score

Coe3cient A0(0)Q(3)I(0) A1(1)Q(2)I(0) A0(0)Q(2)I(1) A2(3)Q(0)I(0)

 (1) −1:807 −0:885 −0:830 −2:146
 (2) 1.786 1.053 0.431 3.145
 (3) −0:673 −0:277 −0:536 −2:145
 (4) 1.540 0.958 0.095 0.864
 (5) −1:744 −0:701 −0:030 −0:305
 (6) 0.585 0.257 0.012 0.033
 (7) 1.363 0.609 0.118 0.741
 (8) −1:406 −0:415 −0:195 −0:145
 (9) 0.393 0.224 0.126 −0:067
 (10) 1.204 0.365 0.025 0.493
 (11) −1:217 −0:347 −0:396 0.149
 (12) 0.249 0.299 0.272 −0:267
#(1) 1.973 1.418 0.898 3.897
#(2) −0:808 −0:313 0.339 −6:067
#(3) 3.504 5.037 1.748 9.735
#(4) 1.906 −3:085 −0:035 −1:282
#(5) −1:450 2.254 1.085 1.260
#(6) 0.596 0.699 −1:375 −2:111
#(7) 2.472 2.164 2.022 4.615
#(8) −0:956 0.156 0.425 −7:802
#(9) 2.287 4.845 1.941 10.895
#(10) 2.226 −2:384 0.122 −0:538
#(11) −1:486 1.584 0.927 1.781
#(12) 0.720 0.711 −0:631 −3:541
#(13) 1.771 1.848 1.749 3.459
#(14) −0:490 −0:387 0.114 −5:933
#(15) 2.331 5.032 1.293 9.445
#(16) 1.408 −2:295 −0:148 −0:834
#(17) −1:642 1.330 1.025 1.245
#(18) 1.122 0.824 −0:823 −1:846
#(19) 1.795 2.227 2.227 3.414
#(20) 0.168 −0:352 0.787 −6:696
#(21) 1.438 3.978 0.246 9.192
#(22) 1.552 −2:040 0.101 −0:812
#(23) −1:720 1.250 0.776 1.034
#(24) 1.509 0.294 −0:647 −1:379
#(25) 1.740 1.520 1.273 3.918
#(26) −1:189 −0:264 0.169 −7:845
#(27) 3.030 5.025 1.836 10.277
#(28) 1.907 −2:367 0.303 −0:809
#(29) −1:495 1.516 0.894 1.475
#(30) 0.841 1.017 −0:935 −2:275

The table presents diagnostics for EMM scores evaluated for the score generating model 11110000. The
coe3cients labeled �(k) denotes the VAR terms of the SNP score generator and #(k) denote the ARCH and
GARCH terms of the SNP score generator. The table presents t-statistics for the test of the null hypothesis
that the score with respect to the parameter �(k) or #(k) is equal to 0.
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Table 3
Speci;cation tests of term structure models 11114300 score, N=50000

Coe3cient A0(0)Q(3)I(0) A1(1)Q(2)I(0) A0(0)Q(2)I(1) Coe3cient A2(3)Q(0)I(0)

�0 0.0341 (0.0026) 0.0650 (0.0034) 0.0450 (0.0017) /11 0.0052 (0.0018)
�21 −0.3230 (0.0925) −7.9390 (0.0456) −8.9953 (0.0354) /21 −0.2037 (0.0949)
�31 0.2249 (0.1173) /22 0.2442 (0.0157)
�32 −0.9787 (0.0071) /33 5.1423 (0.4997)
b1 −0.0501 (0.0088) 0.0564 (0.0004) −0.0034 (0.0000) 01 0.0088 (0.0007)
b2 0.0890 (0.0005) 0.0583 (0.0006) 0.0395 (0.0004) 02 0.0691 (0.0026)
b3 −0.4872 (0.0022) 311 0.0038 (0.0001)
A11 −2.4057 (0.1020) −2.4308 (0.0027) 0.0725 (0.0011) 322 0.0054 (0.0003)
A21 0.2932 (0.0225) −2.5089 (0.0076) 4.0242 (0.0299) -31 12.1908 (19.3312)
A31 −2.2252 (0.0667) �11 −19.1303 (6.1642)
A22 −0.1829 (0.0011) 0.0701 (0.0014) 0.0352 (0.0018) �22 −8.0897 (2.1924)
A32 1.1056 (0.0074) �33 −9.6907 (1.5573)
A33 −0.2182 (0.0033)
-211 7.9410a (0.8346) 0.2334a (0.0205) 0.0036a (0.0004)
-222 0.1702a (0.0139) 2.5390a (0.0597) 3.9319a (0.0672)
-233 0.0000a (0.0042)
20;1 0.1256 (0.0010) 0.1545 (0.0025) 0.0325 (0.0000)
20;2 0.0129 (0.0000) −0.0033 (0.0005) 0.1811 (0.0005)
20;3 0.0203 (0.0012)
21;11 −10.3223 (0.0423) −8.9150 (0.1349) −1.6614 (0.0023)
21;21 −0.3520 (0.0003) −1.3350 (0.0152) −14.3815 (0.0350)
21;31 −5.7044 (0.0292)
21;22 −0.0188 (0.0001) −0.2066 (0.0023) −0.2062 (0.0027)
21;32 0.1761 (0.0015)
21;33 −0.0839 (0.0017)
/ 0.5826 (0.3686) 4.1039 (0.3268)
0 0.0327 (0.0026) 0.0246 (0.0010)
- 0.3969 (0.9196) 0.7875 (0.0483)
�1 −0.3151 (1.1347) 1.5458 (0.4113)
=2 100.610 161.026 129.411 306.863
df 29 36 36 42
z 9.403 14.734 11.009 28.899

