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approach to testing asset pricing models with firm-level information to measure firm-level risk expo-

sures. First, at the portfolio level, we investigate the empirical performance of a simple two-factor

consumption-based asset pricing model for the cross-section of equity returns. The priced factors in

the model are innovations in the growth and volatility of aggregate consumption. Our empirical re-

sults show that this model can explain 66% of the cross-sectional variation in returns on a menu of 55

portfolios spanning size, value, momentum, asset growth, stock issuance, and accruals. Second, we use

the estimated model to map point-in-time firm characteristics to consumption risk exposures. Through

this measurement procedure, we uncover sizeable cross-sectional and time-series variation in firm con-

sumption risk exposures. We verify that sorting on these ex ante consumption risk exposures produces

portfolios with consistent ex post risk exposures and predicts cross-sectional variation in future firm

equity returns.
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1 Introduction

In the past fifteen years, consumption-based asset pricing has experienced something of a renais-

sance. While hope had waned for the consumption-based paradigm in the wake of empirical failures

such as the equity premium puzzle of Mehra and Prescott (1985), recent theoretical advances in the

field, including the habit formation model of Campbell and Cochrane (1999) and the long run risk

model of Bansal and Yaron (2004) have provided new mechanisms for connecting financial asset

prices to real economic quantities such as consumption growth. Moreover, recent empirical evi-

dence, especially regarding consumption-based models’ ability to capture cross-sectional variation

in returns, has resulted in a new interest in understanding the links between consumption growth

and asset prices.1

One might expect, given the more recent empirical success of consumption-based pricing models

in explaining cross-sectional variation in returns, that such models would be used widely in finance

for return benchmarking and risk measurement. However, to our knowledge, this does not seem to

be the case. Rather, end users of asset pricing models instead continue to rely on the Capital Asset

Pricing Model (CAPM) or factor models such as Fama and French (1993, 2014) or Carhart (1997).2

In our view, this is somewhat surprising given the empirical failures of the CAPM, as documented

in Fama and French (1992), and the lack of a direct link of ad hoc statistical factor models to

economic theory. We conjecture that among the reasons that consumption-based models have not

gained greater traction for risk adjustment is the difficulty in measuring asset return exposures

to low-frequencyconsumption risk. This difficulty is particularly pronounced at the disaggregated

level, especially at the level of the firm. It is this measurement challenge that we address in this

paper.

Measurement of disaggregated risk exposures is notoriously difficult, as has been noted by Fama

and French (1997), who attempt to measure industry risk exposures to the Fama and French (1993)

factors. The authors note that the ratio of industry-specific variance to systematic variance is high,

resulting in imprecise measures of risk exposure. They also speculate that industry risk exposures

are likely to be time-varying, exacerbating the measurement problem. The authors conclude that if

1There are many examples of empirical studies that find a link between consumption and cross-sectional variation
in average returns. Parker and Julliard (2005) find that covariance of asset returns with future consumption growth
has explanatory power for the cross section of firms. Bansal, Dittmar, and Lundblad (2005) show that covariation
of cash flows with a long-run moving average of consumption growth generates cross-sectional risk premia. Yogo
(2006) derives a model with nonseparable consumption of nondurable goods, and shows that growth in durable
goods consumption explains cross-sectional variation in returns. Jagannathan and Wang (2007) find that measuring
consumption growth as the growth in year-on-year fourth quarter consumption explains a substantial portion of
cross-sectional variation in returns. Finally, Savov (2011) uses garbage as a measure of consumption and finds
cross-sectional variation in returns associated with garbage production.

2Hou, Xue, and Zhang (2014) explore the performance of a four-factor model based in the q-theory of investment.
The model is motivated by the implications of the theory for the components of the return on an equity claim.
However, there is no direct link to the source of priced risk in the stochastic discount factor.
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these problems are present in industry portfolios, they are likely to be even more severe at further

disaggregated levels, such as that of individual firms. These issues are even more likely to affect

measurement of exposure to consumption risk. Because consumption data is observed only at low

frequencies, and because recessions are central to macroeconomic risk exposure but infrequent, it

is probable that direct estimates of firm return exposure to consumption risk will be difficult to

obtain.

In this paper, we propose a methodology to address these problems. Specifically, our method

follows the suggestion of production-based asset pricing models such as Zhang (2005) that imply

a link between firm characteristics and risk exposures. These models suggest that risk exposures

are related to characteristics through the composition of the return to firms’ optimal investment.

These risk exposures, in turn, should relate to the covariance of a firm’s returns with some source

of aggregate priced risk. We posit a model in which the priced risks are innovations to the level

and volatility of consumption growth, and test the model on a set of portfolios formed on six firm

characteristics: asset growth, book-to-market ratio, market capitalization, past 12-month return,

stock issuance, and total accruals. Our empirical results show that low-frequency covariation of

equity returns and consumption growth innovations explains nearly two-thirds of the cross-sectional

variation in average returns on these portfolios.

Our empirical results suggest a link between expected returns and consumption risk exposures.

In turn, production-based pricing models suggest a link between risk exposures and characteristics.

We show that consumption risk exposures are related to characteristics at the portfolio level, and

use the portfolio level relation to infer firm-level risk exposures. In order to assess whether the

procedure generates portfolios correctly sorted on consumption risk exposures, we form portfolios

using only information available at the time of the portfolio formation to generate quintile portfolios

on the basis of ex ante exposure to consumption risk. We find that the resulting portfolios have

ex post exposures to consumption risk of roughly the same magnitude as the ex ante exposures.

Further, our equally-weighted portfolio returns generate an average return differential of 91 basis

points per month between the fifth and first quintile of ex ante beta. This return premium is robust

to adjustment for the risk factors in Fama and French (2014) and Hou, Xue, and Zhang (2014).

Finally, we approach the estimation of the cost of capital for different industry portfolios,

similar to the exercise in Fama and French (1997). Industry portfolios are aggregated, thereby

enjoying the usual portfolio diversification effects (in comparison to firm-level analysis), but they

also likely exhibit significant cross-sectional and time-series variation in industry characteristics

along with temporal variation in consumption risk exposures. While we view our contribution as

providing a methodology to evaluate consumption risk exposures at the most disaggregated levels,

industry portfolios do provide a natural laboratory in which to evaluate our methodology. We find

that time-variation in risk exposures is important for understanding the cost of industry capital;
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while regressions of mean returns on average ex ante betas generate no statistically significant

risk premium, Fama and MacBeth (1973) regressions of returns on risk consumption expsoures

suggest a positive and statistically significant price of consumption beta risk. We also show that

the time-series variation in industry risk exposures do suggest countercyclical risk premia.

We view the main contribution of the paper as proposing a method for linking consumption-

based asset pricing to the measurement of firm- and industry-level risk exposures. As such, the

paper builds on a large literature of recent theoretical and empirical advances. Our pricing model

can be viewed as a reduced-form version of the model proposed in Bansal and Yaron (2004). The

empirical framework for estimating consumption risk exposures draws on empirical evidence in

Parker and Julliard (2005), Bansal, Dittmar, and Lundblad (2005), Hansen, Heaton, and Li (2008),

and Bansal, Dittmar, and Kiku (2009) that suggests that low frequency covariation in returns and

consumption growth are important for understanding cross-sectional variation in average returns.

Our work also briefly touches on literature that suggests that aggregate volatility is important

in asset pricing, including Ang, Hodrick, Xing, and Zhang (2006), Boguth and Kuehn (2013),

Bansal, Kiku, Shaliastovich, and Yaron (2013), and Campbell, Giglio, Polk, and Turley (2013).

Ultimately, we find that volatility in consumption growth generates relatively little improvement in

model fit. However, this result may be a function of our choice for modeling volatility or our choice

of test assets. Our methodology applies in principle to measurement of volatility risk as well, and

one could construct firm-level exposures to aggregate volatility risk in addition to the measures of

consumption growth risk presented in this paper.

The remainder of the paper is organized as follows. In Section 2, we discuss the estimation

of consumption innovation risks and the theoretical framework in which these risks are priced.

We estimate risk exposures and analyze cross-sectional regressions of portfolio mean returns on

risk measures in Section 3. Section 4 presents an analysis of utilizing portfolio characteristics and

risk exposures to capture firm-level risk exposures. An application to industry cost of capital is

presented in Section 5. We make concluding remarks in Section 6.

2 Theoretical Framework

2.1 Relating Risk Exposures and Firm Characteristics

An early suggestion that characteristics might proxy for risk measures is provided by Fama and

French (1992). The authors argue that size and book-to-market capture cross-sectional variation in

average returns because they proxy for exposures to risks other than that embodied in the market

portfolio. This intuition is formalized in the context of an investment-based asset pricing model

3



in Zhang (2005). He shows that when risk premia are countercyclical, and costs of adjustment

to investment are asymmetric, assets in place can be riskier than growth options during economic

downturns. This risk leads to a larger unconditional risk premium for firms with a higher proportion

of assets in place. High book-to-market firms are likely to have a greater proportion of capital

invested in assets in place than growth options, suggesting that their returns are riskier. As a

result, high book-to-market firms earn a higher risk premium than low book-to-market firms, and

book-to-market represents a proxy for a firm’s exposure to risk.

This point is made more explicit in Lin and Zhang (2013), who argue forcefully that charac-

teristics and risk factor covariances represent two sides of the same coin. For example, the authors

show that in a simple production-based model, the risk premium on an equity can be written as

Et
[
rSi,t+1

]
− rf,t = βMi λM = rIi,t+1 =

Et [Πi,t+1]

1 + a (Ii,t/Ki,t)
,

βMi =

[
Et [Πi,t+1]

1 + a (Ii,t/Ki,t)
− rf

]
/λM , (1)

where rSi,t is the return on firm i’s equity, rf,t is the risk-free rate, βMi is the exposure of the firm’s

equity return to a stochastic discount factor Mt+1, λM is the price of stochastic discount factor

risk, rIi,t+1 is the return on the firm’s investment, Πi,t is a profit function, Ii,t is investment, Ki,t

is capital, and a is an adjustment cost parameter. This relation makes it clear that the firm’s risk

exposure can be expressed as functions of profitability and investment intensity, as captured by

the investment-to-capital ratio. In equilibrium, Lin and Zhang (2013) note that the denominator

1 + a (Ii,1/Ki,1) will be the market-to-book ratio, establishing the link between firm characteristics

and risk exposures.

Investment-based asset pricing has been linked to a number of firm characteristics in addition to

the book-to-market ratio, including stock issues (Lyandres, Sun, and Zhang (2008) and Li, Livdan,

and Zhang (2009)), accruals (Wu, Zhang, and Zhang (2010)), and momentum (Liu and Zhang

(2014)). These characteristics can be linked to the return on investment and return on equity

by introducing more complicated adjustment costs, corporate taxes, and debt. As an example,

Liu, Whited, and Zhang (2009) consider an investment-based model with leverage and taxes that

breaks the perfect correlation between the return to equity and investment. In this framework,

characteristics are related to a firm’s investment return and the relation between the investment

return and the equity return. As a result, the characteristics are linked to equity’s exposure to

risks in the stochastic discount factor.

