Anomalies*

Erica X. N. Li
University of Michigan

Dmitry Livdan
University of California, Berkeley

Lu Zhang
University of Michigan and NBER

*We acknowledge helpful comments from Malcolm Baker, Mike Barclay, Nick Barberis, Jonathan Berk, Mark Bils, Robert Bloomfield, Jim Booth, Peter Bossaerts, John Campbell, Murray Carlson, V. V. Chari, Jason Chen, John Cochrane, Martijn Cremers, Murray Frank, Will Goetzmann, Bob Goldstein, Joao Gomes, Jeremy Greenwood, John Heaton, Christopher Hennessy, Zvi Hercowitz, Patrick Kehoe, Narayana Kocherlakota, Leonid Kogan, Pete Kyle, Owen Lamont, John Long, Sydney Ludvigson, Ellen McGrattan, Lionel McKenzie, Roni Michaely, Stefan Nagel, Martin Schneider, Bill Schwert, Jeremy Stein, Hans Stoll, Jerry Warner, David Weinbaum, Yuhang Xing, Amir Yaron, and other seminar participants at Arizona State University, Cornell University, Ohio State University, MIT, University of California at Berkeley, University of Colorado at Boulder, University of Minnesota, Federal Reserve Bank of Minneapolis, Federal Reserve Bank of St. Louis, University of North Carolina at Chapel Hill, University of Rochester (Economics Department and Simon School of Business), University of Wisconsin at Madison, Vanderbilt University, Yale School of Management, NBER Asset Pricing meetings, and Utah Winter Finance Conference. We are particularly grateful to Matt Spiegel (the editor) and three anonymous referees for extensive and insightful comments. This paper supersedes two previous working papers titled “Anomalies” (NBER working paper #11322) and “Optimal market timing” (NBER working paper #12014). All remaining errors are our own. Address correspondence to: Lu Zhang, Finance Department, Stephen M. Ross School of Business, University of Michigan, 701 Tappan, ER 7605 Bus Ad, Ann Arbor MI 48109-1234; and NBER. Tel: (734) 615-4854, fax: (734) 936-0282, and e-mail: zhanglu@bus.umich.edu.
Anomalies

We take a simple $q$-theory model and ask how well it can explain external financing anomalies, both qualitatively and quantitatively. Our central insight is that optimal investment is an important driving force of these anomalies. The model simultaneously reproduces procyclical equity issuance waves, the negative relation between investment and average returns, long-term underperformance following equity issues, positive long-term drift following cash distributions, the mean-reverting operating performance of issuing and cash-distributing firms, and the failure of the CAPM in explaining the long-term stock-price drifts. However, the model cannot fully capture the magnitude of the positive drift following cash distributions observed in the data.
We take a simple $q$-theory model and ask how well the model can explain external financing anomalies, both qualitatively and quantitatively. Our central insight is that optimal investment is an important driving force of these anomalies.

Our economic question is important. The empirical finance literature has uncovered tantalizing evidence on the relation between financing decisions and average returns. Firms raising capital earn lower average returns, whereas firms distributing capital earn higher average returns in the future three to five years. A leading explanation of this evidence is behavioral market timing. Loughran and Ritter (1995) argue that managers can create value for existing shareholders by timing financing decisions to exploit mispricing caused by market inefficiencies. Managers can issue equity when their stock prices are overvalued and turn to internal funds or debt when stock prices are undervalued. Further, investors underreact to the pricing information conveyed by market timing.

We provide a neoclassical interpretation of the external financing anomalies. Our $q$-theory model reproduces simultaneously many stylized facts that have been interpreted as behavioral market timing: (i) The frequency of equity issuance is procyclical; (ii) investment is negatively related with future stock returns in the cross section, and the magnitude of this correlation is stronger in firms with higher cash flows; (iii) firms conducting seasoned equity offerings underperform nonissuers with similar size and book-to-market in the long run; (iv) the operating performance of issuing firms substantially improves prior to equity offerings, but then deteriorates; (v) firms distributing cash back to shareholders outperform other firms with similar size and book-to-market, and the outperformance is stronger in value firms than in growth firms; and (vi) relative to industry peers, firms announcing share repurchases exhibit superior operating performance, but the performance declines following
the announcements. However, while the model goes a long way in quantitatively explaining the negative investment-return relation and the post-issuance underperformance, the model cannot fully capture the empirical magnitude of the positive stock-price drift following cash distributions.

In the model, investment and the discount rate are negatively related through two channels. First, firms invest more when their marginal $q$ (the net present value of future cash flows generated from one additional unit of capital) is high. All else equal, low discount rates give rise to high marginal $q$ and high investment, and high discount rates give rise to low marginal $q$ and low investment. Second, decreasing returns to scale mean that more investments lead to lower marginal product of capital, which in turn means lower expected returns.

