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Abstract
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find that the model cannot empirically generate a value premium. However, our results indicate
that this result is not due to the inability of the model to generate cross-sectional variation in
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risk premium needed to generate the observed value premium is larger than can be generated
by the investment-based model.
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1 Introduction

The investment-based model of asset pricing introduced in Cochrane (1991) has been instrumental

in shaping our understanding of the relation between firms’ investment decisions and the expected

returns on their equity. Perhaps the most prominent application of the framework has been in

showing that a production-based model generates variation in expected returns correlated with

observable characteristics such as the book-to-market ratio. In particular, Zhang (2005) shows that

in a neoclassical framework with a reduced-form stochastic discount factor with time-varying risk

premium, firms’ optimal investment choices in the face of costs to adjustment of capital result in

book-to-market effects. More specifically, since value firms are less flexible than growth firms in

their ability to reduce capital stock in bad economic times, value firms are riskier than growth

firms and earn a higher unconditional equity premium. Thus, the explanatory power of book-to-

market for cross-sectional variation in expected returns, brought to prominence in Fama and French

(1992), can be justified through firms’ rational behavior in the face of asymmetric adjustment costs

to capital.1

While the neoclassical model generates a value premium, there is little evidence on whether the

value premium that we observe is consistent with the mechanism implied by the model. The reason

that the value premium emerges is because value firms are riskier than growth firms. In the context

of the neoclassical model, this means that the return on investment of value firms covaries more

negatively with an equilibrium stochastic discount factor than the return on investment of growth

firms. While this prediction is at the core of the investment-based pricing model, the empirical

literature investigating the relation between an investment-based model and the value premium has

focused on indirect implications of the model. For example, Xing (2008), following the observation

in Zhang (2005) that there is a one-to-one correspondence between investment growth and book-

to-market ratio, shows that an investment growth factor explains the value effect and the pricing

of the Fama and French (1993) high-minus-low factor. Similarly, Chen, Novy-Marx, and Zhang

(2010) form investment-based factors and show that these factors perform better at explaining a

wider array of anomalies than the factors in Fama and French (1993). However, neither of these

papers provide evidence that their factors generate differences in the risk of investment returns as

implied by the neoclassical model.

Our goal in this paper is to investigate the connection between the risk embodied in firms’

investment decisions, their expected equity returns, and the value premium. Specifically, we address

the following issues. We first ask whether a stochastic discount factor that is in the linear span

1Alternative explanations for the value premium have been advanced in an investment-based framework. In partic-
ular, Berk, Green, and Naik (1999), Cooper (2006), and Carlson, Fisher, and Giammarino (2004) develop investment-
based models that generate book-to-market effects. Zhang (2005) emphasizes that these models exogenously specify
quantities that are endogenous in his neoclassical framework, particularly firm-level project and systematic risk.
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of investment returns can jointly satisfy optimality of investment and explain expected returns

across portfolios sorted on firms’ book-to-market ratios. Given this stochastic discount factor, we

analyze whether value firms appear to be in fact riskier than growth firms. We then consider as an

alternative a stochastic discount factor that is in the linear span of equity returns. Again, we ask

whether this stochastic discount factor implies optimality of investment and whether differences in

risk of investment returns relative to this discount factor explain differences in expected returns

across value and growth firms.

The tests that we perform in our paper, together with the conclusions that we draw from their

results, depend critically on the specification of a stochastic discount factor. While specifying a

stochastic discount factor is an inescapable necessity of investigating the performance of an asset

pricing model, it also poses a joint hypothesis problem.2 If we reject the implications of the model,

specifically the implication that investment is optimal relative to the stochastic discount factor, it

is unclear whether investment is sub-optimal or that we are using a stochastic discount factor that

is mis-specified from the perspective of the firm. That is, if we find that the risk of the return

on investment of value firms is not greater than that of growth firms, it is unclear whether this

conclusion is being drawn because we have incorrectly measured risk.

To ameliorate the concern of stochastic discount factor mis-specification, we consider minimal

restrictions on the stochastic discount factor. In particular, following Hansen and Jagannathan

(1991), we simply assume that the stochastic discount factor is in the linear span of payoffs. Under

the condition of no arbitrage, this stochastic discount factor will exist and will satisfy the Euler

equations implied by optimal investment. We consider two alternatives; first, that the stochastic

discount factor is in the linear span of investment returns and second, that the stochastic discount

factor is in the linear span of equity returns. While this stochastic discount factor has limited

economic content, as it does not identify the primitive source of risk or how preferences determine

investors’ risk-return tradeoff, it has the advantage of being minimally restrictive. It is difficult to

argue that the investment-based model is well-specified if a stochastic discount factor in the linear

span of investment returns cannot explain the returns to assets’ equity.

Our results provide mixed support for, but generally evidence against the ability of the investment-

based model to explain differences in expected returns across book-to-market-sorted portfolios.

When the stochastic discount factor is modeled as lying in the linear span of investment returns,

we find that overidentifying restrictions implied by Euler equations for equity and investment re-

turns, are strongly rejected with large pricing errors. The model fails to capture more than a small

portion of the value premium. Further investigation reveals that it is not because the model fails

2Liu, Whited, and Zhang (2009) claim to test the implications of the model in the absence of a stochastic discount
factor. However, as we discuss below, their test amounts to a test of linear homogeneity, rather than a test of the
pricing implications of the investment-based model. More specifically, the restrictions they test can hold even when
the investment-based model is mis-specified.
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to deliver differences in risk across assets. Value firms do indeed appear to be riskier than growth

firms, exhibiting larger (negative) covariances with the stochastic discount factor. The failure of

the model lies in the inability to generate a sufficiently large premium for this risk when confronted

by both the investment and equity return data.

Several earlier papers empirically investigate the implications of investment Euler equations for

cross-sectional variation in returns. Our approach is closely related to Cochrane (1996) and Gomes,

Yaron, and Zhang (2006), who investigate investment Euler equations’ implications for expected

equity returns. Cochrane (1996), uses investment returns as factors, and investigates the ability of a

stochastic discount factor that is a linear function of investment returns to price a set of size-sorted

portfolios. He finds that the model performs about as well as the CAPM or the Chen, Roll, and Ross

(1986) factor model in explaining cross-sectional variation in returns on these portfolios. Gomes,

Yaron, and Zhang (2006) pursue a similar exercise in investigating the role financial frictions play

in explaining cross-sectional variation in returns. Our approach differs significantly from theirs

in that we construct our investment returns from firm characteristics, following Liu, Whited, and

Zhang (2009), rather than aggregate macroeconomic data. Our focus is also explicitly on the role

that optimal investment plays in understanding the value premium across firms.

Also closely related is Liu, Whited, and Zhang (2009), who investigate the minimal restrictions

implied in the Euler equation for firms’ investment decisions. The authors assume that investment

decisions are optimal, and estimate production parameters by matching means and variances of

implied investment returns to means and variances of equity returns. We take a similar approach,

but employ the pricing restrictions implicit in the return covariance with a stochastic discount

factor. As we note, only by incorporating a stochastic discount factor can one infer whether

the production-based model can explain expected returns across assets. If the Euler equation

for investment does not hold, implying Euler equation errors in investment, matching means of

investment and equity returns merely implies that equity returns also inherit the same average

Euler equation errors. Since a voluminous literature (see, e.g. Whited (1998)) documents violations

of investment Euler equations at the firm level, this concern is particularly relevant for evaluating

the empirical performance of production-based asset pricing models.

The remainder of the paper is organized as follows. In Section 2, we briefly review the

production-based asset pricing framework that underlies our empirical analysis. In Section 3,

we discuss our empirical implementation. Section 4 examines the performance of the production-

based model in explaining returns to value-sorted portfolios and analyzes the sources of the model’s

success and failure. Concluding comments are presented in Section 5.
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2 Production-Based Pricing and the Cross-Section of Returns

We begin by discussing the theoretical framework linking investment returns to expected equity

returns. The model that we present is a fairly standard neoclassical model of optimal firm invest-

ment, following in the steps of Cochrane (1991). However, as noted by Zhang (2005), in order to

generate a value premium, introducing frictions such as costly reversibility of investment is nec-

essary. Thus, the model incorporates this feature and follows Liu, Whited, and Zhang (2009) in

terms of characterizing equilibrium asset prices.

2.1 Firm Value Maximization

Because the investment-based model is now standard in the literature, we skip over a number of the

formal assumptions and proceed directly to firms’ choice problem; for details on the assumptions

please see, for example, Liu, Whited, and Zhang (2009). Firms choose investment and debt to

maximize the present value of the expected future cash flows paid to investors. These cash flows

are operating profits, which are assumed to be optimized relative to costlessly adjustable inputs,

net of capital expenditures, debt payments, and taxes. More specifically, firms solve the problem

max
Ii,t+s,Ki,t+s+1Bi,t+s+1,∀s

Vit ≡ Et

[

∞
∑

s=0

Mt+sDi,t+s

]

(1)

where

Di,t = (1− τt) [Π (Kit, Zit)− Φ (Iit,Kit)]− Iit +Bit+1 −RB
itBit + τtδitKit + τt

(

RB
it − 1

)

Bit (2)

is the dividend payout of the firm at time t. In this expression, Kit is the capital stock of the firm

at time t, Zit is a technology shock, Iit is investment in new capital, Bit is the stock of one-period

debt, rBit is the rate of interest paid on the debt, τt is the corporate tax rate, and δit is the rate of

depreciation of the capital stock. The functions Π (Kit, Zit) and Φ (Iit,Kit) represent the optimized

operating profit function and adjustment cost of capital function, respectively.