We implement this idea by assuming that the relation between an asset’s risk exposure and the

set of characteristics important for determining the return on investment and its relation to the

return on equity can be captured by projecting the risk exposure onto the set of characteristics.
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Specifically, we assume that

βi,k,t = f (xi,t, δt) + ξi,k,t, (2)

where βi,k,t is the time t exposure of asset i’s return to factor k, xi,t is a set of relevant characteristics,

and δt is a set of potentially time-varying coefficients. In principle, we would prefer to map the

return on investment directly into the risk premium implied by a candidate stochastic discount

factor. However, it is unclear whether the error resulting from this projection or mis-specification

of the relation between the return on investment and the characteristics would result in larger

mis-measurement of the relation between risk exposures and characteristics. Therefore, we utilize

this projection as a reasonable first approximation implied by relations such as equation (1), which

link equity risk premia to the return on investment.

2.2 Expected Returns and Consumption Moments

At the center of the production-based asset pricing framework is the notion that firm’s invest

optimally. In the context of the model, this means that they maximize firm value, defined as the

discounted sum of the firm’s expected future dividends. The model assumes that the stochastic

discount factor (SDF) is determined by consumers in the economy, but does not directly specify

this SDF. The risk exposure in equation (1) is the covariance of the return on a firm’s return on

equity with this SDF, and as such the SDF is central to measuring a firm’s expected return.

Our particular interest in this paper is in models of the stochastic discount factor that are

functions of risks in aggregate consumption growth. In particular, we have in mind a model in the

vein of the canonical Lucas (1978) asset pricing model, which Lucas (1978), which states that an

asset’s price is determined by its conditional covariance with a representative agent’s intertemporal

marginal rate of substitution (IMRS),

Et [exp (mt+1 + ri,t+1)] = 1 (3)

where mt+1 is the log IMRS or stochastic discount factor, ri,t+1 is the log gross return on a risky

asset i, and the price of the asset is normalized to unity. Under the further assumption of conditional

joint lognormality of the IMRS and the asset return, we can rewrite equation (3) as

Et [ri,t+1] +
1

2
V art (ri,t+1) = −Et [mt+1] −

1

2
V art (mt+1) − Covt (mt+1, ri,t+1) . (4)

Equation (4) emphasizes the fact that expected returns on assets in the cross-section are related to

the covariation of innovations in the IMRS and the asset payoff.

A large number of formulations for investors’ utility yield a form for the IMRS that is log-linear
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in the moments of consumption growth. Two cases are of particular interest for our study. The

first is power utility, in which the log pricing kernel

mt+1 = ln δ − γ∆ct+1,

with γ representing the agent’s relative risk aversion, ∆ct+1 representing log growth in consumption,

and δ reflecting the agent’s time preference. The second is Epstein and Zin (1989) utility, in which

the log pricing kernel is represented as

mt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1) rc,t+1.

In this expression, ψ represents the intertemporal elasticity of substitution, which is separable from

risk aversion, γ, θ = (1 − γ) / (1 − 1/ψ), and rc,t+1 is the log payoff of an asset that pays aggregate

consumption as its dividend. Power utility is a special case where γ = 1/ψ and, consequently,

θ = 1.

Bansal and Yaron (2004) suggest parameterizing the log return on the consumption claim as a

linear function of the state variables of the economy and consumption growth,

rc,t+1 ≈ κ0 + κ1µt+1 + κ2σ
2
c,t+1 + ∆ct+1, (5)

where µt+1 is the conditional expectation of future consumption growth and σ2c,t+1 is its conditional

variance. We further assume that

∆ct+1 = µt + σtηt+1

µt+1 = µc + ρµt + ϕσtηt+1

σ2t+1 = Et
[
σ2t+1

]
+ σwwt+1,

where ηt+1 and wt+1 are standard normal i.i.d. shocks. These dynamics are similar to those explored

in Bansal and Yaron (2004), but we assume that the shock to consumption and its conditional mean

are the same. As a result, consumption growth is an ARMA(1,1) dynamic process with time-varying

volatility.

Under the assumption of log-linearity of the return on the consumption claim in the two state

variables, the risk premium on an asset can be determined from equation (4) by

E [ri,t+1 − rf,t] = −Cov (mt+1 − Et [mt+1] , ri,t+1 − Et [ri,t+1]) −
1

2
V ar (ri,t+1)

= π1Cov (σtηt+1, ηi,t+1) + π2Cov (wt+1, ηi,t+1) −
1

2
V ar (ri,t+1) , (6)

6



where

π1 =
θ

ψ
− (θ − 1) (κ1ϕ− 1)

π2 = κ2 (θ − 1) ,

and ηi,t+1 = ri,t+1−Et [ri,t+1], the shock to the asset return. This expression indicates that investors

expect risk premia to compensate for shocks to first moment of consumption risk, ηt+1, and second

moment of consumption risk wt+1. Bansal and Yaron (2000) note that under power utility, θ = 1,

and therefore second moment risk will not be compensated in returns.

Converting back to arithmetic returns, the risk premium (6) can be expressed as

E [Ri,t+1 −Rf,t] = λ1βi,η + λ2βi,w, (7)

where βi,η = Cov (ri,t+1, ηt+1) /V ar (ηt+1) and βi,w = Cov (ri,t+1, wt+1) /V ar (wt+1) are coefficients

of regressing returns on the innovations ηt+1 and wt+1. This expression suggests that cross-sectional

variation in risk premia will be determined by assets’ return exposures to shocks to the first and

second moments of consumption growth. Under power utility, λ2 = 0 and only the conditional

covariance of consumption growth levels with innovations in asset returns will bear risk premia.

Under the further assumption of i.i.d. consumption growth, βi,η is simply captured by the covariance

of returns with consumption growth.

3 Consumption Risk Premia in Average Returns

3.1 Testing Portfolios

A wide variety of firm-specific characteristics have been used as instruments to guide portfolio

formation. Fama and French (1992) suggest that the cross-section of returns can be summarized

by size and book-to-market, and advocate the use of portfolios sorted on these two variables in

Fama and French (1993). The use of these portfolios in asset pricing tests, however, has come

under recent criticism by Lewellen, Nagel, and Shanken (2010) due to the ease of fitting a model

to their two-factor structure. Harvey, Liu, and Zhu (2014) catalog 316 variables that have been

found to have significant power to forecast cross-sectional variation in returns, and Green, Hand,

and Zhang (2014) report over 330, and find 24 to be reliably statistically significant. Lewellen

(2014) considers a set of 15 predictors, and finds that while 10 have significant t-statistics in Fama

and MacBeth (1973) regressions, most of the variation in expected returns can be traced to log

size, book-to-market, and past 12-month return. These papers suggest that the answer of which
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characteristics are relevant for testing asset pricing models remains unclear.

We utilize a set of six characteristics to form portfolios: These variables are growth in assets

(AG), log book-to-market ratio (BM), log market capitalization (MV), past 12-month returns (P12),

stock issues (SI), and total accruals (TA). These variables are found to have statistically significant

t-statistics in Fama and MacBeth (1973) regressions, regardless of whether the tests are conducted

on all stocks, all stocks but micro-caps, or only large stocks by Lewellen (2014).3 We form portfolios

based on deciles of all of the characteristics except stock issuance. Cross-sectional dispersion in

stock issuance is not wide, with a large mass of firms neither issuing nor repurchasing stock.

Consequently, we form portfolios on quintiles of stock issuance. We opt to use univariate sorts

rather than intersections because of the difficulty in forming well-diversified portfolios on the basis

of the intersection of three or more characteristics. As noted by Fama and French (2014), it is

difficult to generate well-diversified portfolios and fully populated intersections when using more

than four characteristics and characteristic quantile cutoffs finer than the 50th percentile. Details of

the calculation of the characteristics are provided in the appendix. Porfolios are value-weighted with

returns sampled at the quarterly frequency and converted to real using the personal consumption

expenditure (PCE) deflator from the Bureau of Economic Analysis. Data are sampled from the

3rd quarter of 1953 through the fourth quarter of 2013.

Summary statistics for the portfolio returns are presented in Table 1. Mean returns exhibit

patterns that are now familiar to readers of the empirical asset pricing literature; average returns

increase in the book-to-market ratio and past 12-month return, and decrease in market value,

asset growth, total accruals, and stock issues. None of the average returns are perfectly monotonic

in their characteristic deciles, but some characteristics appear to generate more nearly monotonic

patterns than others. In particular, past 12-month returns appear to generate very nearly monotonic

patterns in average returns, with only one deviation in the deciles; similarly, stock issuance quintiles

deviate in monotonicity only in the middle quintile. The data suggest quite a large dispersion in

average returns as well; the highest average real return is on the tenth decile past 12-month return

portfolio of 4.21%, and the lowest is on the first decile past 12-month return portfolio of -0.71%. The

remaining sorts generate differences in average quarterly returns returns of 1.08% for the difference

in the bottom and top stock issuance quintile to 1.69% for the difference in the bottom and top

market value decile.

3Lewellen (2014) finds that in addition to the six characteristics that we consider, profitability has robust predictive
power for returns. Further, a profitability factor features prominently in both the five-factor model proposed by Fama
and French (2014) and the four-factor q-theory model of Hou, Xue, and Zhang (2014). Including profitability as a
characteristic for forming portfolios results in a deterioration of the cross-sectional fit of the model, which in turn
adversely impacts fitting firm-level risk exposures. In an online appendix, we replicate all of the results in this paper
including a set of profitability-sorted portfolios.
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3.2 Estimating Risk Exposures

The model presented in Section 2 suggests that the priced sources of risk are innovations in the

mean and the volatility of consumption growth, which in turn requires specification of a time series

model for the conditional moments. In typical estimates of the autocorrelation of consumption

growth, empirical evidence finds positive and statistically significant autocorrelation coefficients

(see, for example, Piazzesi (2001)). However, the conclusions drawn from a statistically significant

autocorrelation coefficient are a subject of debate. Working (1960) shows that time aggregated

i.i.d. shocks can exhibit statistically significant autocorrelation and, as a result, it is possible that

the autocorrelation estimated in observed consumption growth is due to time aggregation rather

than actual dynamics of the underlying process. Opposing viewpoints on this issue have recently

been aired in Beeler and Campbell (2012) and Bansal, Kiku, and Yaron (2012).

Our approach is to proceed as simply as possible, and sidestep controversy over the dynamics of

consumption growth. We assume a constant mean of consumption growth and simply use demeaned

consumption growth as the innovation in the level of consumption growth, ηt+1. The possibility

of conditional volatility in consumption growth is perhaps less controversial. We again approach

modeling this conditional volatility quite simply assuming that innovations to volatility can be

captured through an AR(1) of model of squared level innovations,

η2t+1 = ν0 + ν1η
2
t + wt+1.

Our results are robust to using more complicated models for the dynamics of the volatility of

consumption growth, such as GARCH (1,1) or EGARCH (1,1).

An additional issue in estimating risk exposures is the contribution of low-frequency movements

in consumption growth to its riskiness. Bansal, Dittmar, and Lundblad (2005) emphasize low-

frequency covariation in consumption and dividends as a source of risk. Similarly, Hansen, Heaton,

and Li (2008) and Bansal, Dittmar, and Kiku (2009) investigate cointegration of consumption and

dividends as a source of risk. With the evidence in these papers in mind, we estimate risk exposures

by regressing cumulated portfolio returns on cumulated innovations in consumption growth and its

volatility,

K−1∏
j=0

Ri,t−j = ai + βi,η

K−1∑
j=0

η̂t−j + βi,w

K−1∑
j=0

ŵt−j + ei,t, (8)

for different windows K, where Ri,t−j is the gross real return on portfolio i.