The negative investment-return relation drives the external financing anomalies. The flow of funds constraint (that equates the sources of funds with the uses of funds) implies that, all else equal, equity issuing firms are disproportionately high investment firms, and cash-distributing firms are disproportionately low investment firms. Thus, raising capital is related with high investment and low expected returns, and distributing capital is related with low investment and high expected returns.

The investment-return relation and the new equity-return relation are anomalous because they cannot be explained by the CAPM in the data. The dynamic single-factor structure means that the conditional CAPM holds exactly in our model. But standard empirical tests performed on simulated data reject the CAPM. Two reasons: First, estimated betas are noisy proxies for true betas, a point made as early as Miller and Scholes (1972). Second, even if we can measure betas perfectly, linear regressions are misspecified because the true model is nonlinear (due to time-varying price of risk).
Firm-level profitability is mean-reverting in the model and in the data (e.g., Fama and French 1995, 2000, 2006). Ex-post, equity issuers tend to be firms that have recently experienced sizable positive profitability shocks. Going forward, however, issuers face the same distribution of shocks as other firms do. When looking back at historical data, we are likely to observe that the operating performance of issuing firms substantially improves prior to the issuance, but deteriorates afterward.

Cochrane (1991, 1996) is the first to use the $q$-theory to derive the negative relation between investment and expected returns. We apply his insight to study external financing anomalies. Pástor and Veronesi (2005) develop a model of optimal timing, in which waves of initial public offerings are driven by declines in expected market returns and increases in expected aggregate profitability. Carlson, Fisher, and Giammarino (2006) use a real options model to explain the underperformance following seasoned equity offerings. We study the long-term performance following equity issues and cash distributions simultaneously. Leary and Roberts (2005), Hennessy and Whited (2005), and Strebulaev (2007) cast doubt on behavioral market timing, but from the capital structure perspective. We contribute by studying the relation between equity financing decisions and average returns.

1 The Model

1.1 Technology

Production requires capital and is subject to aggregate productivity and firm-specific productivity shocks. The aggregate productivity, $x_t$, has a stationary and monotone Markov
transition function, \( Q_x(x_{t+1} | x_t) \), and is given by:

\[
x_{t+1} = \Phi(1 - \rho_x) + \rho_x x_t + \sigma_x \varepsilon^x_{t+1}
\]  

(1)

in which \( \varepsilon^x_{t+1} \) is an i.i.d. standard normal variable. The aggregate shock serves as the ultimate source of systematic risk. Without it, all firms will earn expected returns that equal the real interest rate.

The firm-specific productivity, \( z_{jt} \), has a common stationary and monotone Markov transition function, \( Q_z(z_{jt+1} | z_{jt}) \), given by:

\[
z_{jt+1} = \rho_z z_{jt} + \sigma_z \varepsilon^z_{jt+1}
\]  

(2)

in which \( \varepsilon^z_{jt+1} \) (an i.i.d. standard normal variable) is the firm-specific productivity shock, which works as the ultimate source of firm heterogeneity. \( \varepsilon^z_{jt+1} \) and \( \varepsilon^x_{jt+1} \) are uncorrelated for any pair \((i, j)\) with \( i \neq j \), and \( \varepsilon^x_{jt+1} \) is independent of \( \varepsilon^z_{jt+1} \) for all \( j \).

The production function is given by:

\[
\pi_{jt} = e^{x_t + z_{jt}} k_{jt}^\alpha - f
\]  

(3)

in which \( \pi_{jt} \) and \( k_{jt} \) are the operating profits and capital of firm \( j \) at time \( t \), respectively, and \( f \) denotes nonnegative fixed costs of production. The production function exhibits decreasing returns to scale: The curvature parameter satisfies \( 0 < \alpha < 1 \) (low \( \alpha \) means high curvature in the production technology). Decreasing returns to scale capture the idea that firms grow by taking on more investment opportunities. Because better opportunities are
taken first, an increase in productive scale causes output to increase by a smaller proportion. Alternatively, decreasing returns to scale can be motivated by limited managerial or organizational resources that result in problems of managing large, multi-unit firms such as increasing costs of coordination (e.g., Lucas 1978).