The interpretation of equation (2) is straightforward. Increasing dividends are net-of-tax op-

erating profits, (1− τt) Π (Kit, Zit), new debt issues, Bit+1, and the depreciation and interest tax

shields, τtδitKit + τt
(

RB
it − 1

)

Bit. Reducing dividends are investment, It, net-of-tax costs of ad-

justing investment, (1− τt)Φ (Iit,Kit), and interest payments on existing debt, RB
itBit. As in

Liu, Whited, and Zhang (2009), we assume that the production function, Π (Kit, Zit), is a Cobb-

Douglas function with constant returns to scale. The constant returns to scale assumption means
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that Π (Kit, Zit) = Kit∂Π(Kit, Zit) /∂Kit. The adjustment cost function is given by

Φ (Iit,Kit) =
a

2

(

Iit
Kit

)2

Kit (3)

with a > 0.

In choosing investment, firms face a tradeoff. Investing results in increased capital being de-

ployed, and since operating profits are constant returns to scale, this means that investing results

in higher future dividend payments, increasing firm value, ceteris paribus. However, investment is

costly, both through the actual cost of the capital itself, Iit, but also through costs of adjustment.

Typical costs of adjustment include notions of downtime, retooling, and training on new equipment.

Firms invest until the marginal benefit from a dollar of new investment offsets its marginal cost.

That is, firms invest until the present value of investing an additional dollar in capital, marginal q,

equals the marginal cost. At this level of investment, firms are in equilbrium.

2.2 Equilibrium and Expected Equity Returns

As discussed above, at an interior optimum, firms invest to the point where the marginal benefit

of investing an additional dollar is offset by the cost. This means choosing an investment plan to

maximize the present value of the stream of future dividends. Discounting is achieved as shown

in equation (1) using a stochastic discount factor, Mt, that is determined outside of the model.

The assumption is that Mt represents investors intertemporal marginal rate of substitution. For

example, if investors have time-separable utility as in Lucas (1978), the stochastic discount factor

is given by

Mt+s = βsU
′ (Ct+s)

U ′ (Ct)

where β is a rate of time preference. The specific form is not typically assumed; rather, it is simply

assumed that some market clearing equilibrium in the market for financial assets determines Mt+s.

Given the stochastic discount factor, the first order condition for firms’ optimization with respect

to investment can be expressed as

Et

[

Mt+1R
I
i,t+1

]

= 1 (4)

where RI
i,t+1 is the return on investment, given by

RI
it+1 =

(1−τt+1)

[

α
Yi,t+1

Kit+1
+ a

2

(

Iit+1

Kit+1

)2
]

+τt+1δit+1+(1−δit+1)
[

1+(1−τt+1)a
(

Iit+1

Kit+1

)]

1+(1−τt)
(

a
Iit
Kit

) . (5)

As shown in (5), the return on investment, and thus the Euler equation, is determined by a set of
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observable (to the level of proxies) firm characteristics. Specifically, a firm’s return on investment

and Euler equation can be expressed as a function of the ratio of output to capital and investment

to capital. As shown in Zhang (2005), this Euler equation implies that expected returns will be

related to ratios of the book value of a firm’s equity to its market value in the cross-section.

The implications of this expression for risk premia in the cross section are a bit more transparent

from rewriting the Euler equation in terms of expected risk premium. Equation (5) implies that

the risk premium associated with the return on investment for firm i is given by

Et

[

RI
it+1

]

−Rf,t = −
Covt

(

Mt+1, R
I
it+1

)

Et [Mt+1]

= −Covt



Mt+1,
(1−τt+1)

[

α
Yi,t+1

Kit+1
+ a

2

(

Iit+1

Kit+1

)2
]

+τt+1δit+1+(1−δit+1)
[

1+(1−τt+1)a
(

Iit+1

Kit+1

)]

1+(1−τt)
(

a
Iit
Kit

)





× (1 +Rf,t)

The expression clarifies the types of firms that we expect will have higher risk premium. Holding

the denominator fixed, if a firm’s profitability per unit of capital (Yi,t+1/Ki,t+1) covaries strongly

with the stochastic discount factor, it will tend to have a lower risk premium. Since the stochastic

discount factor is expected to be large in bad states, the equation implies that a firm with strong

cash flows in these states will require a lower risk premium. Similarly, if the marginal reduction

in adjustment costs, a
2 (Iit+1/Kit+1) covaries strongly with bad states of the world, adjusting the

capital stock will be cheaper in these states, resulting in a lower risk premium.

The connection to equity returns can be drawn through the properties of the production and

adjustment cost functions. As noted in Cochrane (1991), without leverage, equity returns are

directly proportional to investment returns. With leverage and linear homogeneity of the production

and adjustment cost functions, Liu, Whited, and Zhang (2009) show that equity returns are related

to investment returns by

RS
it+1 =

RI
i,t+1 − witR

Ba
it+1

1− wit
, (6)

where RBa
i,t+1 = RB

i,t+1 (1− τt) + τt and wit represents market leverage. Thus, equity returns are

positively related to investment returns, and the intuition for sources of increased investment return

premia translate to increased equity return premia. In particular, if value firms have poorer marginal

profitability per unit of capital and greater adjustment costs in bad economic times, they will earn

a premium to growth firms, as noted in Zhang (2005).

Equation (6) holds if firms invest optimally; this is the restriction tested in Liu, Whited, and

Zhang (2009). However, in the appendix, we show that this relation, which we refer to as the

weighted average cost of capital (WACC), can hold when firms invest suboptimally (relative to this
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base case) as well. This consideration is especially relevant in the face of the large corporate finance

literature that suggests that firms invest suboptimally. Thus, testing whether WACC holds does not

constitute a test of optimality of investment, and thus of the implications of the investment-based

model. Optimality requires that the Euler equation, equation (4), holds, and thus that investors

require higher premia for firms with greater risk, embodied in the covariance of the assets’ payoffs

with the stochastic discount factor.

3 Empirical Implementation

3.1 Testable Restrictions

We exploit three restrictions implied by the model in our estimation. While these restrictions do

not exhaust the implications of the model, they are the most relevant for understanding the pricing

of equity securities.

Restriction 1: Optimal Investment

At the core of the investment pricing model is the assumption that firms invest optimally – the

tradeoffs that firms face in determining optimal investment result in firm characteristics relation to

average equity returns. This restriction has been tested extensively at the firm level (see Whited

(1998) and references therein), where it has widely been rejected. It is possible, however, that

the condition may hold at the portfolio level, as noise in the estimation of firm-specific Euler

equations is canceled out across portfolios. Estimation of this restriction requires the specification

of a stochastic discount factor, M̂t+1, and the empirical analogue to the Euler equation,

1

T

T
∑

t=1

ut =
1

T

T
∑

t=1

M̂tR
I
t − 1N = 0, (7)

where T is the number of time series observations, RI
t is a vector of investment returns defined in

(5), and 1N is a conforming vector of ones. The parameters of the stochastic discount factor, as

well as the production parameters a and α can be estimated via GMM. Under the null of optimal

investment, the Hansen (1982) J-test will suggest rejection of the model.

Restriction 2: Optimal Investment and Pricing of Equity Returns

Under the q theory of investment, firms optimize their investment decisions by maximizing

the present discounted value of the firms dividends, discounting relative to the stochastic discount

factor, Mt. This same discount factor also prices the firm’s equity. Thus, again, given a candidate
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stochastic discount factor, M̂t+1, the q theory implies

1

T

T
∑

t=1

vt =
1

T

T
∑

t=1

M̂tR
S
t − 1N = 0. (8)

To investigate whether the q theory explains the equity returns, it necessary that (7) hold empir-

ically. Thus, the restrictions implied by (8) should be explored either subsequent to, or in con-

junction with the estimation of the stochastic discount factor parameters that explain investment

returns. Alternatively, one could estimate parameters of the stochastic discount factor under the

restrictions in (8), and use the resulting stochastic discount to examine whether firms are investing

optimally.

Restriction 3: Equity Returns are Related to Investment Returns by WACC

Equity and investment returns are linked by a form of the weighted average cost of capital.

Strictly speaking, this restriction is supposed to hold in each state of the world. However, as noted

in Liu, Whited, and Zhang (2009), imposing the restriction in this manner is likely to provide too

stringent a test of the model in the face of observed data. Consequently, the restriction is tested

in expectation instead,

1

T

T
∑

t=1

et =
1

T

T
∑

t=1

(

R
S
t −

R
I
t −wt−1 ·R

B
t

1−wt−1

)

= 0, (9)

where R
B
t is a vector of debt returns and wt−1 is beginning-of-period leverage. As we discuss

above and in the appendix, rejection of this restriction suggests that linear homogeneity of the

production and adjustment cost functions are violated. If rejected, the rejection does not indicate

an invalidation of the investment-based model, but rather the particular functional form assumed.

Similarly, failure to reject does not indicate optimality of investment, and thus the validity of the

model.

As is evident from above, the restrictions can easily be expressed as moment conditions in a

generalized method of moments (GMM) estimation; consequently, we estimate parameters and test

model specification using GMM. A remaining issue is the specification of the stochastic discount

factor. Although a number of candidate stochastic discount factors have been proposed in the

literature, a consensus as to its specification remains lacking. We discuss the specification of the

stochastic discount factor in the next section.
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3.2 Empirical Specification of the Stochastic Discount Factor

The previous section discusses restrictions on the joint pricing of investment and stock returns

under particular specifications of the stochastic discount factor. In this section, we discuss two

empirical approaches that we pursue to define the stochastic discount factor.

Stochastic Discount Factor in the Linear Span of Investment Returns

At the core of the investment-based pricing model is the assumption that investment is optimal.