The consumption measure that we use in this paper is the standard consumption of nondurable

goods and services. Data are converted to real using the personal consumption expenditure deflator

9



and are expressed in per capita terms. The consumption growth series is the first difference of log per

capita consumption, sampled at the quarterly frequency from the second quarter of 1947 through

the first quarter of 2014. Data are obtained from the National Income and Product Account tables

at the Bureau of Economic Analysis.

In our cross-sectional regressions, we consider models in which only level or volatility risk is

priced in addition to the unrestricted model in which both consumption level and volatility risks

are priced. For these restricted models, we estimate univariate versions of regression (15) to obtain

risk exposures. These univariate risk exposures are reported in Tables 2 and 3 for a window K = 4.

We demonstrate that this window appears to generate the best cross-sectional fit for the model;

risk exposures with K = 1, 2, and 8 are available from the authors upon request.

Consumption level risk exposures are presented in Table 2. The estimates suggest patterns that

are broadly consistent with patterns in average returns. For the portfolios in which top quantile

portfolio returns exceed those of bottom quantile portfolio returns, book-to-market and past 12-

month return, the top quantile level exposure beta exceeds that of the bottom quantile exposure

beta. Similarly, for characteristic-sorted portfolios in which the pattern is reversed, specifically as-

set growth, market value, stock issuance, and total accruals, the bottom quantile level risk exposure

exceeds that of the top quantile risk exposure. While the pattern is not monotonic in quantiles,

the broad patterns in average returns and risk exposures suggest a positive relation between con-

sumption level risk exposure and average returns.

Exposures to innovations in consumption volatility are presented in Table 3. We expect two

features of consumption volatility exposures based on theoretical considerations. First, we expect

consumption volatility exposures to generally be negative, reflecting the idea that equity pays off

poorly in bad economic states associated with high volatility of consumption growth. Second, we

expect assets that hedge, or at least have less vulnerability to this risk, to command higher prices.

Thus, we expect a negative relation between consumption volatility exposure and average returns.

The first conjecture is borne out in the data; 54 of 55 return exposures to consumption volatility

innovations are negative, consistent with the interpretation of equity as a an asset that provides a

poor hedge to bad economic states. The evidence with respect to the second conjecture is more

mixed. The exposures of high asset growth portfolios, low book-to-market portfolios, and low

past 12-month return portfolios are distinctly lower than their opposing extreme decile exposures,

consistent with a price of volatility risk that is negative. However, the pattern is close to flat in stock

issuance, and inverted in market value-sorted portfolio average returns. Moreover, the pattern in

deciles is far from monotonic, with the most extreme (negative) exposures to consumption volatility

risk for all characteristics other than market value occurring in intermediate deciles.

The conclusion that we draw from examining exposures to consumption level and volatility
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innovations is that the exposures are broadly consistent with predictions of a theoretical model of

asset prices. Equities are positively exposed to consumption level innovations and negatively ex-

posed to volatility innovations. There appears to be coarse evidence suggesting a positive premium

for consumption level risk and somewhat weaker evidence for a negative premium for volatility risk.

We explore this evidence more formally in the next section.

3.3 Cross-Sectional Regression Results

The standard approach to investigating whether risk exposures are related to average returns is

the two-stage approach where returns are regressed on sources of risk and average returns are then

regressed on the resulting risk exposure estimates. The first stage estimates are discussed in the

previous section, we now examine cross-sectional regressions of the form

R̄i − R̄f = γ0 + γηβ̂i,η + γwβ̂i,w + ui, (9)

where R̄i is the time series average of the return on portfolio i, R̄f is the mean real quarterly

compounded return on a Treasury Bill closest to one month to maturity from CRSP, and β̂i,η

and β̂i,w are first stage estimates of univariate regressions of portfolio i’s return on the mean and

volatility innovations, ηt and wt, respectively. In addition to the unrestricted model above, we also

examine specifications where we consider the explanatory power of mean innovation and volatility

innovation risks alone, restricting γη = 0 and γw = 0, respectively.

Results of the cross-sectional regressions are presented in Table 4. We present a total of four

specifications. The specifications vary across restrictions on the prices of risk (i.e. γw = 0, γη = 0,

and unrestricted), and in the number of periods over which innovations and returns are com-

pounded. We examine four periods, K = 1, 2, 4, 8. In the case of K = 1, we are only allowing for

the contemporaneous relation between returns and consumption level and volatility innovations. In

the remaining versions, lower frequency covariations become important. In each case, we present

t-statistics using standard errors corrected for first stage estimation error as in Shanken (1992)

and, in parentheses under the R2 the 95% critical value of the model R2 under the null that the

risk measures are unrelated to the average returns. This critical value is motivated by the recom-

mendations of Lewellen, Nagel, and Shanken (2010), who suggest that the cross-sectional R2 may

overstate the model fit.4

4The critical value is calculated by generating 5000 random samples with 238 time series observations of two
normally distributed variables with mean zero and standard deviation ση and σw to match sample standard deviations
of the mean and volatility innovations. We regress returns on our sample assets on the random variables, and then
perform second stage regressions of the mean returns on the resulting regression coefficients. Adjusted R2 for the
second stage regressions on the simulated risk measures are used to construct the null distribution of the adjusted
R2.
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In Panel A, we consider the case in whichK = 1, which corresponds to a traditional consumption

CAPM in which risk exposures are captured by the covariance of returns with consumption growth,

and an extension in which volatility innovations are priced as well. The table demonstrates that a

simple consumption CAPM performs surprisingly well at describing cross-sectional variation in this

set of average returns. The point estimate for the price of consumption risk, 0.442, is positive and

statistically significantly different than zero. The regression adjusted R2 suggests that the model

captures 38% of cross-sectional variation in average returns. While this R2 is does not exceed

the 95% critical value implied by Monte Carlo simulations, it does exceed the 90% critical value,

suggesting that the performance of the model is not simply a statistical accident.

The second column of Panel A presents results when the only priced source of risk is the

innovation to the volatility of consumption growth. As shown in the table, this model explains

a non-trivial fraction of variation in average returns, with a cross-sectional adjusted R2 of nearly

14%. The point estimate for the price of volatility risk is negative, as expected, but the point

estimate cannot be statistically distinguished from zero. Further, the intercept in the regression

is large and statistically different from zero. The results suggest that consumption volatility risk

alone cannot capture cross-sectional variation in this set of asset returns.

In the third column of Panel A, we present results for the unrestricted model, where both con-

sumption growth innovations and the innovation in the volatility of consumption growth are allowed

to bear prices of risk. Again, the price of consumption growth risk is positive, and very similar

to the restricted model in magnitude at a point estimate of 0.455. The coefficient is statistically

significantly different than zero at conventional significance levels. The price of volatility innova-

tion risk is again negative, but although the t-statistic increases to 1.506, the coefficient cannot be

distinguished from zero at conventional significance levels. While the model improves on the basic

consumption CAPM with an adjusted R2 of 43.65%, the improvement indicates that the addition

of volatility risk exposure explains only an additional 5% of the cross-sectional variation in average

returns. While this improvement is not zero, it suggests that the level innovation exposure is the

primary source of priced risk in this cross section.

Comparing Panels B-D, varying K = 2, 4, 8, the results are qualitatively similar. A model

with a single exposure to consumption growth risk performs surprisingly well in explaining cross-

sectional variation in returns. Volatility exposures alone are generally statistically insignificant,

although negative as suggested by theoretical considerations. Incorporating both volatility and

level consumption risk exposures in the model improves the fit of the model, but only marginally,

from around 2-5%. Notably, however, in the cases in which returns and consumption innovations

are cumulated over more quarters, the price of volatility innovation risk becomes statistically dis-

tinguishable from zero in the unrestricted model.
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The best performance of the model in terms of adjusted R2 is in the case where K = 4, as

exhibited in Panel C. In this case, the model with where only consumption level innovation risk

exposure is priced produces a good fit for cross-sectional variation in average returns. The price

of consumption level innovation risk is 0.578, and the coefficient is statistically different than zero

as indicated by a t-statistic of 3.069. The regression adjusted R2 is 64.11%, suggesting that the

model captures nearly two-thirds of the cross-sectional variation in average returns across these

55 portfolios. Moreover, the adjusted R2 is greater than the 40.90% critical value for a single-

factor adjusted R2 with no relation to average return. Finally, the point estimate for the intercept,

0.189, is not statistically distinguishable from zero. This evidence suggests that a single-factor

consumption-based model provides a good description of the cross-sectional variation in average

returns of these portfolios.

In the third column of Panel C, we present results when we allow both consumption growth level

and volatility innovation risks to be priced. The incorporation of exposures to consumption volatil-

ity risk do result in an improved fit of the model. The price of consumption growth innovation risk

remains positive and statistically significant, and the price of volatility innovation risk is negative

and statistically significant. The intercept cannot be distinguished from zero, suggesting that the

model fits the data well, and the adjusted R2 increases to 67%, which exceeds the 95% critical

value of 54%. This 67% adjusted R2, however, represents an increase of less than 3% relative to

the restricted model in which only consumption growth innovations are priced. As a result, while

the model improves statistically on a single-factor model, the improvement is not of substantial

economic magnitude.

We proceed with the single-factor consumption model with estimates in the first column of Panel

C for the remainder of our paper. Increasing the window over which innovations and returns are

cumulated to K = 8 results in a small deterioration in model fit. The model has the advantage of

being parsimonious, and consistent with stochastic discount factors implied by either CRRA utility

or Epstein and Zin (1989) utility. We can consider this model to be a straightforward consumption

CAPM, with only the variation that consumption growth risk exposures are measured using low-

frequency covariation of consumption growth with returns.

The fit of the model is depicted in Figure 1, and we report the magnitude of pricing errors in

Table 5. The figure depicts predicted average returns on the x-axis and actual average returns on

the y-axis; in a perfect model fit all points would plot on the 45-degree line. As suggested by the

model adjusted-R2, the fit is quite good, but not perfect. Both Panel B of Table 4 and Figure 1

suggest that the model has particular difficulty with a few portfolios in our sample, most notably

those in the first three past 12-month return deciles. Overall, the mean absolute error of the pricing

model is 34 basis points per quarter, and we cannot reject the null that the errors are zero using

the χ2 test discussed in Cochrane (2005). Thus, we conclude that a model with priced exposures to

13



consumption risk provides a good description of cross-sectional variation in average returns across

the six characteristics examined in our study.5

4 Using Characteristics to Estimate Risk Exposures

4.1 Mapping Characteristics into Risk Exposures

With the previous section’s evidence that a single beta model incorporating consumption growth

level risk exposures fits the cross-section of average returns well, we next turn to investigating

the relation between the risk exposures of this model and characteristics. As discussed in Section

2.1, we hypothesize that the reason that portfolio characteristics are related to average returns is

through the link between these characteristics and their exposures to risk in the stochastic discount

factor. While the exact mapping is unknown, as a starting point, we assume that there is a linear

relation between portfolio risk exposures and characteristics,(
β̂p,η,t − ¯̂

βt

)
= δ′p,η,t (xp,t − x̄t) + ep,η,t (10)

where xp,t is a vector of the characteristics on which the portfolios are formed. In this expression,

β̂p,η,t is the portfolio consumption growth innovation risk exposure, estimated using information

available to time t. Thus, in this expression, risk exposures are allowed to vary over time due to

changing characteristics, xp,t, as well as due to a time-varying mapping of characteristics into risk

exposures, δp,η,t. We cross-sectionally de-mean variables to remove any time trends that might

generate spurious time variation in risk exposures.