1.2 “Tastes”

We parameterize the stochastic discount factor, denoted $m_{t+1}$:

$$\log m_{t+1} = \log \eta + \gamma_t (x_t - x_{t+1})$$  \hspace{1cm} (4)

$$\gamma_t = \gamma_0 + \gamma_1 (x_t - \bar{x})$$  \hspace{1cm} (5)

in which $1 > \eta > 0$, $\gamma_0 > 0$, and $\gamma_1 < 0$ are constant parameters and $x_t$ is aggregate productivity. Equations (4) and (5) imply that the real interest rate is $1/E_t[m_{t+1}] = (1/\eta) \exp(-\mu_m - \sigma_m^2/2)$ and the maximum Sharpe ratio is $\sigma_t[m_{t+1}]/E_t[m_{t+1}] = \sqrt{\exp(\sigma_m^2) - 1}$, in which $\mu_m \equiv [\gamma_0 + \gamma_1 (x_t - \bar{x})](1 - \rho_x)(x_t - \bar{x})$ and $\sigma_m \equiv \sigma_x[\gamma_0 + \gamma_1 (x_t - \bar{x})]$. When $\gamma_1 = 0$, the Sharpe ratio is constant. Thus, we set $\gamma_1 < 0$ to make the Sharpe ratio countercyclical à la Campbell and Cochrane (1999) and Zhang (2005).

1.3 Corporate Policies

Upon observing current aggregate and firm-specific productivity shocks, firm $j$ chooses optimal investment, $i_{jt}$, to maximize its market value of equity. The capital accumulation follows:

$$k_{jt+1} = i_{jt} + (1 - \delta)k_{jt}$$  \hspace{1cm} (6)
in which $\delta$ denotes the constant rate of capital depreciation. Capital investment entails quadratic adjustment costs, denoted $c_{jt}$, which are given by:

$$c_{jt} \equiv c(i_{jt}, k_{jt}) = \frac{a}{2} \left( \frac{i_{jt}}{k_{jt}} \right)^2 k_{jt}$$

(7)

in which $a > 0$ is a constant parameter. Because of capital adjustment costs, the market value of the firm divided by its capital (Tobin’s $Q$) is larger than one even with constant returns to scale ($\alpha = 1$).

When the sum of investment, $i_{jt}$, and adjustment costs, $c_{jt}$, exceeds internal funds, $\pi_{jt}$, the firm raises new equity capital, $e_{jt}$, from the external equity markets:

$$e_{jt} \equiv \max (0, i_{jt} + c_{jt} - \pi_{jt})$$

(8)

We assume that new equity is the only source of external finance.

This modeling choice befits our empirical objectives. The external financing anomalies are mostly concentrated on issuing new equity and repurchasing shares (e.g., Ritter 1991; Loughran and Ritter 1995; Ikenberry, Lakonishok, and Vermaelen 1995). Firms issuing straight debts only weakly underperform, if at all (e.g., Spiess and Affleck-Graves 1999; Lyandres, Sun, and Zhang 2007). Debt issuers only underperform when issuing convertible bonds, which are often treated as new equity (e.g., Fama and French 2005). From the distribution side, Ikenberry et al., among others, document that firms outperform after distributing capital to shareholders (such as paying dividends and repurchasing shares). But we are unaware of similar evidence for firms distributing capital to bondholders (such as paying interest and retiring corporate bonds).
Finally, the leverage-return relation is ambiguous in the data, and leverage is often dominated by other characteristics in explaining the cross section of returns. For example, Fama and French (1992, p. 427) argue that: “Two easily measured variables, size and book-to-market equity, combine to capture the cross-sectional variation in average stock returns associated with market $\beta$, size, leverage, book-to-market equity, and earnings-price ratios.” Fama and French show that market leverage predicts returns with a positive sign, but book leverage predicts returns with a negative sign, and interpret this evidence as reflecting the book-to-market effect.

External equity is costly (e.g., Smith 1977; Lee, Lochhead, Ritter, and Zhao 1996; Al-tinkilic and Hansen 2000). To capture this effect, we follow Gomes (2001) and Hennessy and Whited (2005) and assume that for each dollar of external equity raised, firms must pay proportional flotation costs. There also are fixed costs of financing. Thus, we parameterize the total financing-cost function as:

$$\lambda_{jt} \equiv \lambda(e_{jt}) = \lambda_0 1_{\{e_{jt} > 0\}} + \lambda_1 e_{jt}$$

in which $\lambda_0 > 0$ captures the fixed costs, $1_{\{e_{jt} > 0\}}$ is the indicator function that takes the value of one if the event described in $\{ \} \text{ occurs, and } \lambda_1 e_{jt} > 0$ captures the proportional costs.

When the sum of investment and adjustment costs is lower than internal funds, the firm pays the difference back to shareholders. The payout, $d_{jt}$, is given by:

$$d_{jt} \equiv \max (0, \pi_{jt} - i_{jt} - c_{jt})$$

Firms do not incur costs when paying dividends or repurchasing shares. Also, for simplicity,
we do not model corporate cash holdings or the specific forms of the payout. Equation (10) only pins down the total amount paid to shareholders, but not the methods of distribution. Because there are costs associated with raising capital, but not with distributing payout, firms will only use external equity as the last resort when internal funds are not sufficient to finance investments.