A natural point of departure for empirical investigation, therefore, is to investigate a stochastic

discount factor designed to satisfy optimal investment. Hansen and Jagannathan (1991) propose a

diagnostic for dynamic asset pricing models and accompanying technique for recovering a stochastic

discount factor that satisfies an Euler equation exactly by projecting the stochastic discount factor

onto the space of returns;

E
[

R
I
t+1R

I′
t+1δ

]

= 1. (10)

The equation states that the minimum variance stochastic discount factor that lies in the linear

span of investment returns can be constructed by the sample analogue of δ = E
[

R
I
t+1R

I′
t+1

]−1
1.

In principle, given a set of investment returns, one can construct a stochastic discount factor that

exactly satisfies optimal investment.

While equation (11) holds in principle, given the law of one price, In practice, however, opti-

mality cannot be imposed on the stochastic discount factor in the linear span, because investment

returns depend on the unknown parameters a and α. In order to identify these parameters, we

must provide restrictions to identify them or hold the parameters fixed. The Euler equations for

equity returns, the empirical analogue of which is in equation (8), provide identification of these

parameters, and the empirical weighted average cost of capital equation, expression (9), provides

additional identification as shown in Liu, Whited, and Zhang (2009).

An issue that arises in this context is that the investment return parameters a and α affect

only the mean and the standard deviation of the investment returns, and not the covariances with

any of the other variables. Cochrane (1996) notes this difficulty and the resulting bad behavior of

the minimization problem. In particular, he notes the presence of a “valley” in the minimization

surface that causes the gradient matrix to be singular. He carefully chooses the parameters as fixed

in order to circumvent this problem. In our context, we achieve identification via the weighted

average cost of capital equations, which are used to pin down the mean of the investment returns.

Stochastic Discount Factor in the Linear Span of Equity Returns

An alternative approach is to allow the stochastic discount factor to be projected onto the space

of equity returns. That is, we alternatively assume that the stochastic discount factor is a linear
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combination of the equity payoffs:

E
[

R
S
t+1R

S′
t+1δ

]

= 1, (11)

where δ = E
[

R
S
t+1R

S′
t+1

]−1
1. In this case, the stochastic discount factor can, in principle, be

directly estimated without imposing overidentifying restrictions to estimate production parameters.

Alternatively, as in Chen and Knez (1996), the parameters can be estimated jointly with production

parameters by including overidentifying restrictions implied by equation (7), equation (9), or both.

We pursue the latter approach and estimate the production parameters and SDF parameters jointly.

Our interpretation of tests of the model under this stochastic discount factor is slightly different

than the discount factor implied by investment returns. In this case, we do not impose optimal

investment, but do impose no arbitrage in the equity market. Given the equivalence of no arbitrage

and equilibrium as shown in Harrison and Kreps (1979), one can interpret the tests as asking

whether, observing equilibrium in the equity market, firms optimize investment relative to the

stochastic discount factor implied by the equity market. In this sense, tests of overidentifying

restrictions implied by this stochastic discount factor represent tests of the hypothesis of optimal

investment in the face of equity market equilibrium rather than whether optimal investment implies

equity market equilibrium.

The stochastic discount factors as specified in the linear span of investment or equity returns

are akin to asking whether one set of assets spans the other set of assets. DeSantis (1995) and

Bekaert and Urias (1996) investigate whether one set of assets can span another by exploiting

similar conditions to those that we investigate in testing the investment-based model. Thus, the

empirical results that we report can be viewed as providing insight in the ability of investment

returns to span equity returns and vice versa. Cochrane (2001) discusses the links between the

Hansen and Jagannathan (1991) bounds and these tests at great length.

Parametric Stochastic Discount Factor

While stochastic discount factors in the linear span of equity or investment returns are very

flexible and general, Cochrane (2001) notes that they have limited economic interpretation. An

alternative is to use a stochastic discount factor motivated by a model of investor preferences, such

as the consumption CAPM. However, it is already well-documented (see, e.g. Liu, Whited, and

Zhang (2009)) that the consumption CAPM, and even a more ad hoc factor model such as the

Fama and French (1993) three-factor model are rejected by the overidentifying restrictions implied

by the Euler equation for stock returns. The use of the stochastic discount factors presented in

this section give maximum benefit to the investment-based model in explaining returns. They

ask simply whether, given either optimal investment or the law of one price in the equity market,

expected returns can be explained by the risk in investment returns. Nonetheless, to investigate

the robustness of our results, we also examine a stochastic discount factor implied by the Fama
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and French (1993) three-factor model:

Mt+1 = δ0 + δMRPRMRP,t+1 + δSMBRSMB,t+1 + δHMLRHML,t+1 (12)

where RMRP,t+1 is the return on the market portfolio in excess of the risk free rate, RSMB,t+1

is the return on a small market capitalization portfolio in excess of a large market capitalization

portfolio, and RHML,t+1 is the return on a high book-to-market portfolio in excess of the return on

a low book-to-market portfolio.

Because the factors in this case are linear combinations of the returns on a set of portfolios,

we expect that the results will be similar to those obtained by investigating a stochastic discount

factor in the linear span of equity returns. The two will not be exactly comparable, since the

factors are linear combinations of portfolios defined over a coarser space (book-to-market tercile

portfolios) and alternative characteristics (size portfolios separated on the median). However,

like the equity stochastic discount factor, the Fama and French (1993) stochastic discount factor

is a linear combination of the underlying equity returns and may, as a result, generate similar

conclusions.

4 Empirical Results

4.1 Data

We closely follow Liu, Whited, and Zhang (2009) in the data that we use in empirical estimation.

Since the focus of much of the investment-based pricing literature is on explaining book-to-market

effects, we utilize 10 portfolios sorted on the basis of their book-to-market-ratios at the end of June

of each calendar year. Book-to-market ratios are calculated following Davis, Fama, and French

(2000). A firm’s book value is calculated using the most recent fiscal year end data, where the

most recent fiscal year ends in the prior calendar year. Book value is defined as stockholder’s

equity plus deferred taxes and investment tax credits, less preferred stock. Book value is defined

as shareholder’s equity (COMPUSTAT Item SEQ), common equity (COMPUSTAT item CEQ), or

the difference in total assets (AT) and total liabilities (LT), in order of preference. Preferred stock

is the redemption value of preferred stock (PRSTKRV) or liquidation value (PSTKL), in order of

preference. The book-to-market ratio is then computed as the ratio of this book value to market

value from CRSP at the end of the preceding December. Firms are ranked into deciles on the basis

of NYSE breakpoints.

The investment return is a function of a number of firm-specific variables, most specifically

output, investment, capital, depreciation, taxes, and the return on bonds. As in Liu, Whited, and

11



Zhang (2009), we measure output, Yit as net sales (SALEQ), capital stock, Kit, as gross property,

plant, and equipment (PPEGQ), debt, Bit as total long term debt (DLTTQ), and depreciation, δit,

as total depreciation and amortization (DPQ) divided by the capital stock. Capital expenditures

are measured as quarterly capital expenditures; for second through fourth fiscal quarters, the capital

expenditures are measured as the first difference in the year-to-date capital expenditures (CAPXY),

net of the first difference in year-to-date sales of assets (SPPEY).3 Investment sales are assumed to

be zero if the data are missing. Finally, the return on bonds, rBit , is measured as interest expense

(XINTQ) divided by average debt over the period. Debt is measured as total long term debt

(DLTTQ) plus short term debt (DLCQ). Tax rates are measured using statutory tax rates.4 We

eliminate firms with quarter ends that do not correspond to calendar quarters, and firms for whom

data on capital or sales are unavailable.

In our tests, we face a significant tradeoff between the time span of the data and the frequency

of the data. Liu, Whited, and Zhang (2009) use annual data, permitting a time span of 59 annual

observations if all available data are used. In contrast, due to availability of the capital expenditures

data, our data span is limited to the period starting at the end of 1983, or 105 quarterly observations.

Our fear is that an estimation with 59 time series observations will be lacking in power, and that

the covariance matrix needed to estimate the stochastic discount factor will be poorly estimated.

In our opinion, the increased precision of estimates, particularly of second moments, from a finer

data sampling and greater number of observations outweighs the consideration of a longer economic

timespan.

Our timing convention for matching returns and accounting data differ from that in Liu, Whited,

and Zhang (2009). They match annual returns from July of year t through June of year t + 1 to

stock variables measured at December of year t − 1 and December of year t and flow variables at

December of year t. We speculate that this convention was chosen in part due to the timing mis-

match between the Fama and French (1992) procedure for calculating book-to-market ratios and

annual returns, and in part due to allowing time for accounting information to be disclosed. In our

opinion, the timing of the accounting returns should match the timing of stock returns. Return on

investment is based on economic information that is available to managers at a given time period,

and returns to equities are determined by investors’ expectations of this information. Further,

we use finer (quarterly) data in our tests, as we speculate that, given the variability in returns,

that a test using annual returns will have low power. The timing of book-to-market classification

is irrelevant to quarterly returns, and the timing of the availability of quarterly information to

investors is unclear.

3We experimented with alternative definitions of investment including the change in gross property, plant, and
equipment and the change in total assets, net of change in current assets. We found that the resulting investment
quantities appeared to be very large, averaging in some cases over 50% of total capital.

4We thank Laura Liu for making these data available on her web page.
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We report summary statistics for the returns and accounting variables for the accounting in-

formation in Table 1. The value effect is strong in these data, with high book-to-market firms

earning returns that are 4.362% per quarter higher on average than low book-to-market firms. The

magnitude of the effect is similar to that in Liu, Whited, and Zhang (2009); despite the different

time period, our results are consistent with their annual average premium of 17.1%. In our sample,

total return volatility is somewhat higher for the high book-to-market firms, but in general there

is little relation across the deciles between book-to-market ratio and return volatility.