a×10−4. The table presents results of estimation of four term structure models utilizing the score generator indexed
11114300. The models are indexed as Am(n)Q(h)I(k), where Q(h) denotes h quadratic factors, Am(n) denotes n a3ne
factors of which m are square-root processes, and I(k) denotes k inverted square root processes. The simulation size, N , is
set to 50,000.

# score t-ratios exceeding 2.0 in magnitude. The A2(3)Q(0)I(0) model has the greatest
di3culty capturing conditional volatility, exhibiting eighteen t-ratios that exceed 2.0 in
absolute value.
In summary, our speci;cation tests indicate that modeling term structure dynamics

using a combination of di:erent types of factors may allow us to better capture yield
dynamics. In particular, utilizing quadratic and inverted square-root factors improves
substantially upon the ability of quadratic factors alone to ;t the conditional dynamics
of the yield curve. Much of this improvement is through the hybrid model’s ability to
produce conditional volatility that is consistent with the data. However, these results
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hinge on ignoring deviations from conditional normality in the data. In the next section,
we examine the impact of incorporating this feature through augmenting our score
generator with a Hermite polynomial.

4.1.2. Results with the 11114300 score
Estimation results with the 11114300 score generator, which more fully characterizes

the data, are presented in Table 3. As expected, all four models estimated experience a
deterioration in goodness of ;t as a result of the incorporation of the Hermite polyno-
mial terms. As in the previous section, the quadratic model, A0(0)Q(3)I(0) continues
to ;t the data better than the a3ne model, A2(3)Q(0)I(0). However, the measure of
;t falls sharply; the z-statistic of the quadratic model is 9.4, compared to 5.3 using
the 11110000 score. Consequently, the addition of Hermite polynomial terms appear
to severely impact the model’s ability to capture conditional yield dynamics.
However, the A0(0)Q(2)I(1) model su:ers an even more dramatic deterioration in

;t. The model’s z-statistic rises from 3.1 to 11.0; the deviations from normality signif-
icantly impact the model’s ability to ;t the data. In contrast, the A1(1)Q(2)I(0) model
does not experience as drastic a reduction in ;t; the model’s z-statistic rises from 9.5 to
14.7. The rise in the z-statistic for the A1(1)Q(2)I(0) model roughly parallels that of the
of the A0(0)Q(3)I(0) model. This result suggests that the addition of the Hermite poly-
nomial terms do not impact the ;t of this hybrid model much relative to the quadratic
model. The sharp drop in ;t for the hybrid quadratic-enverted square-root model in con-
junction with the milder drop in ;t of the quadratic and quadratic-square-root models,
suggest that ?exibility in modeling correlation among the state variables is important
for capturing the shape characteristics of the conditional density. 16