1.4 Equity Value, Risk, and Expected Returns

Let \( v(k_{jt}, z_{jt}, x_t) \) denote the cum-dividend market value of equity for firm \( j \). Define:

\[
o_{jt} \equiv d_{jt} - e_{jt} - \lambda(e_{jt}) = \pi_{jt} - i_{jt} - c_{jt} - \lambda(e_{jt})
\] (11)

to be the effective cash flow accrued to shareholders (cash distributions minus the sum of external equity raised and the financing costs). The dynamic value-maximizing problem for firm \( j \) is:

\[
v(k_{jt}, z_{jt}, x_t) = \max_{\{o_{jt}\}} \left\{ o_{jt} + \int \int m_{t+1} v(k_{jt+1}, z_{jt+1}, x_{t+1}) Q_z(dz_{jt+1}|z_{jt}) Q_x(dx_{t+1}|x_t) \right\}
\] (12)

subject to the capital accumulation equation (6) and the flow of funds constraint (11).

Risk and expected returns are determined endogenously along with value-maximizing corporate policies in our model. Evaluating the value function at the optimum yields:

\[
v_{jt} = o_{jt} + E_t [m_{t+1} v_{jt+1}] \Rightarrow 1 = E_t [m_{t+1} r_{jt+1}]
\] (13)

in which firm \( j \)'s stock return is: \( r_{jt+1} \equiv v_{jt+1}/(v_{jt} - o_{jt}) \). Note that \( v(k_{jt}, z_{jt}, x_t) \) is the
cum-dividend equity value. If we define \( p_{jt} \equiv v_{jt} - o_{jt} \) as the ex-dividend market value of equity, \( r_{jt+1} \) reduces to the usual definition of \( (p_{jt+1} + o_{jt+1})/p_{jt} \).

We can rewrite equation (13) as the beta-pricing form, following Cochrane (2001 p. 19):

\[
E_t[r_{jt+1}] = r_{ft} + \beta_{jt} \zeta_{mt} \tag{14}
\]

in which \( r_{ft} \equiv 1/E_t[m_{t+1}] \) is the real interest rate, \( \beta_{jt} \) is risk defined as:

\[
\beta_{jt} \equiv \frac{-\text{Cov}_t[r_{jt+1}, m_{t+1}]}{\text{Var}_t[m_{t+1}]} \tag{15}
\]

and \( \zeta_{mt} \) is the price of risk defined as \( \zeta_{mt} \equiv \text{Var}_t[m_{t+1}]/E_t[m_{t+1}] \).

All the endogenous variables including risk and expected returns are functions of three state variables (the endogenous state, \( k_{jt} \), and two exogenous states, \( x_t \) and \( z_{jt} \)). Although the functional forms are not available analytically, we can solve for them numerically.

2 Properties of the Model Solution

2.1 Calibration

We calibrate 14 parameters, \( \alpha, \bar{x}, \rho_x, \sigma_x, \rho_z, \sigma_z, \eta, f, \gamma_0, \gamma_1, \delta, a, \lambda_0, \lambda_1 \), in monthly frequency. The parameter values are largely comparable to those in previous studies. We use three aggregate moments (the mean and volatility of real interest rate and the average Sharpe ratio) to pin down the three parameters in the pricing kernel, \( \eta = 0.994, \gamma_0 = 50, \) and \( \gamma_1 = -1,000 \). The long-run average level of the aggregate productivity, \( \bar{x} \), is a scaling variable. We set \( \bar{x} = -3.751 \) such that the average long-run capital in the economy
is roughly one. For technology parameters, we set the persistence of the aggregate productivity \( \rho_x = \sqrt{0.95} \) and its conditional volatility \( \sigma_x = 0.007/3 \). With the specification of \( x_t \) in equation (1), these monthly values correspond to quarterly values of 0.95 and 0.007, respectively, as in Cooley and Prescott (1995). The persistence \( \rho_z \) and conditional volatility \( \sigma_z \) of the firm-specific productivity are 0.965 and 0.10, respectively, which are close to the values in Zhang (2005). The curvature of the production function \( \alpha \) is 0.70, close to the value estimated by Cooper and Ejarque (2001) and Hennessy and Whited (2007).

We restrict other parameters by targeting the summary statistics of quantity variables. The mean and volatility of the investment-to-assets ratio help identify the depreciation rate \( \delta = 0.01 \) and the adjustment-cost parameter \( a = 15 \), respectively. These values are close to those in Zhang (2005). The frequency of equity issuance and the average net equity-to-assets ratio help identify the financing-cost parameters \( \lambda_0 = 0.08 \) and \( \lambda_1 = 0.025 \), which are close to the values in Gomes (2001). Finally, we set \( f = 0.005 \) to match the average aggregate market-to-book ratio.