The specific procedure by which we construct portfolio-level estimates of the relation between

characteristics and betas proceeds as follows:

1. We begin with a subsample of our consumption data from the third quarter of 1953 through

the third quarter of 1983. We calculate demeaned consumption growth over this time period

to obtain the consumption growth innovation. Innovations to the level of consumption growth

are summed over four quarters to obtain a series of smoothed innovations from the fourth

5In untabulated results, we compare the performance of the model explored in this paper to alternative
consumption- and factor-based models. The consumption alternatives that we consider are the conditional CCAPM
of Lettau and Ludvigson (2001), the ultimate consumption risk model of Parker and Julliard (2005), the cash flow
consumption risk model of Bansal, Dittmar, and Lundblad (2005), and the durable consumption goods model of
Yogo (2006). The evidence suggests that the consumption-based framework presented in this paper outperforms
these alternatives. We do not examine other consumption-based models such as the calendar year end consumption
model of Jagannathan and Wang (2007) or Savov (2011) due to their use of annual data. The model also provides
superior cross-sectional fit to the five-factor model of Fama and French (2014) and the four-factor model of Hou, Xue,
and Zhang (2014). These results are available from the authors upon request.
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quarter of 1954 through the third quarter of 1983, representing 120 quarters or 30 years of

data.

2. Cumulative overlapping annual portfolio returns for the 120 quarters spanning the fourth

quarter of 1954 through the third quarter of 1983 are regressed on the smoothed level and

volatility innovations. The regression coefficients represent the initial estimates of risk expo-

sures βp,η,t and βp,w,t for the portfolios. We then regress the resulting cross-sectionally de-

meaned risk exposures on the cross-sectionally de-meaned portfolio characteristics, (xpt − x̄t)

for each month September, 1983 through November, 1983, and retain the regression parameter

estimates, δp,η,t.

3. We roll forward one quarter, augmenting the consumption growth and return data by the new

quarter’s observations, and re-estimate the model of consumption dynamics and accompany-

ing risk exposures. We then regress characteristics for each month December, 1983 through

February, 1984 on the risk exposures. Since our financial statement characteristics use the

timing convention of Fama and French (1993), these characteristics are based on financial

statement data known as of June, 1983. We continue this procedure, expanding the window

over which the model of consumption dynamics and regression of returns on innovations is

estimated until reaching the end of the sample.

In order to get some sense of how the characteristics and risk exposures relate to one another,

in Table 6 we present average coefficients, δ̄p,η with standard errors calculated as in Fama and

MacBeth (1973) and average regression adjusted R2. The coefficients on characteristics appear to

conform with the results of the cross-sectional regressions. The book-to-market ratio and past 12-

month return are positively related to risk exposures, while market value, stock issuance, and total

accruals are negatively related to risk exposures. Only asset growth is somewhat confounding, with

a positive exposure. All of the characteristics other than book-to-market ratio have statistically

significant explanatory power for variation in level risk exposures. Finally, the characteristics

explain a substantial portion of cross-sectional variation in risk exposures, with an average adjusted

R2 of 59.47%, and a range from 40.54% to 74.46%.

In Figure 2, we plot the cross-sectional mean beta over time, as well as time series of the level

innovation beta regression coefficients for each characteristic, where coefficients are averaged over

12 months. The figure also plots NBER recessions as grey bars. The cross-sectional average beta,

shown in Panel A, is relatively high in the 1980s, but decreases until the early 1990s recession.

During the recession, it increases again, and drops substantially during the 1990s expansion. The

average beta rises after the 2000s recession until 2003, where it remains fairly steady until the

2008-2009 recession, where it increases dramatically to nearly 4.4. After the recession, it drops off

again, but remains at a level closer to its 1980s levels than that exhibited during the 1990s and
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2000s. To the extent that time variation in the mean beta captures variation in risk premia, the

results appear to be reasonable, generally high in times associated with weak economic conditions

and low in times of poor conditions. However, given our fairly limited time series, we maintain

caution in interpreting the results in terms of business cycle variation.

The coefficients on characteristics also exhibit considerable time series variation. It is difficult

to select one unifying theme for the coefficients, and difficult to interpret their behavior in terms

of the business cycle. Most of the coefficients do appear to exhibit some mean-reverting behavior,

with extended periods above the mean followed by revisions downward. The coefficients on market

value are the exception, appearing to exhibit an upward trend. Beyond noting this observation, it

is difficult to interpret the coefficients’ time series behavior. Although the coefficients are clearly

sensitive to business cycle variation, they do not uniformly increase or decrease through recessions

and expansions.

To conclude, the evidence in this section suggests to us that characteristics are in fact associated

with exposures to consumption growth innovation risks. These risks appear to be driven by some

common features of the data, and exhibit some form of cyclicality, although it is not clear that

this represents exposure to cycles. However, there are interesting patterns in time-variation in the

relation between characteristics and betas that suggest differing quantities of risk associated with

different characteristics at different points in time.

4.2 Characteristics and Firm-Level Exposures to Macroeconomic Risk

In the previous section, we verified the relation between risk exposures and characteristics at the

portfolio level. We hypothesize that the relation that holds at the portfolio level also holds at

the firm level. That is, the relation between firm-level exposures and portfolio-level exposures and

characteristics is given by

βi,η,t − β̄η,t = δ′it (xit − x̄t) + uit

βp,η,t − β̄η,t =

N∑
i=1

ωi,t−1
(
δ′i,t (xit − x̄t) + uit

)
= δ′p,t (xpt − x̄t) + upt,

where i indexes firms, p represents portfolios, and ωi is the weight on asset i in the portfolio.

Consequently, by estimating the coefficients δt at the portfolio level, we can use the coefficients to

retrieve firm-specific risk measures at the firm level.6 This translation between the portfolio and

the firm level relations of risk exposures and characteristics is similar to the use of portfolio-level

6When forming firm-level risk exposures, we add back the portfolio mean risk exposure for the time period, β̄t.
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CAPM betas to measure firm-level betas in Fama and French (1992).

We implement this idea by using firm-level characteristics and portfolio-level coefficients to

calculate firm-level betas. As above, we average coefficients over 12 months to reduce some of

the estimation noise resulting from the portfolio-level regressions. We use firm-level characteristics

to form portfolios that are characterized by differences in ex ante consumption risk exposure.

Specifically, each month t, using the coefficients calculated for month t and characteristics as of

the prior June, except the past 12-month return, we calculate a consumption growth innovation

exposure for every firm. We rank firms into quintiles on the basis of this exposure and form both

equally-weighted and value-weighted portfolios. We are particularly interested in three questions.

First, does sorting firms into portfolios on the basis of ex ante predicted betas produce a positive

risk premium? Second, do the resulting portfolios exhibit ex post risk exposures that are consistent

with the ex ante ranking? Finally, can we characterize the time series variation in the ex ante risk

exposures of these portfolios in an economically meaningful way?

In Table 7, Panel A, we present the results of regressions of monthly returns on the predicted

betas. The panel presents the mean intercept and slope coefficient, with t-statistics calculated using

the procedure in Fama and MacBeth (1973). The regressions suggest that the calculated betas bear

a positive risk premium as expected; the slope coefficient of 0.221 is highly statistically significant

with a t-statistic of 3.782. The coefficient is smaller than those reported in the cross-sectional

regressions in Table 4, but of similar magnitude. Further, the qualitative conclusion of a positive

and statistically significant price of risk is consistent with our portfolio-level regression results.

In Table 7, Panel B, we present mean returns, the ex ante beta, and the ex post beta for five

value-weighted portfolios. As shown in the table, average returns increase monotonically from the

first through fourth quintiles, but fall slightly in the fifth quintile. The overall impression is of

a positive relation between average returns and consumption risk exposures, consistent with the

cross-sectional regression evidence, but the relation is slightly imperfect. Similarly, ex post risk

exposures increase monotonically for the first through fourth quintiles, but fall slightly in the fifth

quintile. The magnitudes of these betas are similar to the ex ante betas, and the generally increasing

pattern suggests that we have some success in capturing variation in ex post betas through our ex

ante characteristic betas.

In Panel C of Table 7, we present mean returns, the ex ante beta, and the ex post beta for

five equally-weighted portfolios. In contrast to the results in Panel B, returns increase perfectly

monotonically from quintile one to quintile five. The average return on the fifth quintile portfolio

exceeds that of the first quintile portfolio by 91 basis points per month, and the difference is

statistically significantly different than zero (t-statistic=4.16). Further, the ex post betas are again

of similar magnitude as the ex ante betas, and also increase monotonically across quintiles. These
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results suggest that the deviations from monotonicity in the value-weighted portfolio returns may

be related to some influential large firms with high predicted ex ante betas. Most importantly, the

results suggest that in equally-weighted portfolios, our ex ante procedure produces a consistent ex

post beta ranking.

The time series of the ex ante consumption betas calculated using characteristics is depicted in

Figure 3. For brevity, we present betas for equally-weighted portfolios; results for value-weighted

portfolios are similar. As with the coefficients, the betas exhibit some degree of low frequency

variation. This variation appears to coincide loosely with the business cycle. The low consumption

risk portfolio (first quintile) beta appears to exhibit increases associated with each of the three

recessions in our sample, with decreases in the middle of the 1990s, 2000s, and 2010s expansions.

The high consumption risk portfolio (fifth quintile) beta exhibits a steady decrease from the 1980s

through the 1990s, which is reversed in the 2000s. The beta increases dramatically in the recession

of 2007-2009. Finally, it seems that time-series variation in the betas likely comes from a common

source. The extreme quintile betas are 67% correlated with one another, and correlations with

adjacent quintiles are substantially higher. In our final section, we will employ industry portfolios

to help shed light on our methodology and the sources of the implied cross-sectional an time-series

variation in consumption risk exposures.

4.3 Factor Risk Exposures of Consumption Beta Portfolios

Our final analysis in this section is to consider the exposure of our beta-sorted portfolios to popular

return-based factor models to see if the returns on these portfolios are associated with premia for

common statistical factor risks. Fama and French (2014) and Hou, Xue, and Zhang (2014) propose

factor models designed to capture a number of return patterns observed in the data and common

to the characteristics on which we form portfolios. We investigate whether these factor models

capture variation in the consumption beta-sorted portfolios. The factor models are estimated using

time-series regressions of excess returns of the beta portfolios on the set of factors with each model:

Rp,t+1 −Rf = αFFp + βp,MRPRMRP,t+1 + βp,SMBRSMB,t+1 + βp,HMLRHML,t+1 (11)

+βp,CMARCMA,t+1 + βp,RMWRRMW,t+1 + εFFp,t+1

Rp,t+1 −Rf = αHXZp + βp,MKTRMKT,t+1 + βp,MERME,t+1 + βp,IARIA,t+1 (12)

+βp,ROERROE,t+1 + εHXZp,t+1 ,

where the first model is proposed in Fama and French (2014) and the second in Hou, Xue, and

Zhang (2014).