Our data on accounting variables are also consistent with those reported in Liu, Whited, and

Zhang (2009). Ratios are computed by summing the numerator and denominator independently

across firms, and then performing division. The average investment to capital ratio (I/K) is

generally decreasing in the book-to-market ratio, with growth firms investing more than value

firms. When annualized, these flow numbers are similar to those reported in earlier work. The

same is true for output to capital (Y/K), which is also decreasing in the book-to-market decile,

with a small uptick for high book-to-market firms. High book-to-market firms also exhibit higher

market leverage (w̄) than low book-to-market firms. In general, the summary statistics point to

effects documented earlier in the literature; value firms earn higher returns, invest less, experience

lower output per unit of capital, and are more highly levered.

4.2 Implications of Optimal Investment for Expected Equity Returns

In Table 2, we present parameter estimates and specification tests for the case in which the stochastic

discount factor is assumed to be in the linear span of investment returns. Point estimates and the

specification test are presented in Panel A and the Euler equation errors are presented in Panel B. As

shown in the table, the point estimate of the share of capital in the production function (α = 0.103)

is considerably smaller than that in previous literature of approximately 0.3 (e.g. Rotemberg and

Woodford (1992)), but is precisely estimated (SE = 0.011). In contrast, the point estimate of the

adjustment cost parameter (a = 0.046) is considerably smaller in magnitude than that estimated in

Liu, Whited, and Zhang (2009) and estimated with substantial imprecision (SE = 0.146). These

differences likely manifest themselves because returns on investment are nonlinear functions of the

ratios of flow variables (e.g. investment) to stock variables (e.g. capital).

The specification test for the model suggests that the restrictions implied by the Euler equations

for investment and equity returns are strongly rejected. The overidentifying restrictions test (χ2
9 =

46.572) rejects the null at less than the 1% significance level (p-value=0.000). Further insight into

the rejection is presented in Panel B of Table 2. While the model captures the pricing of growth

firms quite well, with a pricing error of -5 basis points per quarter, the point estimates of pricing

errors for value firm returns are large and statistically significant. Pricing errors increase nearly
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monotonically over the book-to-market deciles, peaking at 4.21% per quarter for the value portfolio.

These pricing errors are statistically significant at conventional (5% critical value) significance for

the seventh through tenth decile of book-to-market. The value premium in excess of that implied

by the model is 17.04% per annum, only marginally smaller than the 17.45% per annum premium

in the raw data of Table 1.

By construction, the stochastic discount factor prices investment returns reasonably well. As

shown in the table, the Euler equation errors range from -1.033% for the seventh decile portfolio to

0.384% for the first decile portfolio. None of these Euler equation errors can be statistically distin-

guished from zero at the 5% level. Thus, the investment Euler equations appear to be statistically

satisfied for the book-to-market sorted portfolios, but this optimality does not seem to imply that

equity returns can be explained by the risk inherent in investment returns.

In Table 3, we repeat the estimation, but impose 10 additional moment conditions, as in Liu,

Whited, and Zhang (2009). That is, we require that the weighted average cost of capital hold

for the assets, in addition to the Euler equations for investment and stock returns. Our hope

is that imposing these conditions will help us better identify the parameters of the investment-

based model. As shown in the table, we improve the precision of the estimation of the adjustment

cost parameter (a = 3.033, SE = 0.444), and obtain a point estimate that is similar to that in

Liu, Whited, and Zhang (2009), accounting for their use of annual rather than quarterly data.

The investment share is approximately the same as in our earlier estimation (α = 0.132)), and is

statistically distinguishable from zero at the 10% significance level (SE = 0.069).

Despite the improved precision, the qualitative conclusions of our tests are largely unchanged.

The model remains rejected at high levels of statistical significance (χ2
19 = 65.325, p-value=0.000).

The pricing errors, however, are improved; as shown in Panel B, the low book-to-market portfolio

has an equity Euler equation error of -0.819% while the high book-to-market portfolio has an

equity Euler equation error of 3.330%. Only the Euler equation error for the high book-to-market

portfolio is statistically distinguishable from zero at the 5% level. While this result represents an

improvement over our earlier estimates, it continues to imply a large unexplained value premium

in excess of 16% per annum.

The results presented in this section are discouraging for the investment-based pricing model.

While the model seems to be a theoretical success, generating a value premium consistent with

that observed in the data, its empirical performance is decidedly weaker. The results of this section

indicate that a stochastic discount factor in the linear span of investment returns cannot explain

cross-sectional differences in the expected returns on book-to-market-sorted portfolios. In the next

section, we analyze the implied investment returns more closely in an attempt to better understand

the sources of the investment-based model’s failure.
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4.3 Investment Returns and Risk of Value and Growth Portfolios

In Table 4, we present means and standard deviations of the returns on investment for the 10 book-

to-market-sorted portfolios. Investment returns are calculated using the parameters estimated in

Table 3, using the WACC restrictions in addition to Euler equation restrictions for stock and

investment returns. In addition, we present risk exposures from regressing equity returns on the

stochastic discount factor implied by the estimation:

Ri,t = α+ βiMt + ǫi,t (13)

with accompanying standard errors in parentheses.

As shown in the table, investment returns are generally decreasing across book-to-market deciles.

The lowest (growth) book-to-market portfolio has a mean investment return of 3.51%, implying a

premium of 2.20% over the mean return on the highest (value) book-to-market portfolio of 1.31%.

This premium is about half the size of the 4.36% premium in equity returns. The returns are also

substantially less volatile than the equity returns. For example, while the standard deviation of the

top book-to-market portfolio equity return is 16.73%, that of the investment return is only 4.95%.

This result is consistent with Cochrane (1991), who finds that investment returns are only about

60% as volatile as equity returns.

When we calculate betas of equity returns with respect to the stochastic discount factor implied

by investment returns, we observe a strong relation between book-to-market equity decile, average

equity return, and risk exposure to the stochastic discount factor. As shown in the table, the high

book-to-market portfolio has the largest in magnitude negative exposure to the stochastic discount

factor βi = −1.56 and the lowest has the smallest in magnitude negative exposure (βi = −0.55).

Since risk premia are negatively associated with covariance with the stochastic discount factor, the

estimates suggest that we should expect a higher premium on value firms than growth firms. Stated

differently, the parameter estimates indicate that value (growth) firms’ equity returns are relatively

high (low) when the realization of the stochastic discount factor is low, and relatively low (high)

when the realization of the stochastic discount factor is high. That is, value firms have relatively

poorer payoffs in bad economic times than good economic times compared to growth firms.

These results stand in stark contrast to the GMM tests conducted in the previous section; they

suggest that investment returns do a good job of explaining differences in risk exposures across

book-to-market-sorted portfolios. In unreported tests, we find that a cross-sectional regression of

average returns on the risk exposures do generate a statistically significant risk premium with an

adjusted R2 in excess of 60%. We do not tabulate these results due to the small cross-section, but

do note that they suggest that average returns on the book-to-market sorted portfolios appear to
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be related to exposures to the risks inherent in investment returns.

Why then do the GMM results indicate strong failure for the model with large pricing errors?

To gain further insight into this question, we depict the Hansen and Jagannathan (1991) bounds

on admissible stochastic discount factors in Figure 1. We plot two sets of bounds; one set for the

investment returns and one set for the equity returns augmented by the 3-month T-Bill return.

Additionally, we plot the locus of the estimated stochastic discount factor in mean-variance space.

As shown in the figure, the volatility of the estimated stochastic discount factor is quite low; on

the scale of the graph, it is difficult to distinguish from zero.

The Hansen-Jagannathan bounds suggest that the reason that the model fails to explain the

equity returns is that the stochastic discount factor implied by the model is insufficiently volatile.

Through the duality of the bounds and the mean-variance efficient frontier, this also suggests that

the stochastic discount factor cannot generate a sufficiently large Sharpe ratio to explain the equity

returns. Put differently, while the model suggests that differences in risk across the equity returns

relative to the stochastic discount factor correlate with average returns, the model cannot generate

a sufficiently large risk premium to explain the equity returns.

Another noteworthy point from the figure is that the stochastic discount factor estimated using

Euler equation restrictions for both equity and investment returns also plots far from the Hansen-

Jagannathan bounds for the investment returns. The implication of this result is that some tension

between equity and investment returns prevents the stochastic discount factor that best satisfies

Euler equations for both equity and investment returns to satisfy the bounds for investment returns.

To get some insight into what this tension might be, we construct the stochastic discount factor in

the linear span of investment returns that satisfies the Euler equations for investment exactly, as

implied in equation (14). The investment-based model predicts that it is this stochastic discount

factor that should best explain equity returns, since optimality of investment links book-to-market

ratios to expected equity returns.

Analogous to our earlier results, we calculate Euler equation errors and risk exposures for the

equity returns relative to this stochastic discount factor. We present the results of this analysis in

Table 5. As shown in the table, this stochastic discount factor generates large positive Euler equa-

tion errors. Errors range from 1.32% per quarter on average for the low book-to-market portfolio

to 5.31% per quarter for the high book-to-market portfolio. The value spread in average returns

generated by the constructed stochastic discount factor is quite similar to the magnitude gener-

ated by the estimated stochastic discount factor. The Hansen and Jagannathan (1997) distance of

the estimated stochastic discount factor (0.5605) is marginally lower than that of the constructed

discount factor (0.5654). A stark difference emerges, however, when analyzing risk measures. As

shown in the table, there is virtually no dispersion in exposures to the risk inherent in the con-
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structed discount factor across book-to-market deciles. Thus, risk in a stochastic discount factor

that satisfies optimal investment exactly does not generate differences of risk across portfolios that

generates the spread in value and growth average returns.