2.2 The Value and Optimal Policy Functions

We use the value function iteration on a discrete state space to solve the model (see Appendix A for details). Figure 1 plots the value and optimal policy functions. To focus on the cross-sectional variation, we fix the aggregate productivity at its long-run average, and plot the functions against capital stock, \( k_{jt} \), and firm-specific productivity, \( z_{jt} \).

Panel A shows that firm value increases in both capital and firm-specific productivity. Because of decreasing returns to scale, firm value is concave in the capital stock. From Panel B, decreasing returns to scale also imply that the optimal investment-to-assets ratio
decreases in capital: Small firms with less capital invest more and grow faster than big firms with more capital, consistent with the evidence in Evans (1987) and Hall (1987). Also, more profitable firms invest more than less profitable firms, consistent with the evidence in Fama and French (1995). The new equity-to-assets ratio behaves similarly as investment-to-assets (untabulated). Smaller firms and more profitable firms issue more equity than bigger firms and less profitable firms, consistent with the evidence in Fama and French (2005). This result is natural given the flow of funds constraint in equation (8).

From Panel D, small firms hardly distribute any cash back to shareholders, whereas big firms distribute more. This prediction is consistent with Barclay, Smith, and Watts (1995), who document that dividend yields correlate positively with the log of total sales (a measure of firm physical size). Moreover, more profitable firms distribute more than less profitable firms, consistent with the evidence in Jagannathan, Stephens, and Weisbach (2000) and Lie (2005).

2.3 Fundamental Determinants of Risk

To preview the results, risk ($\beta_{jt}$ defined in equation 15) decreases with the capital stock and investment. Risk also increases with fixed costs of production, the adjustment costs, and the fixed and variable financing costs, but decreases with the curvature in the production function.

2.3.1 The Physical-Size Effect

From Panel A of Figure 2, small firms with less capital are riskier than big firms with more capital. We call this result the physical-size effect to be distinguished from the size (market
capitalization) effect of Banz (1981). The physical-size effect is present in the data.\(^1\)

Decreasing returns to scale are the main driver of the physical-size effect. We use a simple example to illustrate the mechanism. Although the setup is extremely simple, the mechanism is likely to be present in more realistic models. There are two periods, 1 and 2. A firm’s production function is given by \(k_t^\alpha\) with \(t = 1, 2\). \(k_1\) depreciates at the rate of \(\delta\), meaning \(k_2 = i + (1 - \delta)k_1\), in which \(i\) is investment in period 1. There are no adjustment costs of capital. The firm faces a gross discount rate (expected return) of \(r\), which is known at time 1. The value-maximization problem is:

\[
\max_{\{k_t\}} \left( k_1^\alpha - k_2 + (1 - \delta)k_1 + \frac{1}{r} [k_2^\alpha + (1 - \delta)k_2] \right)
\]

The first-order condition says that:

\[
-1 + \frac{1}{r} (\alpha k_2^{\alpha - 1} + 1 - \delta) = 0 \quad \Rightarrow \quad r = \alpha k_2^{\alpha - 1} + 1 - \delta \quad (16)
\]

Taking the derivative of \(r\) with respect to \(k_2\):

\[
\frac{\partial r}{\partial k_2} = \alpha (\alpha - 1) k_2^{\alpha - 2} < 0
\]

which explains the physical-size effect. The effect disappears with constant returns to scale and reverses sign with increasing returns to scale.
2.3.2 The Capital Investment Effect

There are two channels driving the negative relation between the discount rate and capital investment. The cash flow channel works through decreasing returns to scale, and the discount rate channel works through capital adjustment costs. Both channels are present in our dynamic model.

To see the cash flow channel, we plug $k_2 = i + (1 - \delta)k_1$ into equation (16) and take the derivative of $r$ with respect to $i$ to obtain:

$$\frac{\partial r}{\partial i} = \alpha(\alpha - 1)k_2^{\alpha-2} < 0$$  \hspace{1cm} (17)

Intuitively, diminishing returns to scale means that more investments lead to lower marginal product of capital, which in turn means lower expected returns. This cash flow channel disappears with constant returns to scale and reverses its sign with increasing returns to scale.