The Fama and French (2014) five-factor model draws on evidence from Novy-Marx (2013) and
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Aharoni, Grundy, and Zeng (2013) suggesting that profitability and investment bear risk premia

in the cross-section. They use this evidence to support augmenting the Fama and French (1993)

three-factor model with an investment and profitability factor. We use book-to-market (HML),

investment (CMA), and profitability (RMW ) factors that are formed by using portfolios sorted on

the intersection of size and book-to-market, investment, or profitability quantiles. Specifically, firms

are sorted based on market values above or below median for the cross-section, and below 30th, 30th-

70th, and above 70th percentiles on the characteristic in question. Details on variable formation

can be found in Fama and French (2014), and data are obtained from Kenneth French’s website

at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.7 Hou,

Xue, and Zhang (2014) propose a four-factor model that is similar to the five-factor model of

Fama and French (2014) in that it includes an investment (IA) and profitability factor (ROE) in

addition to a size (ME) and market (MKT ) factor. However the authors appeal to producers’

first order conditions for investment to justify the presence of the factors in the model, noting that

the return on investment will be a function of profitability and investment intensity. Details of the

construction of these factors is provided in Hou, Xue, and Zhang (2014).8

Results of this analysis are presented in Table 8. In Panel A, we present results for the Fama

and French (2014) five-factor model and in Panel B we present results for the Hou, Xue, and Zhang

(2014) model. We use the equally-weighted characteristic beta portfolios and equally-weighted

portfolios to form the Fama and French (2014) factors.9 Results in Panel A suggest that the

five-factor model has difficulty pricing the returns on these portfolios. Four of the five intercept

terms are significantly different than zero; those of the first two quintiles are negative and those

of the top two quintiles are positive. The difference in extreme quintile intercepts is 93 basis

points per month, statistically significantly different than zero at less than the 1% critical level (t-

statistic=4.769). Thus, there is a statistically significant and economically large premium associated

with the consumption beta-sorted portfolios that is unrelated to the five factors in the model.

Overall, the five factor model fares very well in capturing time series variation in portfolio re-

turns. The model R2 exceed 90% for each of the five quintiles of consumption betas. Most of the

explanatory power appears to be coming from three factors: the market risk premium, the size

factor, and the investment factor. All five slope coefficients for the market risk premium are sta-

tistically significantly different than zero and interestingly, the slope coefficients are monotonically

decreasing in quintiles, such that the high minus low consumption beta excess return is negatively

exposed to market risk. The slopes with respect to the size factor and the investment factor are

monotonically positively increasing across quintiles, suggesting that high consumption beta port-

7Thanks to Ken French for making these data available.
8Thanks to Lu Zhang and Chen Xue for providing us with these data.
9The Hou, Xue, and Zhang (2014) factors are based on value-weighted returns. Results using the value-weighted

characteristic beta portfolios are qualitatively similar to those with equally-weighted returns.

19



folios tend to covary highly with small firms and low-investment firms. The profitability factor

bears statistically significant slopes only in the intermediate quintiles, and the value factor bears

no statistically significant slopes. This latter result echoes the finding of Fama and French (2014)

that HML and CMA may capture similar covariation in returns.

Results in Panel B for the Hou, Xue, and Zhang (2014) four-factor model are similar. Intercepts

are increasing across quintiles, with a statistically significant premium of 91 basis points for high

consumption beta portfolios in excess of low consumption beta portfolios (t-statistic=4.397). As

in the five-factor model, the consumption beta sort generates a monotonically decreasing sort in

exposures the the market factor, and monotonically increasing sort in exposure to the size factor.

However, there is no discernible pattern in the investment and earnings factors. Loadings for the

middle three quintiles on the investment factor are statistically significant and positive, but extreme

portfolios do not load significantly on this factor. All five quintile portfolios load negatively and

significantly on the earnings factor, but the pattern in loadings is U-shaped. Last, the factors

explain somewhat less of the time series variation in the consumption beta-sorted portfolio returns,

but the model still explains in excess of 80% of time series variation for all five portfolios under

consideration.

In conclusion, we suggest that there are several points to take away from this analysis. The

portfolios that we form to maximize cross-sectional variation in consumption betas are based on

consumption betas predicted by firms’ asset growth, book-to-market ratio, market value, past 12-

month return, stock issuance, and total accruals. Hou, Xue, and Zhang (2014) note that all six of

these characteristics can be thought of as related to a firm’s investment policy or profitability. As

such, one would expect models that incorporate these factors to provide a good description of the

returns. We show that factors based on investment and profitability considerations, in addition to

other commonly proposed factors, do indeed describe time-series variation in the returns on our

portfolios quite well.

However, these approaches suffer from three core problems. First, the expected returns on

these portfolios cannot be fully characterized by the factor exposures, suggesting the presence of

relevant pricing components in our consumption beta-sorted portfolio returns that are independent

of that in characteristic-based statistical factors. Second, the models remain statistical, whereas

our mapping from portfolio risk exposures to firm characteristics is rooted in consumption-based

asset pricing, even if reduced-form. Finally, these factor models require one time-series to estimate

the (constant) risk exposures underlying their model; this is a critical problem in the face of time

variation in firm-level risk exposures and costs of capital that our methodology is designed to

overcome.
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5 Industry Costs of Capital

Our final analysis in the paper is an examination of industry portfolios. Industries provide a natural

laboratory in which to shed light on our firm-level methodology for measuring risk exposures and

costs of capital. As discussed in the introduction, one of the motivations for our study is the

finding in Fama and French (1997) that industry risk exposures are themselves quite difficult to

estimate. However, relative to firm equity returns, industry portfolio returns enjoy the usual

diversification effects, but - similar to firms - they also likely exhibit significant cross-sectional and

time-series variation in industry characteristics along with temporal variation in consumption risk

exposures. While we view our contribution as providing a methodology to evaluate consumption

risk exposures at the most disaggregated levels, industry portfolios provide a natural laboratory in

which to evaluate our approach.

We construct 24 industry portfolios based on Standard and Poor’s Global Industrial Classifica-

tion System (GICS) industry groups, obtained from Compustat. For each firm, we compute an ex

ante risk exposure as in the previous section, using the portfolio-level coefficients retrieved using

the 55 characteristic-sorted portfolios. We form value-weighted portfolios on the basis of industry

groups, and examine value-weighted ex ante betas. Average betas by industry group are reported

in Table 9, together with the results of Fama and MacBeth (1973) regressions of industry portfolio

returns at each point in time t on the portfolio beta as of formation at time t−1. Data are sampled

at the monthly frequency over the time period June, 1984 through December, 2012.

Panel A of Table 9 reports average returns, mean ex ante betas, and standard deviations of

betas for industry portfolios. The industry portfolios have a fairly large dispersion in average

returns, ranging from 80 basis points per month for Real Estate to 170 basis points per month for

Pharmaceuticals. However, Pharmaceuticals have a relatively low mean beta and Real Estate has a

relatively high mean beta, so the unconditional relationship across average returns and consumption

betas may be problematic. Indeed, the correlation between average returns and consumption betas

is negative, albeit statistically insignificant.

This weak relationship may be a function of the high degree of temporal variation in consump-

tion betas. The third column presents the high degree of consumption beta volatility. Moreover,

as shown in Panel B, Fama and MacBeth (1973) regressions of returns on the ex ante betas exhibit

a positive and statistically significant risk premium that is of similar magnitude to those reported

earlier in the paper. This evidence points to the danger of assuming constant risk exposures in

evaluating industry (or firm) expected returns. Consumption risk is significantly priced for firm

and industry equity returns, but the pronounced degree of variation in consumption risk exposure

masks this important feature of the data. Our methodology circumvents this limitation of the

traditional asset pricing approach.
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The evidence in this section suggests that time variation in the exposure of industry returns

to consumption risk is an important factor. While we observed that accounting for this variation

uncovers important cross-sectional pricing effects, we also want to use the industry setting to better

understand the principal sources of this beta variation through time to shed light on the mechanics

underlying our methodology.

First, we plot the ex ante consumption betas of the 24 industry groups in Figure 4. We do indeed

observe significant variation across in consumption betas through time across all industries. We

might expect that betas, and consequently the associated discount rates, will tend to be high during

contractions and low during expansions. Across all industries, there does appear to be a marked

increase in consumption betas during the financial crisis of 2007-2009, and most industries also

appear to exhibit a general decreasing trend in consumption betas during the expansion of the 1990s.

Still, it is hard to conclude from this plot that the risk exposures are decisively countercyclical.

Since the industry portfolio set is relatively contained in comparison to the firm-level analysis,

we next examine “variance decompositions” of industries’ risk exposures by evaluating the role for

the various industry-level characteristics that are driving our consumption beta construction:

V ar (βp,t) = V ar
(
β̄t
)

+ V ar (δAG,tAGp,t) + V ar (δBM,tBMp,t) + V ar (δMV,tMVp,t)

+V ar (δP12,tP12p,t) + V ar (δSI,tSIp,t) + V ar (δTA,tTAp,t) + Pp,t, (13)

where Pp,t are covariance terms among the components of the risk exposures, and for convenience

all characteristics are assumed to be cross-sectionally de-meaned. We present the proportion of

variance accounted for by each component in Table 10.

Table 10 shows interesting differences across industries in the sources of variation in industry

risk exposures. For all industries, variation in the overall mean beta is a large driver of variation

in the industry beta, averaging 71.5% and accounting for between 29% of variation for Telecom-

munications and 116% for capital goods. The second biggest determinant is the past 12-month

return, accounting for 21.7% of variation, and ranging driving 7.3% of Commercial Services beta

variation to 48.1% of Energy beta variation. After the past 12-month return the average drivers of

variation in beta in descending order of contribution are market value, stock issuance, total accru-

als, book-to-market ratio, and asset growth. Asset growth has a significant impact on variation in

Healthcare risk exposure (7.6%), the book-to-market ratio on Pharmaceuticals (14.2%), stock is-

suance on Pharmaceuticals (21.0%), and total accruals on Diversified Financials, Automobiles, and

Transportation (7.0%, 6.6%, and 6.0%, respectively). One key takeaway is that the methodology

relies on a number of different industry (or firm) characteristics to fully map out the consumption

beta through time.

Finally, with industry-level time-varying consumption betas in hand, we examine implied costs
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of capital for industry portfolios under two assumptions. We first assume that the price of con-

sumption growth risk is constant, with the quantity given by the parameter estimate in Table 4.

Under this assumption, time variation in an industry’s risk premium is driven only by variation in

the consumption risk exposure described above. Alternatively, we allow both the consumption risk

exposure and the price of risk to vary over time. In order to measure the time-varying price of risk,

we utilize the time series of estimates of prices of risk implied by the rolling procedure in Section

4.2. That is, we take point estimates, γ̂t from expanding window regressions

1

t

0∑
j=t−1

(Rp,t−j −Rf,t) = γ0,t + γη,tβ̂p,t + up,t,

where βp,t is the consumption risk exposure estimated using data from time 0 to time t. In this

case, time variation in risk premia arises from both variation in the exposure to risk and the price

of risk.