The results in this section provide important insight into the failings of the production-based

model. The results suggest that a stochastic discount factor that exactly satisfies optimality of

investment in sample cannot generate dispersions in risk consistent with the expected returns across

book-to-market-sorted portfolios. In order to generate these risks, the stochastic discount factor

must strike something of a compromise. It can generate risk dispersion, but it cannot generate a

sufficiently large risk premium to explain differences in risk across book-to-market-sorted portfolios.

As a result, the stochastic discount factor generates large pricing errors and fails to explain cross-

sectional differences in equity returns.

4.4 Is Investment Optimal Given the Information in Equity Returns?

In the previous sections, we ask whether risk and risk premia inherent in investment returns can

explain cross-sectional variation in expected equity returns. That is, we allow the stochastic dis-

count factor to be defined as a linear function of investment returns and ask whether this stochastic

discount factor can explain equity returns. In this section, we turn the question around and ask

whether investment seems to be optimal given the information in equity returns. The major dif-

ference in this section is that we allow the stochastic discount factor to be linear in the payoffs to

equity rather than the payoff to investment. We estimate the model using only Euler equations for

investment and equity returns and then add the restrictions implied by the weighted average cost

of capital to improve identification of the production parameters.

Results imposing only Euler equation restrictions are presented in Table 6. As shown, the

estimates of the production parameters are similar to those estimated earlier, but considerably

more precise. The point estimate of capital share in the production function is somewhat lower

but similar to the estimate obtained using an investment-based stochastic discount factor (α =

0.072, SE = 0.026). The adjustment costs parameter (a = 3.317, SE = 0.242) is quite similar

to the earlier estimate. Like the earlier estimation, the model is strongly rejected in the data, as

indicated by the specification test. The overidentifying restrictions test (χ2
9 = 36.988) rejects at the

1% level of significance. We interpret this rejection as suggesting that, conditional on equilibrium

in the equity market, firms do not invest in an optimal manner, at least relative to the objective

function implied by the constraints explored in this paper.

The Euler equation errors, shown in Panel B of Table 6 suggest the source of model failure. The

equity-implied stochastic discount factor performs quite poorly in explaining both equity returns

and investment returns. Despite the fact that the Euler equation is linear in equity returns, pricing
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errors for equity are large, ranging from -2.24% per quarter for the low book-to-market portfolio

to -3.21% for the ninth decile book-to-market portfolio. Similarly, investment appears far from

optimal, with Euler equation errors ranging from -2.31% for the eighth decile book-to-market

portfolio to 3.15% for the tenth decile portfolio. While none of these Euler equation errors are

estimated precisely, the magnitude is sufficiently large (the mean absolute error is 2.675) to drive

rejection of the model.

When we incorporate the restrictions implied by the weighted average cost of capital, the

performance of the model deteriorates even further. Model parameter estimates and specification

test results are presented in Table 7. Rather than improving the ability to estimate the production

parameters as in the earlier section, the fit deteriorates, with the production share remaining

relatively similar in magnitude (α = 0.122), but poorly estimated (SE = 0.092). The adjustment

cost parameter is estimated to be somewhat lower (a = 0.840), but again is imprecisely estimated.

The restrictions implied by the model are strongly rejected; the χ2
18 test statistic of 67.529 implies

rejection of the model at greater than the 1% significance level.

While the specification tests results are not unlike those reported when the stochastic discount

factor is linear in the investment returns, the model fit is dramatically worse. In attempting to

satisfy the WACC restrictions in addition to the Euler equation restrictions, the model performs

extremely poorly in attempting to fit investment and equity returns. The mean absolute error

across all Euler equations is 11.40%. These errors are smallest for the WACC restrictions (m.a.e =

2.37%), but are extremely large for the investment returns (m.a.e. = 15.37%) and equity returns

(m.a.e = 16.06%). As shown in Panel B, not only are the errors large, but they are all statistically

significant as well. Thus, in contrast to the case in which the SDF is linear in investment returns,

imposing WACC restrictions result in a dramatic deterioration in model fit.

As noted, the deterioration in the model is due to the difficulty in fitting the mean and standard

deviation of the returns on investment, implied by the WACC restrictions, while fitting the mean,

standard deviation, and covariance structure of the equity returns. We pursue one final alterna-

tive. We allow the Euler equations to be satisfied exactly in the equity market, and consider the

implications for investment and weighted average cost of capital. That is, we specify the stochastic

discount factor as

M̂t = δ̂
′
R

S
t (14)

where

δ̂ =

(

1

T

T
∑

t=1

R
S
t R

S′
t

)−1

1N .

This stochastic discount factor is examined as a performance measure in Chen and Knez (1996).

Results of this estimation are presented in Table 8. Note that in this case, since the stochastic
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discount factor is specified as an exact function of the returns on the equity portfolios and risk-free

asset that the only moment conditions are the Euler equations for investment and the weighted

average cost of capital, and that there are only two parameters to estimate. Once again, the

point estimate of the capital share in production is consistent with previous estimates and precisely

estimated (α = 0.133, SE = 0.055). However, the adjustment cost parameter (a = −0.480, SE =

0.332) now has a negative point estimate, although the estimate is imprecisely estimated. This

somewhat puzzling result suggests adjustment benefits, rather than costs.

Regardless of the point estimates of the parameters, the model is again strongly rejected by

the test of overidentifying restrictions (χ2
18 = 72.746, p = (0.000)). Again, the point estimates of

the equation errors in Panel B suggest why. Investment does not appear to be optimal under this

stochastic discount factor, with all investment Euler equation errors greater than zero. The errors

range from 0.67% per quarter for the ninth decile portfolio to 2.83% per quarter for the bottom decile

portfolio. While the standard errors are large, the model has difficulty simultaneously capturing

the WACC conditions. Low book-to-market portfolios tend to have negative WACC errors, as

suggested by the bottom book-to-market decile portfolio error of -2.50% per quarter (SE = 1.20),

and high book-to-market portfolios tend to have positive WACC errors, as suggested by the eighth

decile error of 2.30% per quarter (SE = 1.20).

The conclusion from this section is that, again, the model has difficulty capturing the infor-

mation in both equity and investment returns simultaneously. When free to choose, the estimates

seem to emphasize the WACC restrictions, resulting in large pricing errors for both equity and

investment returns. When the law of one price is imposed in the equity market, the model fails to

capture means of investment returns through the WACC restrictions, and produces economically

significant Euler equation errors for investment. Thus, the results suggest that, given the informa-

tion in the equity returns, investment does not appear to be optimal for the book-to-market-sorted

portfolios.

4.5 Robustness Checks

In the preceding sections, we present evidence that suggests that the investment-based model has

a difficult time explaining returns on portfolios sorted on the book-to-market ratio. The principal

reason appears to be the fact that, when investment returns are used to form the stochastic discount

factor, the model is not able to generate a sufficiently large risk premium and still attempt to satisfy

Euler equations for returns on equity and returns on investment. When equity returns are used to

extract the stochastic discount factor, it appears investment is sub-optimal, in contradiction to the

core predictions of the investment-based model.

In this section, we briefly discuss a few robustness checks that we examine to substantiate the
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findings of the previous sections. We focus on two issues. First, in our tests we include the risk free

rate as either a test asset or a component of the stochastic discount factor. Cochrane (2001) notes

that GMM may attempt to overfit the moment condition on the risk free rate, whereas Farnsworth,

Ferson, Jackson, and Todd (2002) note that without some discipline on the mean of the stochastic

discount factor, the implied tangency portfolio can be on the bottom portion of the efficient frontier.

The second issue is the specification of the discount factor.

Inclusion of the Risk Free Rate

As mentioned previously, including the risk free rate trades off imposing more reasonable re-

strictions on the discount factor with focusing too much on fitting the moment conditions related

to the risk-free asset. We consider two alternatives to address these concerns. The first involves

testing using excess returns:

E
[

Mt

(

RI
t −Rf,t

)]

= 0

E
[

Mt

(

RS
t −Rf,.t

)]

= 0 (15)

1− δ′
(

RI
t − R̄I

)

= Mt

This estimation imposes a unit mean on the stochastic discount factor. The second alternative

is to omit the risk-free asset altogether. For brevity, we report tables using the excess returns

condition. Results omitting the risk free asset but using gross returns are qualitatively similar and

are available from the authors upon request.

In Table 9, we present results of this estimation, including conditions for the weighted average

cost of capital to improve the precision of estimates.5 We note two key points. First, pricing errors

remain large, but are somewhat reduced. The Euler equation error for the top decile portfolio falls

to 2.15% per quarter and the bottom decile to -1.72% per quarter, implying an annual premium in

excess of 15%. While smaller than in the case with gross returns, this quantity is still quite large.

None of the individual Euler equation errors can be distinguished from zero, but that the errors

are jointly significant, as the model is rejected at more than the 1% significance level as indicated

by the J-test (χ2
18 = 60.473).

The second point is that the model estimates a negative adjustment cost parameter under excess

returns. The capital share in production (α = 0.132) is precisely estimated (SE = 0.015) and is

similar in magnitude the estimates we obtain throughout the paper. However, while the adjust-

ment cost parameter (a = −0.459) is precisely estimated (SE = 0.089), the negative coefficient is

economically confounding. Explanations for adjustment costs generally focus on investment being

costly due to retooling and downtime; this parameter estimate suggests some benefit to adjustment.

5Similar results with less precisely estimated parameters are obtained omitting the WACC restriction. Results are
available on request.
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Our conclusion from these tables is that while using excess returns improves the fit of the model

slightly, this benefit is outweighed by the economically counterintuitive parameter estimates.