We analyze the t-ratios for the scores of the 11114300 to help us assess the validity
of our conjectures. These results are presented in Table 4, and con;rm the conclusion
that the quadratic model is best able to capture deviations from conditional normality.
None of the scores with respect to the Hermite terms A(2) − A(13) are statistically
signi;cant when the quadratic model is estimated. In contrast, the A0(1)Q(2)I(0) and
A0(0)Q(2)I(1) models produce three and two signi;cant Hermite term scores respec-
tively. Thus, the indication is that the quadratic model is better able to capture the
shape features of the conditional density.
However, the improvement in ;tting the Hermite scores appears to come at a large

cost in terms of ;tting the conditional mean. The quadratic model violates four of the
conditional mean terms, whereas each of the hybrid models violate one of these terms.
Thus, the t-ratios suggest that the hybrid models maintain somewhat better ;t of the
conditional mean dynamics. However, in the presence of deviations from conditional
normality, the hybrid models sacri;ce a considerable degree of conditional volatility ;t.
Whereas only two of the t-ratios with respect to the # terms exceed 2.0 for the quadratic
model, the A0(1)Q(2)I(0) and A0(0)Q(2)I(1) produce nine and ;ve signi;cant t-ratios

16 We repeat the analyses of the 11114300 score with a simulation length T=100000 in untabulated results.
The qualitative conclusion of the speci;cation tests is unchanged. The model A0(0)Q(3)I(0) produces the
lowest z-statistic, followed by the A0(0)Q(2)I(1). The statistics for these models rise slightly, suggesting
that the overall ;t is slightly worse. However, the di:erences do not appear to be material.
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Table 4
EMM diagnostics of term structure models: 11114300 score

Coe3cient A0(0)Q(3)I(0) A1(1)Q(2)I(0) A0(0)Q(2)I(1) A2(3)Q(0)I(0)

A(2) 0.134 0.465 −0:215 −2:416
A(3) −0:689 1.497 −1:024 1.061
A(4) −0:478 0.261 0.806 −1:622
A(5) −1:764 3.464 −1:482 0.021
A(6) 0.728 5.463 2.354 7.105
A(7) 1.212 2.316 1.431 4.825
A(8) −0:353 −0:893 −0:628 −1:739
A(9) 0.628 1.643 0.073 1.759
A(10) −0:117 −0:793 −1:468 −0:253
A(11) 1.124 2.365 0.428 2.192
A(12) 1.848 4.538 2.384 5.476
A(13) 1.307 1.852 1.777 3.325
 (1) −0:531 1.647 2.443 −1:888
 (2) 0.780 −0:779 −1:886 1.342
 (3) 0.838 1.383 1.408 −0:612
 (4) 2.123 0.772 −0:031 1.109
 (5) −1:713 −0:511 0.079 −0:565
 (6) 0.599 0.138 0.185 −0:200
 (7) 2.399 0.453 0.269 1.060
 (8) −1:867 −0:269 −0:182 −0:767
 (9) 0.442 0.164 0.328 −0:194
 (10) 2.518 0.230 0.256 0.921
 (11) −2:000 −0:237 −0:442 −0:854
 (12) 0.307 0.191 0.471 −0:227
#(1) 2.247 2.055 −0:660 4.552
#(2) −0:297 −0:743 −1:483 −5:724
#(3) 1.250 4.517 2.706 9.906
#(4) 0.264 −3:490 −1:763 −2:550
#(5) −0:413 0.979 1.246 2.096
#(6) −0:232 1.118 −1:587 −1:343
#(7) 2.435 2.992 1.369 5.603
#(8) −0:481 −0:304 −1:526 −5:903
#(9) 0.775 4.427 3.725 11.060
#(10) 0.605 −2:781 −1:719 −2:061
#(11) −0:644 1.029 1.606 2.725
#(12) −0:160 1.085 −1:306 −2:110
#(13) 1.337 2.177 0.422 3.714
#(14) −0:388 −0:686 −1:632 −4:361
#(15) 0.528 4.623 2.993 8.395
#(16) −0:065 −2:833 −1:696 −1:792
#(17) −0:252 1.166 1.759 2.169
#(18) −0:240 0.983 −1:651 −1:448
#(19) 1.037 2.341 0.636 3.495
#(20) −0:322 −0:688 −1:691 −5:752
#(21) 0.033 4.397 2.060 9.214
#(22) 0.124 −2:638 −1:295 −1:763
#(23) −0:520 1.523 1.865 2.378
#(24) 0.140 0.143 −1:801 −1:845
#(25) 2.285 2.516 0.438 5.232
#(26) −0:370 −0:570 −1:597 −6:137
#(27) 0.916 4.557 3.143 10.265
#(28) 0.693 −2:436 −1:422 −2:141
#(29) −0:593 0.792 1.307 2.493
#(30) −0:128 1.230 −1:427 −2:161

The table presents diagnostics for EMM scores evaluated for the score generating model 11114300. The
coe3cients labeled A(k) denote the coe3cients of the Hermite polynomial of the SNP score generator, �(k)
denotes the VAR terms of the SNP score generator and #(k) denote the ARCH and GARCH terms of the
SNP score generator. The table presents t-statistics for the test of the null hypothesis that the score with
respect to the parameter A(k), �(k), or #(k) is equal to 0.