We plot the time series of the price of risk In Figure 5. As shown in the plot, there appears to

be strong countercyclical variation in the price of risk. The estimate decreases steadily through the

1980s expansion and jumps in the early 1990s recession, before decaying into the late 1990s. The

price of risk jumps again in the late 1990s and stays elevated through the early 2000s before declining

again. Finally, the price of consumption risk exhibits a pronounced increase associated with the

recession of 2007-2009. These prices of risk vary between a range of 0.40 and 0.63. Given the

evidence reported above supporting countercyclical risk exposures, we surmise that incorporating

a time-varying price of risk will intensify the counter-cyclicality of the cost of industry capital.

Averages of risk premia calculated under the assumption of constant and time-varying prices of

consumption risk are presented in Table 11. As shown in the table, costs of capital vary substantially

over time and across industries. The lowest average risk premium in both the constant and time-

varying cases is that of the Utilities industry; the quarterly risk premium of 1.60% suggests an

average risk premium of 6.38% per annum and the average of 1.43% in the time-varying case

suggests an average risk premium of 5.72% per annum. The highest average risk premium is for

the Consumer Services sector, with an implied annual risk premium on average of 8.34% in the

constant beta case and 7.46% in the time-varying beta case. The global minimum risk premium

for the sample occurs for the Semiconductor industry in the fourth quarter of 1996, at 3.71% per

annum in the constant price of risk case and 2.57% in the time-varying price of risk case. The

global maximum is 13.28% for the Media industry in the second quarter of 2010 (13.69% with

time-varying price of risk).

We examine the counter-cyclicality of risk premia more closely by explicitly considering the

relation between risk premier and consumption growth. Specifically, we estimate parameters in the
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following regression,

r̂pp,t = ap + dpIrecession,t + cp∆ct + vp,t, (14)

where r̂pp,t is industry p’s risk premium over a calendar quarter, Irecession,t is an indicator variable

that takes the value one if the economy is in NBER recession during the quarter t and zero otherwise.

Results are shown in Table 12 for the case in which the price of risk is allowed to vary over time.

Results are qualitatively similar for the constant price of risk case The table shows that the point

estimate for the sensitivity of risk exposures to consumption growth is negative for each of the 24

industry groups, with eighteen of the point estimates statistically significant at conventional levels.

This evidence is consistent with the idea of countercyclical risk premia; risk premia are high when

consumption growth is low. However, the point estimates of dp are uniformly negative, suggesting

that betas, and thus costs of capital, are on average lower in NBER recessions. Thus, risk exposures

move counter cyclically in the sense that they tend to be higher when consumption growth is low,

but this variation is not perfectly captured by NBER recessions.

The industries are ordered in Table ?? based on the magnitude of the industry beta’s exposure

to consumption growth. We interpret this ordering as indicating which industries are the most

“cyclical,” in that their costs of capital are most sensitive to changes in consumption growth. Near

the top of the list are industries that conventional wisdom would suggest tend to be more cyclically

sensitive, such as Banks and Consumer Durables, and toward the bottom are industries that are

viewed as less cyclical, such as Food, Beverage, and Tobacco and Food and Staples Retail. Some

of the results are somewhat surprising, however. For example, Utilities appears to be a relatively

cyclical industry, in the top third of sensitivities, whereas capital goods appears to be relatively

cyclical, in the bottom third of industry sensitivities.

6 Conclusion

Consumption-based asset pricing is an essential link between standard economic theory and finance,

but it has been difficult to implement practically due to the challenge of measuring low-frequency

consumption risk exposures. Despite recent progress in consumption-based asset pricing, this class

of models is not widely used for return benchmarking, risk measurement, or the firm-level analyses

of the cost of capital.

To fill this void, we provide a novel framework that permits the blending of portfolio-level con-

sumption risk exposures with asset characteristics to better characterize and predict time-varying

firm- and industry- level exposures to consumption risks. Using a model that explains roughly

two-thirds of cross-sectional variation in a set of 55 portfolios sorted on six firm characteristics,

we implement a procedure to forecast firm- and industry-level exposures to consumption risks.
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We find that portfolios sorted on these consumption risks generally exhibit ex post exposures to

consumption risks that are consistent with ex ante predictions. Further, the resulting time-varying

costs of capital are plausible.

The procedure proposed in this paper has the potential to be applied to a wide range of uses for

the imputation of cost of capital. Implied risk premium estimates could be used for benchmarking

mutual fund performance, evaluating the profitability of trading strategies, and estimating required

rates of return. The advantage of using this framework is that it is firmly rooted in economic theory,

specifically the consumption-based pricing models of Lucas (1978) and Breeden (1979). As such, it

represents an economic-based alternative to risk adjustment and cost of capital estimation based

on ad hoc statistical return factors.
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Table 1: Average Returns

Table 1 depicts average returns on a set of 55 portfolios formed on the basis of six characteristics. Portfolios
are formed on asset growth (AG), book-to-market ratio (BM), market value (MV), past 12-month return
(P12), net stock issues (SI), and total accruals (TA). We form value-weighted portfolios based on deciles
of six characteristics and quintiles of net stock issues. Data are sampled at the quarterly frequency from
September, 1953 through December, 2012. Returns are deflated to real using the PCE deflator from the
NIPA tables at the Bureau of Economic Analysis.

Dec/Quint AG BM MV P12 SI TA
1 2.79 1.92 3.66 -0.71 2.44 2.70
2 2.58 1.76 2.99 0.42 2.23 2.27
3 2.46 2.22 3.02 0.95 2.28 2.22
4 2.21 1.99 2.77 1.69 2.10 2.14
5 2.32 2.33 2.69 1.92 1.36 2.30
6 2.16 2.37 2.86 1.90 2.34
7 2.28 2.43 2.64 2.29 1.99
8 2.24 2.82 2.56 2.65 2.00
9 2.12 2.91 2.52 2.95 1.97
10 1.59 3.47 1.98 4.21 1.38
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Table 2: Consumption Growth Innovation Risk Exposures

In Table 2, we present growth innovation risk exposures and standard errors from a regression of cumulative
portfolio excess returns on cumulative consumption growth level innovations,

7∏
j=0

Ri,t−j = ai + βi,η

7∑
j=0

η̂t−j + ei,t,

where η̂t is the innovation in the level of consumption growth. Returns are on portfolios sorted on asset
growth (AG), book-to-market ratio (BM), market value (MV), past 12-month return (P12), stock issues (SI),
and total accruals (TA). We present point estimates of growth risk exposures, βi,η in Panel A and t-statistics
for the estimates, calculated using the Newey-West correction with eight lags, in Panel B. Data are sampled
at the quarterly frequency over the period September, 1953 through December, 2012.

Panel A: Estimates

Decile AG BM MV P12 SI TA
1 3.81 3.12 6.71 0.29 3.66 4.68
2 2.66 2.07 5.31 2.81 3.55 3.57
3 2.55 2.16 4.43 2.53 3.65 3.16
4 2.81 2.09 4.43 2.18 3.31 2.91
5 2.75 3.06 4.21 2.38 2.35 2.54
6 3.00 3.38 4.07 2.07 2.21
7 4.13 3.99 3.73 2.43 3.05
8 3.18 3.66 3.03 3.07 3.57
9 3.20 3.30 2.79 4.29 3.82
10 2.53 4.41 3.19 6.92 1.81

Panel B: t-statistics

Decile AG BM MV P12 SI TA
1 2.13 1.84 2.71 0.12 2.85 2.92
2 1.91 1.55 2.45 1.48 2.90 2.46
3 1.89 1.58 2.21 1.46 2.64 2.48
4 2.18 1.30 2.44 1.36 2.31 2.33
5 2.15 2.13 2.64 1.77 1.63 1.94
6 2.41 2.80 2.59 1.53 1.87
7 2.82 2.30 2.51 1.88 1.92
8 2.34 2.60 2.14 2.54 2.51
9 2.08 2.51 1.95 3.01 2.34
10 1.55 2.93 2.46 3.87 1.02
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Table 3: Volatility Innovation Risk Exposures

In Table 3, we present volatility innovation risk exposures and standard errors from a regression of cumulative
portfolio excess returns on cumulative volatility innovations,

7∏
j=0

Ri,t−j = ai + βi,w

7∑
j=0

ŵt+1 + ei,t,

where ŵt is the innovation in consumption volatility. Consumption volatility is measured as the squared

innovation in the level of consumption growth, ˆeta
2

t , and is assumed to follow an AR(1). Returns are
on portfolios sorted on asset growth (AG), book-to-market ratio (BM), market value (MV), past 12-month
return (P12), stock issues (SI), and total accruals (TA). We present point estimates of growth risk exposures,
βi,η in Panel A and t-statistics for the estimates, calculated using the Newey-West correction with eight lags,
in Panel B. Data are sampled at the quarterly frequency over the period September, 1953 through December,
2012.

Panel A: Estimates

Decile AG BM MV P12 SI TA
1 -4.04 -1.34 -0.56 0.54 -3.05 -2.40
2 -3.60 -1.36 -1.97 -1.92 -2.78 -3.40
3 -3.69 -3.75 -2.66 -4.19 -3.63 -3.70
4 -4.60 -4.69 -2.02 -4.25 -3.20 -2.47
5 -3.55 -3.51 -2.71 -3.07 -2.77 -3.87
6 -3.36 -3.51 -2.15 -2.63 -2.67
7 -4.19 -4.94 -2.07 -2.34 -3.78
8 -2.51 -3.01 -2.37 -2.28 -2.99
9 -1.08 -3.70 -2.72 -1.89 -3.52
10 -0.40 -3.27 -3.25 -1.19 -1.47

Panel B: t-statistics

Decile AG BM MV P12 SI TA
1 -1.66 -0.51 -0.13 0.19 -1.40 -0.80
2 -1.67 -0.61 -0.51 -0.69 -1.40 -1.37
3 -1.88 -2.42 -0.83 -1.72 -1.58 -1.75
4 -2.83 -1.91 -0.63 -2.66 -1.18 -1.21
5 -1.71 -1.62 -1.00 -1.83 -1.06 -2.02
6 -1.70 -1.48 -0.80 -1.72 -1.53
7 -1.79 -1.55 -0.76 -1.28 -1.57
8 -1.11 -1.19 -0.95 -0.87 -1.05
9 -0.39 -1.49 -1.11 -0.53 -1.08
10 -0.13 -1.12 -1.53 -0.24 -0.60
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Table 4: Cross-Sectional Regressions

Table 4 presents estimates of cross-sectional regressions of average excess portfolio returns on risk measures,

R̄i − R̄f = γ0 + γηβi,η + γwβi,w + ui,

where R̄i is the average real quarterly return on a set of 55 portfolios formed on asset growth, book-to-market ratio,
market value, past 12-month return, net stock issues, and total accruals, and Rf is the real quarterly compounded
return on a Treasury Bill closest to one month to maturity. The independent variables βi,η and βi,w are slope
coefficients from three versions of the first stage regression,

K∏
j=0

Ri,t−j = ai + βi,η

7∑
j=0

η̂t−j + βi,w

K∑
j=0

ŵt+1 + ei,t,

where η̂t+1 is the innovation in the level of consumption growth and ŵt+1 is the innovation in consumption volatility
measured as the AR(1) residual on the squared consumption growth innovation, η̂2t+1. We present results based on
single regressions of cumulative returns on cumulative consumption growth level innovations, single regressions of
cumulative returns on cumulative consumption growth volatility innovations, and multiple regressions of cumulative
returns on both consumption level and volatility innovations. Results are presented for cumulations over K = 1, 2, 4, 8
periods. The table presents point estimates and adjusted R2 for three versions of the model: Model 1 with the
restriction γw = 0, Model 2 with γη = 0, and an unrestricted version, Model 3. Standard errors corrected for first
stage estimation bias following Shanken (1992) are presented in parentheses below the point estimates. Beneath the
adjusted R2, we present 95% critical values for adjusted R2 from 5000 Monte Carlo simulations under the null that
the independent variables have no explanatory power for the returns. Data are sampled at the quarterly frequency
over the period September, 1953 through December, 2012.