Alternative Stochastic Discount Factors

Liu, Whited, and Zhang (2009) investigate the performance of the CAPM and Consumption

CAPM (CCAPM) stochastic discount factors in pricing these equity returns and find that the

models are strongly rejected. We repeat their estimation, since we are using somewhat different

timing conventions and a different data frequency, but confirm their results. In our sample and

for our data, neither the CAPM nor the CCAPM performs well in satisfying Euler equations for

investment and equity returns. It is difficult to directly compare these results to those presented

earlier in the paper because the models are not nested. However, when we impose the Euler

equation restrictions for both equity and investment returns and the weighted average cost of

capital condition, we find that the value spread indicated by the Euler equation errors is nearly

17% per annum for both models. For brevity, and since these results are reported in Liu, Whited,

and Zhang (2009), we do not tabulate these results.

As discussed above, we do examine one parametric alternative, the Fama and French (1993)

three-factor stochastic discount factor, as in equation (12). This stochastic discount factor incor-

porates a market, size, and book-to-market factor since the results of Fama and French (1992)

indicate that size and book-to-market describe the majority of cross-sectional variation in average

returns. Factor returns are taken from Ken French’s website; variable construction is detailed in

Fama and French (1993).6

Results of this estimation are reported in Table 10. Perhaps not surprisingly, the results are

quite similar to those reported in Table 7, when the stochastic discount factor is in the linear span

of equity returns. Point estimates of the capital share (α = 0.126) and adjustment cost parameter

(a = 0.696) are of similar magnitude, and are imprecisely estimated. The only price of risk that

enters statistically significantly into the stochastic discount factor is that of the HML factor; the

negative sign on the risk price (δHML = −9.826) indicates that assets earn a premium for bearing

HML risk. As above, the model is strongly rejected by the test of overidentifying restrictions, and

the mean absolute error is large.

As above, the model has considerable difficulty simultaneously satisfying the weighted average

cost of capital restriction and the Euler equations for stock and investment returns. The pricing

errors for both investment and stock returns are uniformly negative and large in magnitude. None

of the errors are statistically significant individually, but the omnibus test statistic suggests that

they are statistically significantly different than zero in aggregate. The source of the model’s

failure in this case is in emphasizing fitting the WACC restrictions at the cost of violating the Euler

6We would like to thank Ken French for making these data available.
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equations.

5 Conclusion

In this paper, we estimate parameters and test restrictions implied by the investment-based pricing

model in the context of book-to-market-sorted portfolio returns. Our investigation follows the work

of Cochrane (1991), who suggests the investment-based model as an alternative to consumption-

based models for understanding asset prices. More specifically, our paper empirically investigates

the conclusions of Zhang (2005), who shows that in the context of optimal investment with adjust-

ment costs to investment, that firm’s investment decisions imply that book-to-market ratios will

be positively correlated with expected returns. We test the Euler equations implied by optimal

investment and equity market equilibrium to obtain implications for expected equity returns.

Our results suggest that the restrictions implied by the investment-based model do not hold in

the cross-section of book-to-market-sorted stock returns. When we allow the stochastic discount

factor to be in the linear span of investment returns, the model produces equity Euler equation

errors that are both economically large and statistically significant. Thus, a stochastic discount

factor that seems to satisfy firms’ first order conditions for optimal investment does not appear to be

able to explain differences in expected returns across stocks. Additionally, specifying the stochastic

discount factor as linear in equity returns, thus satisfying Euler equations for equities appears to

imply suboptimal investment. Consequently, we come to the conclusion that the investment-based

model does not explain cross-sectional variation in equity returns.

However, we do find evidence supportive of one of the key intuitions of the investment-based

model. When we fit the stochastic discount factor as linear in investment returns, we find that the

equity returns of value firms covary more strongly negatively with the stochastic discount factor

than those of growth firms. Since we expect firms with more negative covariance with the stochastic

discount factor to earn higher risk premia due to increased risk, this result is consistent with the

idea that value firms are riskier than growth firms, as suggested by the investment-based model.

The difficulty the model faces is in generating a sufficiently volatile stochastic discount factor, or

large enough premium for these risks, to justify the magnitude of the equity return premium in

value firms relative to growth firms.

Further, it is possible that extensions to the investment-based model may generate implications

that are consistent with the equity returns of book-to-market-sorted portfolios. In particular, a

large body of literature examines the role that financing frictions play in generating cross-sectional

variation in equity returns, including Lamont, Polk, and Saá-Requejo (2001), Gomes, Yaron, and

Zhang (2006), and Whited and Wu (2006). Since this explanation is at the core of explanation
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for firm-level violations of investment Euler equations, as in Hubbard and Kashyap (1992) and

Hubbard, Kashyap, and Whited (1995), it may help to explain why a model with fewer frictions

has difficulty when confronted with the cross-section of book-to-market-sorted portfolio returns.
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Appendix

In their Proposition 1, Liu, Whited, and Zhang (2009) show that optimal investment implies

that the investment return is a linear combination of the after-tax corporate bond return and the

equity return:

RI
i,t+1 = wi,tR

Ba
i,t+1 + (1− wi,t)R

S
i,t+1 (A1)

where RBa
i,t+1 is the after-tax corporate bond return, RS

i,t+1 is the equity return, and wi,t+1 is market

leverage, the ratio of market value of debt to market value of assets. In this appendix, we show

that this equality holds when investment is sub-optimal relative to the case when adjustment costs

provide the only friction in firms’ investment decisions.

Assume that investors do not invest optimally, and, as a result, the first order conditions for

firms’ optimization problem do not hold with equality. We do not make any assumptions as to

the source of the suboptimal investment; suboptimal investment might arise due to frictions or

violation of rational expectations. Firms’ first order conditions become

qit < 1 + (1− τt)Φi,I,t+1

qit < Et [Mt+1 {(1− τt+1) [Πi,K,t+1 − Φi,K,t+1] + τt+1δi,t+1 + (1− δi,t+1) qi,t+1}]

1 = Et

[

Mt+1

{

rBi,t+1 −
(

rBi,t+1 − 1
)

τt+1

}]

.

In these expressions, Φi,I,t+1 is shorthand for the partial derivative of the adjustment cost function

with respect to investment, Φi,K,t+1 is the partial derivative of the adjustment cost function with

respect to capital, and Πi,K,t+1 is the partial derivative of the output function with respect to

capital.

We next assume that there is some variable, ξi,t, that will make the inequalities above equalities.

We assume that the variable affects the Euler equations such that

qit + ξit = 1 + (1− τt)Φi,I,t+1 (A2)

qit + ξit = Et [Mt+1 {(1− τt+1) [Πi,K,t+1 − Φi,K,t+1] + τt+1δi,t+1

+(1− δi,t+1) (qi,t+1 + ξi,t+1)}] (A3)

1 = Et

[

Mt+1

{

rBi,t+1 −
(

rBi,t+1 − 1
)

τt+1

}]

. (A4)

Note that under this specification, the return on (suboptimal) investment is given by

RI
t+1 =

(1− τt+1) [ΠK,t+1 − ΦK,t+1] + τt+1δt+1 + (1− δt+1) (qt+1 + ξt+1)

qt + ξt
,

where we suppress firm-specific subscripts i going forward for convenience.
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We wish to show in this setting that equation (A1) continues to hold. We proceed following

Liu, Whited, and Zhang (2009). Denote the price of a claim to equity as Pi,t and the cum-dividend

value of equity Vi,t = Pi,t + Di,t. The firm’s optimization target and the definition of dividends

result in the following expression:

Vit = (1− τt) [Πt − Φt]− It +Bt+1 − rBt Bt + τtδtKt + τt
(

rBt − 1
)

Bt +

Et





∞
∑

j=1

Mt+j

(

(1− τt+j) [Πt+j − Φt+j ]− It+j − τt+jBt+j +Bt+j+1 − rBt+jBt+j (A5)

+τt+jδtjKt+j + τt+j

(

rBt+j − 1
)

Bt+j

)]

,

where we have suppressed firm-specific subscripts, i for notational simplicity, let Πt+j = Π(Kt+j ,Xt+j),

and let Φt+j = Φ(Kt+j , It+j). This quantity can be equivalently expressed as

Vt = Pt + (1− τt) [Πt − Φt]− It +Bt+1 − rBBt + τtδtKt + τt
(

rBt − 1
)

Bt

= (1− τt)
[

Πt −ΦItIt −ΦKtKt − rBt Bt

]

− It − τtBt +Bt+1 + τtδtKt

− (qt + ξt) [Kt+1 − (1− δt)Kt − It]

+Et





∞
∑

j=1

Mt+j

[

(1− τt+j)
[

Πt+j − ΦIt+j
It+j − ΦKt+j

Kt+j − rBt+jBt+j

]

− It+j − τt+jBt+j

+Bt+j+1 + τt+jδt+jKt+j − (qt+j+1 + ξt+j+1) [Kt+j+1 − (1− δt+j)Kt+j − It+j ]]] . (A6)

We recursively substitute equations (A2), (A3), and (A4) and simplify to obtain

Vt = Pt + (1− τt)
[

Πt − Φt −RB
t Bt

]

− τtBt − It +Bt+1 + τtδtKt

= (1− τt)
[

Πt − ΦKtKt −RB
t Bt

]

− τtBt + (qt + ξt) (1− δt)Kt + τtδtKt. (A7)

Linear homogeneity of the adjustment cost function implies that

Vt = Pt +Bt+1

= (1− τt) ΦI,t + It + (qt + ξt) (1− δt)Kt

= (qt + ξt) It + (qt + ξt) (1− δt)Kt

= (qt + ξt) (It + (1− δt)Kt) = (qt + ξt)Kt+1. (A8)
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The proof of equation (A1) follows by noting that

wtR
Ba
t+1 + (1− wt)R

S
t+1

=
(1− τt+1)R

B
t+1Bt+1 + τt+1Bt+1 + Pt+1 +Dt+1

Pit +Bit

=
Pi,t+1 +Bi,t+2 + (1− τt+1) [Πt+1 − Φt+1]− It+1 + τt+1δt+1Kt+1

Pit +Bit+1

=
(qt+1 + ξt+1)Kt+2 + (1− τt+1) (ΠK,t+1 − ΦK,t+1)Kt+1 − (qt+1 + ξt+1) It+1 + τt+1δt+1