To see the discount rate channel, we introduce into the setup capital adjustment costs. Suppose the adjustment costs are quadratic, $(a/2)(i/k_1)^2k_1$. The value-maximization problem becomes:

$$\max_{\{k_2\}} \left( k_1^\alpha - k_2 + (1 - \delta)k_1 - \frac{a}{2} \left[ \frac{k_2}{k_1} - (1 - \delta) \right]^2 k_1 + \frac{1}{r} \left[ k_2^\alpha + (1 - \delta)k_2 \right] \right)$$

The first-order condition implies that:

$$r = \frac{\alpha[i + (1 - \delta)k_1]^\alpha - 1 - \delta}{1 + a(i/k_1)} \Rightarrow \frac{\partial r}{\partial i} = \frac{\alpha(\alpha - 1)k_2^{\alpha-2}}{1 + a(i/k_1)} - \frac{\alpha k_2^{\alpha-1}a}{[1 + a(i/k_1)]^2k_1} < 0$$

With constant returns to scale ($\alpha = 1$), the first term in $\partial r/\partial i$ (the cash flow channel)
disappears. But the discount rate channel persists because the second term in $\partial r/\partial i$ is negative. Intuitively, firms invest more when their marginal $q$ is high. All else equal, low discount rates mean high marginal $q$ and high investment, and high discount rates mean low marginal $q$ and low investment. The discount rate channel has been discussed in the prior literature (e.g., Cochrane 1991), but the cash flow channel is new. (We thank a referee for pointing out the cash flow channel to us.)

2.3.3 Comparative Statics

We also ask how risk is affected by key structural parameters in our economy. Panels B to F of Figure 2 report results from five comparative static experiments: (i) high curvature in the production function ($\alpha = 0.50$); (ii) low fixed costs of production ($f = 0$); (iii) high adjustment costs ($a = 50$); (iv) low fixed costs of financing ($\lambda_0 = 0.04$); and (v) high variable costs of financing ($\lambda_1 = 0.075$), respectively. The broken lines in each panel are from the alternative specifications, and the solid lines are from the benchmark calibration (same as in Panel A) to facilitate comparison.

From Panel B, increasing the curvature in the production function by decreasing $\alpha$ from 0.70 to 0.50 decreases risk. Panel C shows that risk decreases once we lower the fixed costs of production, $f$. This result is consistent with Carlson, Fisher, and Giammarino (2004), who argue that operating leverage causes risk to increase: When a firm is hit with negative shocks, its operating profits fall relative to the fixed costs. As a result, cash flows are more sensitive to aggregate shocks. Panel D shows that risk increases with the adjustment cost parameter $a$. The risk of a firm in production economies is inversely related to its flexibility in using investment to mitigate the effect of productivity shocks on its dividend
stream (e.g., Zhang 2005). The more flexible a firm is in this regard, the less risky it is. The adjustment costs are the exact offsetting force of this dividend smoothing mechanism. The higher adjustment costs a firm faces, the less flexible it is in adjusting capital, and the riskier it will be. We extend this insight to financing costs. The financing costs play a similar role as adjustment costs. Higher financing costs prevent firms from using capital investment to smooth dividend steams, giving rise to higher risk. This mechanism explains the results in Panels E and F that risk increases in both fixed and variable financing costs.

3 Quantitative Results

We focus on evaluating the quantitative performance of the model in explaining the external financing anomalies. We simulate 1,000 artificial panels, each of which has 5,000 firms and 720 months. We start by assuming the initial capital stocks of all firms to be at their long-run average level (which equals one) and by drawing their firm-specific productivity levels from the unconditional distribution of $z_{jt}$. We drop the initial 240 months of data to neutralize the effect of initial conditions. The remaining 480 months of data are treated as those from the stationary distribution. The sample size is largely comparable to CRSP/COMPSTAT merged data set used in most empirical studies.

On each artificial panel, we implement the same test procedures from several well-known empirical studies. We report cross-simulation averaged results and the empirical distributions of key test statistics, which are then compared with the statistics obtained in related empirical studies.
3.1 Preliminaries

The overall fit of the unconditional moments in Table 1 is reasonable. The means and volatilities for the risk-free rate, the aggregate investment-to-assets, and the aggregate book-to-market from the model are close to those in the data. However, the frequency of equity issuance in the model, 28.5%, is higher than that in the data, 9.9%, from Hennessy and Whited (2005). Hennessy and Whited measure new equity as sales of common and preferred stocks minus the purchase of common and preferred stocks. However, seasoned equity is unlikely to be the only way that public firms use to issue equity. Fama and French (2005) show that firms can issue equity in mergers and through private placements, convertible debt, warrants, direct purchase plans, rights issues, and employee options, grants, and benefit plans. During 1973 to 1982, on average 67% of firms issue some equity each year, and the proportion increases to 74% from 1983 to 1992, and 86% from 1993 to 2002.