D.-H. Ahn et al. / Journal of Econometrics 116 (2003) 147–180 169

respectively. Thus, the quadratic model appears to have a substantial edge in ;tting the
higher conditional moments.
These diagnostics indicate that incorporating the Hermite polynomial terms can have

a signi;cant impact on which models are able to better describe the data. In particular,
the quadratic model and hybrid quadratic-inverted square root model reverse rankings in
terms of ;t of the more complicated score. Interestingly, the edge given to the quadratic
model seems to come at a large cost in terms of ;tting the conditional mean of the
density. The model apparently attempts to ;t conditional volatility and conditional
non-normality more aggressively than the conditional mean. However, the apparent
overall conclusion is that while the inverted square root factor may better capture
conditional volatility in the absence of deviations from normality, correlation among
the state variables is important in modeling shape departures from a conditionally
normal distribution.

4.2. Reprojection

Gallant and Tauchen (1998) present an additional diagnostic for gauging the perfor-
mance of alternative structural models, termed reprojection. A detailed discussion of
the method is provided in their paper. Conceptually, the method compares the condi-
tional density for discretely sampled data that is implied by the structural model to
a conditional density computed directly from the data. Closed-form solutions are not
in general available for the conditional density implied by a structural model. How-
ever, we can set the structural parameters 7 to their EMM estimates 7̂n, generate a
large simulation, and ;t an SNP model to the simulation. Gallant and Long (1997)
prove, under regularity conditions, that the SNP density thus computed converges to
the conditional density implied by the structural model.
Of immediate interest in eliciting the dynamics of observables are the ;rst two

one-step-ahead conditional moments

E(y0|y−L; : : : ; y−1) =
∫

y0fK (y0|x−1; 0̂) dy0

and

Var(y0|y−L; : : : ; y−1)

=
∫

[y0 − E(y0|x−1)][y0 − E(y0|x−1)]′fK (y0|x−1; 0̂) dy0

where x−1 = (y−L; : : : ; y−1), fK represents the SNP auxiliary model, and 0̂ represents
the SNP parameter estimates computed from the simulation. Thus the reprojection
method provides some further insight into the performance of the models in capturing
the conditional means, volatilities, and deviations from normality implied by the data.
Plots of the ;rst two conditional (cross) moments implied by three of the models

are presented in Figs. 2–10. 17 The ;gures depict the conditional moments implied by

17 We do not provide reprojection results for the A1(1)Q(2)I(0) model since it is dominated by the
A0(0)Q(2)I(1) model.
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Fig. 2. Reprojected conditional mean: A0(0)Q(3)I(0). The plots present the reprojected conditional mean for
the A0(0)Q(3)I(0) model against the projected conditional mean. The reprojected data are represented by
dashed lines, whereas the projected data are represented by solid line.

the models (dashed lines) and the conditional moments implied by the score genera-
tor (solid lines). Figs. 2 through 4 present results for the fully speci;ed three-factor
quadratic model. In general, these graphs suggest that the model provides a reasonably
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Fig. 3. Reprojected conditional volatility: A0(0)Q(3)I(0). The plots present the reprojected conditional volatil-
ity for the A0(0)Q(3)I(0) model against the projected conditional volatility. The reprojected data are repre-
sented by dashed lines, whereas the projected data are represented by solid line.

accurate description of the data. The model has some di3culty reproducing the high
conditional means of the short- and long-term bonds in the high interest rate period
of the early 1980s, but tracks conditional volatility quite well. Further, the model is
able to generate the general shape of conditional volatility as well. The conditional
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Fig. 4. Reprojected conditional correlation: A0(0)Q(3)I(0). The plots present the reprojected conditional
correlation for the A0(0)Q(3)I(0) model against the projected conditional correlation. The reprojected data
are represented by dashed lines, whereas the projected data are represented by solid line.

correlation implied by the model is smoother than the projected conditional correlations,
particularly for the correlation of the short-term bond with the long-term bond. In the
late 1960s, the model appears to oversmooth and overestimate correlations in particular.
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Fig. 5. Reprojected conditional mean: A0(0)Q(2)I(1). The plots present the reprojected conditional mean for
the A0(0)Q(2)I(1) model against the projected conditional mean. The reprojected data are represented by
dashed lines, whereas the projected data are represented by solid line.