(qt + ξt)Kt+1

=
(qt+1 + ξt+1) (1− δt+1) + (1− τt+1) (ΠK,t+1 − ΦK,t+1)− ξt+1It+1 + τt+1δt+1

qt + ξt

= RI
t+1. (A9)
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Table 1: Summary Statistics

Table 1 presents summary statistics for ten portfolios sorted on the basis of book-to-market ratios. Each June,
firms are assigned to deciles on the basis of their book-to-market ratios, using NYSE breakpoints to determine

deciles. The table reports the mean and standard deviation of returns, r̄S and σrS . Additionally, the table reports
averages of characteristics that enter into the calculation of the return on investment: the investment to capital ratio,
I/K, output to capital, Y/K, depreciation rate, δ̄, leverage, w̄, and the required return on debt, r̄B. Ratios are
computed by summing the numerator and denominator across firms and then performing division. Investment is
capital expenditures, net of sales of assets, output is net sales, and capital is gross property, plant, and equipment.
The depreciation rate is calculated as the depreciation expense divided by beginning of period capital. Required
return on debt is calculated as interest expense divided by average debt outstanding over the period. Data are
sampled at the quarterly frequency from the fourth quarter, 1983 through the fourth quarter, 2009.

Decile r̄S σrS I/K Y/K δ w r̄B

1 2.133 12.154 4.872 76.454 3.773 19.495 3.138
2 3.645 10.399 4.658 63.839 3.599 36.070 2.889
3 3.559 10.217 4.009 52.574 3.043 36.337 2.917
4 3.737 9.788 3.544 45.702 2.715 40.777 2.660
5 3.762 10.172 3.624 43.735 2.625 42.454 2.675
6 4.076 10.327 3.359 44.169 2.667 44.037 2.924
7 4.431 11.762 3.057 41.227 2.492 45.708 2.987
8 4.944 12.087 3.169 43.619 2.614 47.756 2.737
9 4.994 12.570 2.662 42.862 2.649 53.056 2.682
10 6.495 16.730 2.988 51.083 2.936 63.417 2.479
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Table 2: Estimation of Euler Equations for Investment and Equity Returns

Table 2 presents results of GMM estimation of parameters α, a, and δ from the sample moment conditions

1

T

T
∑

t=1

ut =
1

T

T
∑

t=1

M̂tR
I
t − 1N = 0

1

T

T
∑

t=1

vt =
1

T

T
∑

t=1

M̂tR
S
t − 1N = 0

where Mt = δ′RI
t and RI

t is a function of the parameters a and α as shown in equation (5). The vector R
S
t is the

vector of gross returns on ten book-to-market-sorted portfolios at time t, augmented by the return on the risk-free
asset, measured as the return on three-month Treasury Bills. The table presents point estimates of the parameters a
and α, the mean absolute error in the moment conditions, and the Hansen (1982) J-test for the null that the moment
conditions are rejected. Data are sampled at the quarterly fequency from the fourth quarter, 1983, through the fourth
quarter, 2009, for 105 time series observations.

Panel A: Point Estimates

α a

Estimate 0.103 0.046
SE (0.011) (0.146)

J-test 46.572
d.o.f. 9
p-value (0.000)

Mean Absolute Error 1.356

Panel B: Euler Equation Errors
Investment Returns Equity Returns

Decile Error SE Decile Error SE

1 0.384 (0.697) 1 -0.050 (1.140)
2 -0.316 (0.803) 2 1.429 (0.968)
3 -0.661 (0.779) 3 1.345 (0.950)
4 -0.886 (0.699) 4 1.520 (0.908)
5 -0.966 (0.707) 5 1.542 (0.933)
6 -0.960 (0.672) 6 1.850 (0.971)
7 -1.033 (0.644) 7 2.197 (1.080)
8 -0.947 (0.531) 8 2.698 (1.120)
9 -1.030 (0.663) 9 2.746 (1.138)
10 -0.686 (0.729) 10 4.211 (1.504)
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Table 3: Imposing WACC Constraints

Table 3 presents results of GMM estimation of parameters α, a, and δ from the sample moment conditions

1

T

T
∑

t=1

ut =
1

T

T
∑

t=1

M̂tR
I
t − 1N = 0

1

T

T
∑

t=1

vt =
1

T

T
∑

t=1

M̂tR
S
t − 1N = 0

1

T

T
∑

t=1

et =
1

T

T
∑

t=1

(

R
S
t −

R
I
t −wt−1 ·R

Ba
t

1−wt−1

)

= 0

where Mt = δ′RI
t and RI

t is a function of the parameters a and α as shown in equation (5). The vector R
S
t is the

vector of gross returns on ten book-to-market-sorted portfolios at time t, augmented by the return on the risk-free
asset, measured as the return on one-month Treasury Bills. R

Ba
t is the after-tax debt return for the portfolio. The

table presents point estimates of the parameters a and α, the mean absolute error in the moment conditions, and
the Hansen (1982) J-test for the null that the moment conditions are rejected. Data are sampled at the quarterly
fequency from the fourth quarter, 1983, through the fourth quarter, 2009, for 105 time series observations.

Panel A: Point Estimates

α a

Estimate 0.132 3.033
SE (0.069) (0.444)

J-test 65.325
d.o.f. 9
p-value (0.000)

Mean Absolute Error 1.501

Panel B: Euler Equation Errors
Investment Returns Equity Returns

Decile Error SE Decile Error SE

1 0.790 (0.671) 1 -0.819 (1.140)
2 -0.191 (0.777) 2 0.646 (0.967)
3 -0.547 (0.757) 3 0.565 (0.949)
4 -0.878 (0.684) 4 0.737 (0.908)
5 -0.840 (0.694) 5 0.753 (0.934)
6 -0.998 (0.656) 6 1.079 (0.971)
7 -1.349 (0.631) 7 1.405 (1.082)
8 -0.605 (0.517) 8 1.901 (1.122)
9 -1.012 (0.665) 9 1.918 (1.140)
10 -1.382 (0.713) 10 3.330 (1.511)
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Table 4: Returns on Investment

Table 4 presents means and standard deviations of returns on investment for ten book-to-market-sorted decile port-
folios. Returns are based on parameters estimated in Table 3. The table also presents risk exposures estimated by
the regression

RS
i,t = αi + βiMt + ǫi,t,

where Mt is the stochastic discount factor that is a linear combination of investment returns estimated via GMM as
in Table 3. Standard errors of the risk exposures are reported in parentheses. Data are sampled at the quarterly
fequency from the fourth quarter, 1983, through the fourth quarter, 2009, for 105 time series observations.

Decile Mean Std β SE

1 3.513 3.529 -0.548 (0.399)
2 2.495 4.984 -0.600 (0.339)
3 2.141 4.965 -0.565 (0.334)
4 1.828 4.223 -0.579 (0.319)
5 1.874 4.733 -0.669 (0.330)
6 1.721 3.930 -0.440 (0.339)
7 1.375 3.899 -0.649 (0.384)
8 2.169 2.665 -0.676 (0.395)
9 1.736 5.235 -1.036 (0.403)
10 1.313 4.948 -1.564 (0.532)
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Table 5: Exact Investment-Based Stochastic Discount Factor

Table 5 presents Euler equation errors and risk exposures for 10 book-to-market decile portfolios relative to a stochastic

discount factor specified as M∗
t = α′

R
I
t , where α = E

[

R
I
tR

I′
t

]−1
1. Returns on investment are based on parameters

estimated in Table 3. The pricing errors are calculated using sample moments

1

T

T
∑

t=1

M̂∗
t R

S
t − 1N

where R
S
t is a 10 × 1 vector of returns on book-to-market-sorted portfolios. The table presents mean pricing errors

and associated standard errors, as well as risk exposures estimated by the regression

RS
i,t = αi + βiM

∗
t + ǫi,t,

with standard errors reported in parentheses. Data are sampled at the quarterly fequency from the fourth quarter,
1983, through the fourth quarter, 2009, for 105 time series observations.

Decile Error SE β SE

1 1.317 (15.216) 0.023 (0.014)
2 2.041 (23.572) 0.012 (0.012)
3 2.181 (25.091) 0.016 (0.012)
4 2.130 (24.569) 0.012 (0.011)
5 2.443 (28.063) 0.017 (0.012)
6 2.611 (30.203) 0.015 (0.012)
7 3.231 (36.845) 0.019 (0.014)
8 3.728 (42.131) 0.019 (0.014)
9 3.300 (37.333) 0.012 (0.015)
10 5.310 (57.906) 0.020 (0.020)
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Table 6: Model Estimation with Equity Return Stochastic Discount Factor

Table 6 presents results of GMM estimation of parameters α, a, and δ from the sample moment conditions

1

T

T
∑

t=1

ut =
1

T

T
∑

t=1

M̂tR
I
t − 1N = 0

1

T

T
∑

t=1

vt =
1

T

T
∑

t=1

M̂tR
S
t − 1N = 0

where Mt = δ′RS
t , and R

S
t is the vector of gross returns on ten book-to-market-sorted portfolios at time t, augmented

by the return on the risk-free asset, measured as the return on three-month Treasury Bills. The vector R
I
t is the

return on investments, as calculated in equation (5). The table presents point estimates of the parameters a and
α, the mean absolute error in the moment conditions, and the Hansen (1982) J-test for the null that the moment
conditions are rejected. Data are sampled at the quarterly fequency from the fourth quarter, 1983, through the fourth
quarter, 2009, for 105 time series observations.