Panel A: K = 1 Panel B: K = 2

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

γ0 0.51 1.84 0.57 γ0 0.19 1.97 -0.12
t-stat. (1.88) (16.94) (2.16) t-stat. 0.80 8.94 -0.45

γη 0.44 0.46 γη 0.54 0.61
t-stat. (2.01) (1.99) t-stat. 2.71 2.91

γw -0.52 -0.35 γw -0.08 -0.28
t-stat. (-0.72) (-1.51) t-stat. -0.25 -1.70

R̄2 38.20 13.77 43.65 R̄2 56.63 -1.19 59.05
Crit. Value (43.07) (43.48) (56.26) Crit. Value (44.34) (44.59) (58.07)

Panel C: K = 4 Panel D: K = 8

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

γ0 0.19 1.88 -0.22 γ0 0.32 1.54 -0.07
t-stat. (0.93) (6.39) (-0.82) t-stat. 1.58 4.19 -0.26

γη 0.58 0.64 γη 0.54 0.60
t-stat. (3.07) (3.52) t-stat. 3.13 3.75

γw -0.07 -0.22 γw -0.11 -0.19
t-stat. (-0.40) (-2.05) t-stat. -0.94 -2.05

R̄2 64.11 -0.78 66.82 R̄2 60.82 1.88 62.59
Crit. Value (40.90) (40.28) (53.93) Crit. Value (36.51) (34.71) (49.94)

32



Table 5: Cross-Sectional Pricing Errors

Table 5 presents pricing errors, ui, from cross-sectional regressions of average returns on exposure to con-
sumption level innovation risk exposure,

R̄i − R̄f = γ0 + γηβi,η,

where R̄i is the average real quarterly return on a set of 55 portfolios formed on asset growth, book-to-market
ratio, market value, past 12-month return, net stock issues, and total accruals, and Rf is the real quarterly
compounded return on a Treasury Bill closest to one month to maturity. The independent variable βi,η is
the slope coefficient from the first stage regression,

8∏
j=0

Ri,t−j = ai + βi,η

7∑
j=0

η̂t−j + ei,t,

where η̂t+1 is the innovation in the level of consumption growth. In addition to pricing errors, we present
the mean absolute error (m.a.e.) and the results of a χ2

N−1 test that the residuals are jointly equal to zero.
Data are sampled at the quarterly frequency over the period September, 1953 through December, 2012.

Decile AG BM MV P12 SI TA
1 0.22 -0.21 -0.31 -1.44 -0.03 -0.28
2 0.67 0.14 -0.30 -1.69 -0.16 -0.16
3 0.61 0.58 0.18 -1.00 -0.17 0.07
4 0.21 0.39 -0.12 0.00 -0.19 0.11
5 0.38 0.21 -0.13 0.11 -0.46 0.46
6 0.04 0.06 0.10 0.30 0.67
7 -0.44 -0.20 0.07 0.52 -0.16
8 0.00 0.37 0.37 0.54 -0.43
9 -0.08 0.59 0.49 0.18 -0.71
10 -0.24 0.58 -0.23 0.07 -0.17

m.a.e.: 0.34
H0: ui = 0 0.64 (0.65)
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Table 6: Relation Between Portfolio Betas and Characteristics
Table 6 presents results of regressions of portfolio betas on characteristics,(

β̂it − β̄t

)
= d0t + dt

(
Xit − X̄t

)
+ vit,

where β̂it is the portfolio exposure to cumulative consumption level risk estimated using data from time 0
through time t and Xit is a vector of portfolio characteristics at time t. The characteristics are those used to
form portfolios; asset growth (AG), book-to-market ratio (BM), market value (MV), past 12 month return
(P12), stock issuance (SI), and total accruals (TA). The table reports mean estimates d̄t and t-statistics
calculated as in Fama and MacBeth (1973). Data are sampled at the quarterly frequency over the period
September, 1953 through December, 2012.

AG BM MV P12 SI TA R̄2

Mean 0.57 0.02 -0.48 1.71 -1.66 -5.97 59.47
t-stat. 9.96 1.16 -76.16 35.79 -24.14 -47.56

34



Table 7: Implied Firm-Level Betas
Table 7 depicts summary statistics for portfolios sorted on betas predicted by portfolio-level regressions
of betas on characteristics. Each month t, using data available to month t, we regress cross-sectionally
demeaned estimated exposures of 55 portfolios sorted on asset growth, book-to-market ratio, market value,
past 12 month return, stock issuance, and total accruals onto their cross-sectionally de-meaned characteristics
for the month. We utilize the portfolio level regression coefficients to construct firm-level betas, and repeat
the procedure each month from September, 1983 through November, 2012. We then form portfolios on
quintiles of calculated betas for monthly holding periods. Panel A presents regressions of firm returns on
estimated betas,

ri,t+1 = γ0,t + γη,tβ̃i,η,t + ui,t,

where β̃i,t is the calculated risk exposure. We report mean parameter estimates and t-statistics calculated as
in Fama and MacBeth (1973). Panel B presents means, ex ante betas, and ex post betas for value-weighted
portfolios formed on quintiles of calculated risk exposure. The ex post betas are estimated via the regression

3∏
j=0

Rp,t−j = ap + βη,p

3∑
j=0

ηt−j + ep,t.

In Panel C, we report means, ex ante betas, and ex post betas for equally-weighted portfolios formed on
quintiles of calculated risk exposures. Data cover the period June, 1984 through December 2012. Mean
returns are nominal and calculated using monthly returns; risk exposures are calculated using quarterly
returns and deflated to real using the PCE deflator from the BEA.

Panel A: Fama-MacBeth Regressions

γ̄0 γ̄η
Mean 0.565 0.221
t-stat (1.463) (3.782)

Panel B: Value-Weighted Portfolios

Quintile Mean Ex ante βη Ex post βη
1 0.925 1.155 4.079
2 1.080 2.494 4.373
3 1.212 3.219 5.748
4 1.444 3.936 7.581
5 1.318 5.130 6.686

Panel C: Equally-Weighted Portfolios

Quintile Mean Ex ante βη Ex post βη
1 0.867 1.268 1.112
2 1.058 2.566 1.731
3 1.193 3.269 2.734
4 1.350 3.993 3.159
5 1.777 5.296 5.003
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Table 8: Factor Model Risk Adjustment
Table 8 presents time series regressions of returns on consumption beta-sorted quintile portfolios on factors
from the Fama and French (2014) and Hou, Xue, and Zhang (2014) factor models:

Rp,t+1 −Rf = αFFp + βp,MRPRMRP,t+1 + βp,SMBRSMB,t+1 + βp,HMLRHML,t+1

+βp,CMARCMA,t+1 + βp,RMWRRMW,t+1 + εFFp,t+1

Rp,t+1 −Rf = αHXZp + βp,MKTRMKT,t+1 + βp,MERME,t+1 + βp,IARIA,t+1

+βp,ROERROE,t+1 + εHXZp,t+1 .

Panel A presents results for the Fama and French (2014) model and Panel B results for the Hou, Xue, and
Zhang (2014) model. Data are sampled at the monthly frequency from June, 1984 through December, 2012.

Panel A: Fama-French (2014) Model

Quintile α βMRP βSMB βHML βCMA βRMW R2

1 Coefficient -0.28 1.21 -0.38 0.02 -0.07 -0.07 90.89
t-stat -2.38 49.42 -8.61 0.27 -0.81 -1.21

2 Coefficient -0.19 1.12 -0.28 -0.01 0.11 0.22 96.44
t-stat -3.04 85.78 -11.91 -0.35 2.28 7.22

3 Coefficient -0.04 1.04 -0.01 0.01 0.11 0.30 96.55
t-stat -0.62 84.85 -0.64 0.33 2.45 10.49

4 Coefficient 0.15 0.97 0.21 0.03 0.16 0.21 96.01
t-stat 2.45 73.45 8.71 0.88 3.32 6.89

5 Coefficient 0.65 0.92 0.36 -0.04 0.25 -0.01 91.86
t-stat 6.52 44.51 9.63 -0.80 3.36 -0.13

5-1 Coefficient 0.93 -0.29 0.75 -0.06 0.32 0.06 34.48
t-stat 4.77 -7.06 10.12 -0.57 2.21 0.67

Panel B: Hou, Xue, and Zhang (2014) Model

Quintile α βMKT βME βIA βROE R2

1 Coefficient 0.14 1.08 0.31 0.03 -0.57 82.64
t-stat 0.88 29.08 6.13 0.37 -9.49

2 Coefficient 0.09 1.01 0.50 0.23 -0.27 91.38
t-stat 0.96 45.21 16.28 4.66 -7.38

3 Coefficient 0.23 0.90 0.66 0.22 -0.21 91.21
t-stat 2.48 41.90 22.41 4.80 -6.02

4 Coefficient 0.47 0.81 0.76 0.21 -0.27 88.20
t-stat 4.38 32.41 22.25 3.82 -6.68

5 Coefficient 1.05 0.76 0.85 0.08 -0.42 81.94
t-stat 7.15 22.32 18.26 1.09 -7.68

5-1 Coefficient 0.91 -0.32 0.54 0.05 0.15 24.82
t-stat 4.40 -6.74 8.22 0.49 1.92
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Table 9: Industry Risk Exposures

Table 9 presents mean returns, betas, and standard deviations of betas for industry group portfolios. Industry
groups are defined according to Global Industrial Classification Standard Codes (GICS) obtained from
Compustat. Betas are computed using portfolio-level relations between risk exposures and characteristics.
Results of Fama and MacBeth (1973) regressions of returns on betas are presented in Panel B,

Rp,t+1 = γ0,t + γη,tβp,t + ut,

where we report averages of the point estimates of γ0,t and γ1,t and associated standard errors. Data are
sampled at the monthly frequency over the period June, 1984 through December, 2012.