Choe, Masulis, and Nanda (1993) report that the relative frequency of equity offers (the number of equity offerings per month scaled by the number of listed firms) is procyclical. To see whether the model can explain this stylized fact, we define expansions in our economy as times when the aggregate productivity is at least one unconditional standard deviation above its long-run average \( x_t > \bar{x} + \sigma_x / \sqrt{1 - \rho_x^2} \) and contractions as times when the aggregate productivity is at least one unconditional standard deviation below its long-run average \( x_t < \bar{x} - \sigma_x / \sqrt{1 - \rho_x^2} \). The relative frequency of equity issuance is measured as \( (1/n) \sum_{j=1}^{n} 1_{\{e_{jt} > 0\}} \), in which \( 1_{\{e_{jt} > 0\}} \) is the indicator function that takes a value of one if firm \( j \) issues equity and zero otherwise, and \( n \) is the total number of firms in the economy. Without entry and exit, \( n \) remains constant. Incorporating entry and exit is likely to reinforce our results because the frequency of entry (initial public offerings) tends to be
procyclical and the frequency of exit (delisting) tends to be countercyclical.

We compute the average frequency of equity issuance conditional on business cycles in our economy. Consistent with Choe et al., the equity issuance is procyclical in our model: Its relative frequency is 82.5% in expansions and only 1.5% in contractions.

3.2 Capital Investment and Stock Returns

The external financing anomalies are intimately linked to the negative relation between investment and the discount rate. Richardson and Sloan (2003) document that the negative relation between external finance and future returns varies systematically with the use of proceeds. When the proceeds are invested in net operating assets as opposed to being stored as cash, there exists a stronger negative relation. But there is no negative relation for refinancing transactions. Thus, we study the investment-return relation before we turn to the external financing anomalies.

We focus on Titman, Wei, and Xie (2004), who interpret their evidence on the negative relation between investment and average subsequent returns as investors underreacting to empire-building behavior of managers. Following Titman et al., we define capital investment (CI) in the portfolio formation year \( t \) as

\[
CI_{jt-1} = \frac{3CE_{jt-1}}{(CE_{jt-2} + CE_{jt-3} + CE_{jt-4})} - 1
\]

in which \( CE_{jt-1} \) is firm \( j \)’s capital expenditure scaled by sales during year \( t-1 \). We measure \( CE_{jt-1} \) in the model as the investment-to-output ratio, \( i_{jt-1}/\pi_{jt-1} \) (the output price is normalized to be one). The last three-year moving-average capital expenditure in the denominator of \( CI_{jt-1} \) is used to proxy for firm \( j \)’s benchmark investment. In the beginning of year \( t \), we sort all firms into quintiles based on \( CI_{jt-1} \) in ascending order. The firms remain in these portfolios for the whole year \( t \), and the portfolios are rebalanced annually. We
construct a $CI$-spread portfolio long in the lowest $CI$ portfolio and short in the highest $CI$ portfolio. The value-weighted monthly excess returns for each $CI$ portfolio are calculated. Following Titman et al., we measure excess returns relative to benchmarks constructed to have similar size, book-to-market, and prior returns (see Appendix B.1 for details).

We also perform the following Fama-MacBeth (1973) cross-sectional regressions:

$$r_{jt+1}^a = l_0t + l_1t CI_{jt} + l_2t CI_{jt} \times DCF_{jt} + u_{jt+1}$$  \hspace{1cm} (18)$$

in which $r_{jt+1}^a$ is the benchmark-adjusted value-weighted return on individual stock $j$, and $DCF$ is the dummy variable based on the cash flow (operating income-to-assets, measured as $\pi_{jt}/k_{jt}$ in the model). If firm $j$’s cash flow is above the median of the year, $DCF$ equals one, and zero otherwise.

Consistent with Titman, Wei, and Xie (2004), Panel A of Table 2 reports that firms with low $CI$ earn higher average returns than firms with high $CI$. The model-implied average $CI$-spread is 10.1% per annum, which falls short of the magnitude in the data: 16.9%. Panel A of Figure 3 reports the empirical distribution for the mean $CI$-spread across 1,000 simulations. The empirical estimate of 16.9% lies in the extreme right tail of the distribution ($p$-value < 1%). Thus, the model cannot fully account for the high average $CI$-spread observed in the data.

Panel B of Table 2 reports the results from the cross-sectional regression given by equation (18). The relation between future stock returns and capital investment is negative in the simulated data. The average $CI$ slope across simulations is $-0.56$ ($t = -3.14$), close to the empirical estimate of $-0.79$ ($t = 2.80$). Further, the magnitude of the investment-
return relation increases with operating income-to-assets, as shown by the negative slope for the interaction term, $CI \times DCF$. The cross-simulation averaged slope is $-0.47$ ($t = 3.44$), whereas the empirical estimate is $-0.76$ ($t = -2.19$). To formally evaluate how far the simulated averages are from their empirical estimates, Panels B and C of Figure 3 report the joint empirical distribution of the $CI$ and $CI \times DCF$ slopes as well as that of their $t$-statistics in simulations. The panels show that the empirical estimates can be adequately explained by the model. Specifically, the $p$-value of the empirical $CI$ and $CI \times DCF$ slopes calculated with the simulated distribution in Panel B is 0.67. (The $p$-value is calculated by counting the number of simulations that have $CI$ slopes higher than $-0.79$ and have $CI \times DCF$ slopes higher than $-0.76$ and dividing this number by 1,000.) Further, the $p$-value of the $t$-statistics of the slopes in the data from the simulated distribution in Panel C is 0.07.