Figs. 5 through 7 present plots of the reprojected conditional moments for the
A0(0)Q(2)I(1) model. The reprojections indicate that the model appears to slightly
underperform the quadratic model in terms of capturing the conditional mean of the
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Fig. 6. Reprojected conditional volatility: A0(0)Q(2)I(1). The plots present the reprojected conditional volatil-
ity for the A0(0)Q(2)I(1) model against the projected conditional volatility. The reprojected data are repre-
sented by dashed lines, whereas the projected data are represented by solid line.

data. In particular, the model seems to overestimate conditional means in the early part
of the sample period. The model has a similar problem with conditional volatility early
in the sample period and cannot quite generate the level of volatility observed in the
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Fig. 7. Reprojected conditional correlation: A0(0)Q(2)I(1). The plots present the reprojected conditional
correlation for the A0(0)Q(2)I(1) model against the projected conditional correlation. The reprojected data
are represented by dashed lines, whereas the projected data are represented by solid line.

high-yield period of the early 1980s. However, the model does a somewhat better job
than the pure quadratic model at capturing the conditional correlations in bond yields
in the late 1960s; the overall pattern for the 6-month, 10-year correlation in particular
seems better to represent conditional correlations in this period.
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Fig. 8. Reprojected conditional mean: A2(3)Q(0)I(0). The plots present the reprojected conditional mean for
the A2(3)Q(0)I(0) model against the projected conditional mean. The reprojected data are represented by
dashed lines, whereas the projected data are represented by solid line.

Finally, Figs. 8 through 10 suggest that the fully speci;ed a3ne model performs
weakly in capturing conditional volatility and conditional correlation. The reprojected
conditional mean plot suggests that the a3ne model is able to reproduce term structure
mean dynamics fairly well. However, the model has considerably more di3culty re-
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Fig. 9. Reprojected conditional volatility: A2(3)Q(0)I(0). The plots present the reprojected conditional volatil-
ity for the A2(3)Q(0)I(0) model against the projected conditional volatility. The reprojected data are repre-
sented by dashed lines, whereas the projected data are represented by solid line.

producing the conditional volatility of yields, and generates particularly smooth condi-
tional correlations. Thus, as discussed previously, the reprojection results suggest that
the weakness of the a3ne speci;cation is in its ability to capture conditional second
moments.
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Fig. 10. Reprojected conditional correlation: A2(3)Q(0)I(0). The plots present the reprojected conditional
correlation for the A2(3)Q(0)I(0) model against the projected conditional correlation. The reprojected data
are represented by dashed lines, whereas the projected data are represented by solid line.

In summary, the results of the reprojection analysis conform largely to the re-
sults of the speci;cation tests. The quadratic model performs quite well in capturing
conditional second moments in this setting. The probable source of this performance is
its maximal ?exibility in specifying correlations among the state variables. The hybrid
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quadratic-inverted square-root model has more di3culty in capturing the conditional
moments when deviations from conditional normality are present in the data.

5. Conclusion

This study con;rms, outside of the a3ne factor speci;cation, the claim made by Dai
and Singleton (2000) that a trade-o: exists between the factor level dependence of con-
ditional variance in interest rates and the admissible structure of the factor correlation
matrix. In our speci;cation tests, we ;nd that a hybrid quadratic-inverted-square-root
model outperforms the pure quadratic model when the data are described by a con-
ditionally normal GARCH(1,1) model. This result is achieved despite the fact that a
more restrictive correlation structure among the state variables is forced by the hybrid
model. The performance enhancement derives from stronger level dependence in the
volatility of interest rates induced by the inverted square-root factor.
When we allow for deviations from conditional normality, the results reverse, and the

quadratic model better describes the data than the quadratic-inverted-square-root model.
In this setting, the improvement from a more ?exible correlation speci;cation dominates
the improvements realized from inducing greater level dependence. In conjunction with
the results with a less complicated conditional density model, these results suggest that
care must be taken in specifying both level dependence and correlation structure. Both
features should apparently be given similar weight in specifying factor dynamics for
the purpose of modeling the term structure. We conjecture that a model that allows
for a fully-speci;ed correlation structure and increased level dependence would further
improve our ability to ;t the dynamics of the term structure. However, under current
modeling techniques, such a model would have to rely on a numerical solution to a
PDE for bond prices.
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