Panel A: Point Estimates

α a

Estimate 0.072 3.317
SE (0.026) (0.242)

J-test 36.988
d.o.f. 8
p-value (0.000)

Mean Absolute Error 2.675

Panel B: Euler Equation Errors
Investment Returns Equity Returns

Decile Error SE Decile Error SE

B1 -2.546 (5.765) B1 -2.240 (5.820)
B2 -2.566 (5.654) B2 -2.693 (5.752)
B3 -2.506 (5.633) B3 -2.861 (5.782)
B4 -2.587 (5.601) B4 -2.609 (5.798)
B5 -2.639 (5.605) B5 -2.449 (5.777)
B6 -2.318 (5.581) B6 -2.730 (5.784)
B7 -2.543 (5.632) B7 -3.137 (5.768)
B8 -2.311 (5.571) B8 -2.874 (5.764)
B9 -2.910 (5.582) B9 -3.210 (5.821)
B10 -3.145 (5.677) B10 -2.948 (5.763)
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Table 7: Imposing WACC Constraints: Equity Return Stochastic Discount Factor

Table 7 presents results of GMM estimation of parameters α, a, and δ from the sample moment conditions

1
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T
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1

T

T
∑

t=1

M̂tR
I
t − 1N = 0

1

T

T
∑
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1

T

T
∑

t=1

M̂tR
S
t − 1N = 0

1

T

T
∑

t=1

et =
1

T

T
∑

t=1

(

R
S
t −

R
I
t −wt−1 ·R

Ba
t

1−wt−1

)

= 0

where Mt = δ′RS
t and RI

t is a function of the parameters a and α as shown in equation (5). The vector R
S
t is the

vector of gross returns on ten book-to-market-sorted portfolios at time t, augmented by the return on the risk-free
asset, measured as the return on one-month Treasury Bills. R

Ba
t is the after-tax debt return for the portfolio. The

table presents point estimates of the parameters a and α, the mean absolute error in the moment conditions, and
the Hansen (1982) J-test for the null that the moment conditions are rejected. Data are sampled at the quarterly
fequency from the fourth quarter, 1983, through the fourth quarter, 2009, for 105 time series observations.

Panel A: Point Estimates

α a

Estimate 0.122 0.840
SE (0.092) (0.582)

J-test 67.529
d.o.f. 18
p-value (0.000)

Mean Absolute Error 11.400

Panel B: Euler Equation Errors
Investment Returns Equity Returns

Decile Error SE Decile Error SE

1 -14.910 (5.285) 1 -15.682 (5.453)
2 -15.676 (5.221) 2 -15.534 (5.313)
3 -15.999 (5.192) 3 -15.417 (5.298)
4 -16.234 (5.183) 4 -15.323 (5.247)
5 -16.242 (5.171) 5 -15.302 (5.256)
6 -16.286 (5.183) 6 -15.060 (5.210)
7 -16.476 (5.179) 7 -15.289 (5.280)
8 -16.303 (5.180) 8 -14.955 (5.227)
9 -16.371 (5.181) 9 -15.139 (5.183)
10 -16.124 (5.233) 10 -14.672 (5.227)
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Table 8: Exact Equity Stochastic Discount Factor

Table 8 presents results of GMM estimation of parameters α and a from the sample moment conditions

1
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1
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∑
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M̂tR
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1

T
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T

T
∑
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(

R
S
t −

R
I
t −wt−1 ·R

Ba
t

1−wt−1

)

= 0

where M̂t = δ
′
R

S
t and RI

t is a function of the parameters a and α as shown in equation (5). The vector R
S
t is the

vector of gross returns on ten book-to-market-sorted portfolios at time t, augmented by the return on the risk-free
asset, measured as the return on one-month Treasury Bills. R

Ba
t is the after-tax debt return for the portfolio. The

parameters δ satisfy the Euler equation for equity returns in sample, such that

δ̂ =

(

1

T

T
∑

t=1

R
S
t R

S′
t

)−1

1N .

The table presents point estimates of the parameters a and α, the mean absolute error in the moment conditions, and
the Hansen (1982) J-test for the null that the moment conditions are rejected. Data are sampled at the quarterly
fequency from the fourth quarter, 1983, through the fourth quarter, 2009, for 105 time series observations.

Panel A: Point Estimates

α a

Estimate 0.133 -0.480
SE (0.055) (0.332)

J-test 72.746
d.o.f. 18
p-value (0.000)

Mean Absolute Error 1.373

Panel B: Euler Equation Errors
Investment Returns WACC

Decile Error SE Decile Error SE

1 2.831 (5.740) 1 -2.499 (1.197)
2 1.850 (5.701) 2 -0.363 (1.030)
3 1.350 (5.654) 3 0.664 (1.108)
4 0.873 (5.624) 4 0.962 (1.005)
5 0.723 (5.608) 5 1.412 (1.133)
6 0.881 (5.632) 6 1.685 (1.145)
7 0.723 (5.611) 7 2.251 (1.163)
8 0.694 (5.631) 8 2.296 (1.201)
9 0.672 (5.604) 9 2.193 (1.491)
10 1.257 (5.709) 10 1.292 (1.786)
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Table 9: Euler Equation Tests with Excess Returns

Table 9 presents results of GMM estimation of parameters α, a, and δ from the sample moment conditions
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where Mt = 1−δ′
(

R
I
t − R̄

I
)

and RI
t is a function of the parameters a and α as shown in equation (5). The vector RS

t

is the vector of gross returns on ten book-to-market-sorted portfolios at time t. RBa
t is the after-tax debt return for

the portfolio. Rf,t is the return on a three-month Treasury Bill. The table presents point estimates of the parameters
a and α, the mean absolute error in the moment conditions, and the Hansen (1982) J-test for the null that the
moment conditions are rejected. Data are sampled at the quarterly fequency from the fourth quarter, 1983, through
the fourth quarter, 2009, for 105 time series observations.

Panel A: Point Estimates

α a

Estimate 0.132 -0.459
SE (0.015) (0.089)

J-test 60.473
d.o.f. 18
p-value (0.000)

Mean Absolute Error 1.285

Panel B: Euler Equation Errors
Investment Returns Equity Returns

Decile Error SE Decile Error SE

1 2.233 (8.607) 1 -1.718 (2.400)
2 0.841 (7.387) 2 0.217 (2.067)
3 -0.716 (7.650) 3 0.557 (2.154)
4 -0.190 (4.345) 4 1.044 (1.918)
5 -0.102 (1.843) 5 1.061 (2.110)
6 -0.555 (4.302) 6 1.962 (2.078)
7 -0.615 (2.198) 7 1.411 (2.341)
8 -0.333 (1.682) 8 2.743 (2.468)
9 -1.227 (2.285) 9 1.768 (2.774)
10 1.073 (4.424) 10 2.152 (3.555)
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Table 10: Euler Equation Tests with Fama-French Discount Factor

Table 10 presents results of GMM estimation of parameters α, a, and δ from the sample moment conditions
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where RI
t is a function of the parameters a and α as shown in equation (5). The vector R

S
t is the vector of gross

returns on ten book-to-market-sorted portfolios at time t augmented by the return on a three-month Treasury Bill.
R

Ba
t is the after-tax debt return for the portfolio. The stochastic discount factor is specified as

Mt = δ0 + δMRPRMRP,t + δSMBRSMB,t + δHMLRHML,t,

where RMRP,t is the market risk premium, RSMB,t is the return on the “small minus big” factor and RHML,t is the
return on the “high book-to-market minus low book-to-market” factor as described in Fama and French (1993). The
table presents point estimates of the parameters, the mean absolute error in the moment conditions, and the Hansen
(1982) J-test for the null that the moment conditions are rejected. Data are sampled at the quarterly fequency from
the fourth quarter, 1983, through the fourth quarter, 2009, for 105 time series observations.

Panel A: Point Estimates

α a δ0 δMRP δSMB δHML

Estimate 0.126 0.696 1.041 2.034 -8.356 -9.826
SE (0.086) (0.529) (0.127) (3.475) (7.173) (2.831)

J-test 71.540
d.o.f. 25
p-value (0.000)

Mean Absolute Error 6.490

Panel B: Euler Equation Errors
Investment Returns Equity Returns

Decile Error SE Decile Error SE

1 -8.463 (7.518) 1 -7.780 (7.650)
2 -8.149 (7.439) 2 -8.636 (7.510)
3 -8.038 (7.385) 3 -9.063 (7.563)
4 -8.102 (7.390) 4 -9.285 (7.480)
5 -8.087 (7.354) 5 -9.337 (7.497)
6 -8.021 (7.371) 6 -9.362 (7.481)
7 -7.889 (7.336) 7 -9.523 (7.534)
8 -7.527 (7.372) 8 -9.399 (7.576)
9 -7.614 (7.366) 9 -9.519 (7.561)
10 -6.869 (7.428) 10 -9.229 (7.752)
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Figure 1: Hansen-Jagannathan (1991) Bounds on Stochastic Discount Factors

Figure 1 presents the bounds on the stochastic discount factor of Hansen and Jagannathan (1991) implied by returns
on investment and equity returns. Investment returns are returns on the investment of a set of ten book-to-market-
sorted portfolios, where the investment return is defined in equation (5) with parameters estimated in Table 4. The
locus of the stochastic discount factor implied by the model estimate from Table 4 is depicted as a black point on the
graph. Data are sampled at the quarterly frequency from the fourth quarter, 1983 through the fourth quarter, 2009,
for 105 observations.
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