Panel A: Summary Statistics

Industry R̄ β̄η σβη Industry R̄ β̄η σβη

Energy 1.19 3.34 0.55 Household Products 1.30 3.39 0.44
Materials 1.17 3.22 0.43 Healthcare 1.30 3.32 0.47
Capital Goods 1.15 3.41 0.36 Pharmaceuticals 1.70 2.87 0.48
Commercial Services 0.96 3.55 0.43 Banks 1.16 2.94 0.70
Transportation 1.14 3.33 0.38 Diversified Financials 1.18 3.12 0.42
Automobiles and Components 0.96 3.13 0.51 Insurance 1.17 2.89 0.42
Consumer Durables 0.92 3.50 0.51 Real Estate 0.80 3.54 0.45
Consumer Services 0.95 3.61 0.40 Software 1.38 3.41 0.44
Media 1.07 3.35 0.58 Technology Hardware 1.25 3.46 0.49
Retailing 1.00 3.34 0.50 Semiconductors 1.73 3.11 0.61
Food and Staples Retail 1.06 3.11 0.38 Telecommunications 1.34 2.83 0.72
Food, Beverage, and Tobacco 1.08 3.13 0.37 Utilities 1.04 2.76 0.46

Panel B: Fama-MacBeth Regressions

γ̄0 γ̄η
Mean -0.190 0.456
t-stat -0.263 2.052
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Table 10: Decomposition of Industry Risk Exposures

Table 10 decomposes industry risk exposures into proportions arising from industry characteristics,

1 =
V ar

(
β̄t
)

V ar (βp,t)
+
V ar (δAG,tAGp,t)

V ar (βp,t)
+
V ar (δBM,tBMp,t)

V ar (βp,t)
+
V ar (δMV,tMVp,t)

V ar (βp,t)

+
V ar (δP12,tP12p,t)

V ar (βp,t)
+
V ar (δSI,tSIp,t)

V ar (βp,t)
+
V ar (δTA,tTAp,t)

V ar (βp,t)
+

Pp,t
V ar (βp,t)

,

where AGp,t, BMp,t, MVp,t, P12p,t, SIp,t, and TAp,t are the demeaned average portfolio asset growth,
book-to-market ratio, market value, past 12-month return, stock issuance, and total accruals, respectively,
β̄t is the cross-sectional mean risk exposure at time t and Pp,t represent covariance terms. Data are sampled
for 24 industry groups over the period June, 1984 through December, 2014.

Industry β̄ AG BM MV P12 SI TA Corr.
Energy 0.496 0.038 0.009 0.190 0.481 0.096 0.053 -0.363
Materials 0.793 0.010 0.017 0.044 0.180 0.017 0.015 -0.077
Capital Goods 1.164 0.011 0.012 0.025 0.104 0.028 0.038 -0.383
Commercial Services 0.804 0.003 0.008 0.037 0.073 0.035 0.015 0.025
Transportation 1.031 0.006 0.028 0.026 0.125 0.052 0.060 -0.328
Automobiles and Components 0.573 0.008 0.015 0.065 0.308 0.040 0.066 -0.075
Consumer Durables 0.587 0.005 0.023 0.022 0.159 0.022 0.045 0.138
Consumer Services 0.918 0.010 0.006 0.049 0.177 0.038 0.048 -0.245
Media 0.443 0.016 0.014 0.039 0.141 0.032 0.038 0.278
Retailing 0.605 0.002 0.007 0.082 0.142 0.026 0.052 0.085
Food and Staples Retail 1.025 0.009 0.006 0.157 0.287 0.099 0.055 -0.637
Food, Beverage, and Tobacco 1.106 0.005 0.004 0.182 0.216 0.072 0.018 -0.604
Household Products 0.757 0.013 0.018 0.086 0.204 0.051 0.029 -0.158
Healthcare 0.677 0.076 0.025 0.059 0.105 0.040 0.019 0.000
Pharmaceuticals 0.642 0.034 0.142 0.106 0.353 0.210 0.044 -0.531
Banks 0.306 0.004 0.022 0.117 0.172 0.044 0.020 0.316
Diversified Financials 0.848 0.011 0.005 0.102 0.079 0.039 0.070 -0.154
Insurance 0.846 0.013 0.060 0.043 0.183 0.072 0.052 -0.269
Real Estate 0.743 0.016 0.036 0.062 0.287 0.090 0.058 -0.293
Software 0.770 0.020 0.059 0.071 0.349 0.033 0.053 -0.355
Technology Hardware 0.618 0.010 0.007 0.046 0.198 0.011 0.053 0.058
Semiconductors 0.397 0.023 0.023 0.117 0.412 0.014 0.048 -0.033
Telecommunications 0.290 0.010 0.007 0.121 0.191 0.088 0.055 0.239
Utilities 0.722 0.008 0.035 0.219 0.294 0.049 0.017 -0.345
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Table 11: Summary Statistics of Industry Risk Premia
Table 11 presents means and standard deviations of industry risk premier. The first two columns are means
and standard deviations assuming a constant price of consumption risk, γη = 0.58, as estimated in Table
4. The second set of columns utilize risk premia calculated using a time varying price of consumption
risk. The price of consumption risk is estimated from an expanding window regression of characteristics
portfolio returns on risk exposures. Ex ante betas are computed using the relation between characteristics
and characteristic portfolio-level betas. Data are sampled at the quarterly frequency over the period July,
1984 through December, 2012.

Constant Time-Varying
Industry Mean Std. Mean Std.
Energy 1.934 0.313 1.732 0.396
Materials 1.859 0.251 1.666 0.351
Capital Goods 1.974 0.207 1.764 0.306
Commercial Services 2.053 0.250 1.835 0.339
Transportation 1.926 0.218 1.724 0.318
Automobiles and Components 1.809 0.293 1.620 0.377
Consumer Durables 2.025 0.291 1.815 0.395
Consumer Services 2.084 0.232 1.864 0.329
Media 1.935 0.333 1.736 0.422
Retailing 1.931 0.287 1.731 0.378
Food and Staples Retail 1.795 0.218 1.606 0.305
Food, Beverage, and Tobacco 1.811 0.211 1.619 0.298
Household Products 1.961 0.255 1.752 0.321
Healthcare 1.916 0.271 1.714 0.333
Pharmaceuticals 1.657 0.275 1.485 0.330
Banks 1.697 0.397 1.528 0.461
Diversified Financials 1.802 0.241 1.613 0.320
Insurance 1.671 0.239 1.495 0.314
Real Estate 2.046 0.249 1.832 0.345
Software 1.969 0.254 1.761 0.329
Technology Hardware 1.998 0.284 1.787 0.360
Semiconductors 1.801 0.351 1.609 0.391
Telecommunications 1.635 0.413 1.476 0.479
Utilities 1.595 0.259 1.431 0.335
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Table 12: Relation of Industry Risk Premia to Economic Environment
Table 12 presents results of regressions of ex ante industry risk premia on an indicator variable and con-
sumption growth,

rpp,t = ap + dpIrecession,t + cp∆ct + vp,t,

where rpp,t =
¯̂
βp,tγη,t is industry p’s average risk premium over a calendar quarter, Irecession,t is an indicator

variable that takes the value one if the economy is in NBER recession during the quarter t and zero otherwise.
Risk premia are calculated using ex ante betas and prices of risk, γη,t, estimated from an expanding window
regression of characteristics portfolio returns on risk exposures. Ex ante betas are computed using the
relation between characteristics and characteristic portfolio-level betas. The table presents point estimates
of the coefficients and associated t-statistics. Data are sampled at the quarterly frequency over the period
July, 1984 through December, 2012.

Industry dp cp td tc

Banks -0.38 -40.19 -2.29 -3.13
Telecommunications -0.46 -31.49 -2.70 -2.35
Insurance -0.38 -30.03 -3.44 -3.51
Consumer Durables -0.49 -26.58 -3.55 -2.44
Media -0.53 -25.90 -3.58 -2.23
Household Products -0.33 -24.36 -2.91 -2.72
Technology Hardware -0.45 -24.00 -3.51 -2.42
Utilities -0.24 -23.30 -1.98 -2.46
Healthcare -0.27 -21.99 -2.21 -2.34
Pharmaceuticals -0.24 -21.20 -1.97 -2.27
Retailing -0.47 -20.99 -3.55 -2.02
Semiconductors -0.39 -20.61 -2.80 -1.88
Transportation -0.36 -20.56 -3.22 -2.33
Software -0.41 -19.54 -3.51 -2.15
Diversified Financials -0.44 -17.75 -3.96 -2.04
Automobiles and Components -0.33 -16.89 -2.43 -1.58
Materials -0.35 -15.96 -2.78 -1.62
Capital Goods -0.34 -15.95 -3.17 -1.87
Commercial Services -0.34 -14.95 -2.77 -1.57
Food, Beverage, and Tobacco -0.22 -14.90 -2.04 -1.76
Food and Staples Retail -0.34 -14.15 -3.18 -1.67
Energy -0.29 -12.41 -2.01 -1.10
Consumer Services -0.35 -12.22 -2.94 -1.33
Real Estate -0.36 -9.52 -2.90 -0.99
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Figure 1: Cross-Sectional Fit
Figure 1 presents the fit of cross-sectional regressions of average returns on risk exposures,

R̄i −Rf = γ0 + γηβi,η + ui,

where risk exposures, βi,η are estimated from the first stage regression,

K−1∏
j=0

Ri,t−j = ai + βi,η

7∑
j=0

η̂t−j + βi,w

K∑
j=0

ŵt+1 + ei,t,

for varying lag lengths, K, where ηt−j is the innovation in log real per capita consumption growth at time
t − j . Panels (a)-(d) present results using lag lengths K = 1, 2, 4, 8. Returns are returns to 55 portfolios
sorted on asset growth (AG), book-to-market ratio (BM), market capitalization (MV), past 12-month return
(P12), stock issuance (SI), and total accruals (TA). Individual scatter points represent the loci of predicted
expected return and average expected return. The solid blue line is the 45-degree line. Data cover the period
September, 1953 through December, 2012 and are sampled at the quarterly frequency.
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Figure 2: Loadings of Betas on Characteristics
Figure 2 depicts the loadings of cross-sectionally demeaned estimated betas on cross-sectionally demeaned
characteristics over time. Betas are estimated by regressing cumulative returns over four quarters on cu-
mulated consumption growth over four quarters using an expanding window starting with the time period
September, 1953 through June, 1983. We depict the mean beta over time in subfigure (a). Time series of
loadings are depicted for (b) asset growth, (c) book-to-market ratio, (d) market value, (e) past 12-month
return, (f) stock issuance, and (g) total accruals. NBER recessions are depicted as grey bars. Coefficients
are smoothed over the past 12 months by averaging.

(a) Mean (b) Asset Growth

(c) Book-to-Market (d) Market Value

Figure continued on next page.
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(e) Past 12 Month Return (f) Stock Issuance

(g) Total Accruals
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Figure 3: Time Series of ex ante Betas
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Figure 4: Industry Betas

(a) Energy (b) Materials

(c) Capital Goods (d) Commercial Services

(e) Transport (f) Autos
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(g) Consumer Durables (h) Consumer Services

(i) Media (j) Retailing

(k) Food & Staples Retail (l) Food, Beverage, and Tobacco
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(m) Household Products (n) Healthcare

(o) Pharmaceuticals (p) Banks

(q) Diversified Financials (r) Insurance
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(s) Real Estate (t) Software

(u) Technology Hardware (v) Semiconductors

(w) Telecommunications (x) Utilities

48



Figure 5: Price of Consumption Risk
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