Recent studies emphasize the importance for structural models to explain the failure of the CAPM (e.g., Lettau and Wachter 2007; Lewellen and Nagel 2006). This issue is important given the single-factor structure in our model: Because the aggregate productivity growth is perfectly correlated with market excess returns conditionally, the conditional CAPM holds. However, because of measurement errors in betas, empirical tests can reject the CAPM, even if the CAPM is the true data-generating model. This point has been made at least since Miller and Scholes (1972). Miller and Scholes use randomly generated returns constructed to obey the CAPM, and find that the results of the simulated asset pricing tests are virtually identical to those from using the real data.

Our results reported in Panel C of Table 2 reinforce Miller and Scholes’ (1972) view. When we use 60-month rolling-window regressions to estimate betas, characteristics such as $CI$ and $CI \times DCF$ dominate betas in explaining average returns in cross-sectional re-
gressions. But when we replace the rolling betas with the true betas (see Appendix A for their calculation details), characteristics are no longer significant, and the true betas are significant. These results are quantitatively similar with those of Gomes, Kogan, and Zhang (2003) in the context of the size and book-to-market effects. The results suggest that the failures of the CAPM in the data are likely to reflect deficiencies in test design, as opposed to deficiencies in underlying economic theory.

3.3 Long-Term Underperformance Following Seasoned Equity Offerings

Loughran and Ritter (1995) document that firms issuing equity earn lower average returns in the future three to five years than nonissuing firms with similar characteristics (also see Spiess and Affleck-Graves 1995). Following Loughran and Ritter’s test design in their Table VIII, we use simulated panels to perform Fama-MacBeth (1973) monthly cross-sectional regressions of percentage stock returns on the market capitalization, book-to-market equity, and an issue dummy:

\[ r_{jt+1} = b_0 + b_1 \log(ME_{jt}) + b_2 \log(BM_{jt}) + b_3 ISSUE_{jt} + u_{jt+1} \]  \hspace{1cm} (19)

\( r_{jt+1} \) is the percentage return on stock \( j \) over month \( t \), and all the regressors are at the beginning of month \( t \). \( ME_{jt} \) is the ex-dividend firm value, \( p_{jt} \), on the most recent fiscal year-end prior to the month \( t \). \( BM_{jt} \) is the book-to-market ratio of firm \( j \), \( k_{jt}/p_{jt} \), on the most recent fiscal year-end prior to the month \( t \). \( ISSUE_{jt} \equiv 1_{\{\sum_{\tau=0}^{5} e_{jt-\tau} > 0\}} \) is a dummy variable that takes a value of one if firm \( j \) has conducted one or more equity issues in the previous five years, and zero otherwise. We also partition the sample on the basis of the fraction of the sample firms in a month that have issued equity during the prior five years.
The light-volume sample contains the months with the fraction below its median, and the heavy-volume sample contains the months with the fraction above its median.

Panel A of Table 3 shows that the model does a reasonable job in quantitatively reproducing Loughran and Ritter’s (1995) evidence. When the issue dummy is used alone, issuing firms underperform by 0.49% per month \((t = -3.98)\) in the data. The model-implied underperformance is 0.81% per month \((t = -4.76)\). Controlling for size and book-to-market reduces the underperformance to 0.38% per month in the data \((t = -2.32)\) and to 0.44% in the model \((t = -2.87)\). In the data, issuing firms underperform by an insignificant amount of 0.17% per month following light issuance activity but by a significant amount of 0.60% following heavy issuance activity. Similarly, in the model, issuing firms following light issuance activity slightly overperform by an insignificant 0.06% per month, but those following heavy issuance activity underperform by a significant 0.90% per month.

Figure 4 reports the empirical distributions for the \textit{ISSUE} slopes from the cross-sectional regressions in Panel A of Table 3. Across all four regressions, the empirical estimates of the \textit{ISSUE} slopes are well within their respective empirical distributions from the model. For example, the \(p\)-value of the univariate \textit{ISSUE} slope from its empirical distribution is 0.58. And the \(p\)-values for the \textit{ISSUE} slope in the multiple regressions with size and book-to-market using the full, light-volume, and heavy-volume samples are 0.75, 0.69, and 0.89, respectively.

Panel B of Table 3 examines whether the model can quantitatively explain the failure of the CAPM in the context of the post-issue underperformance. Controlling for the 60-month rolling betas in the Loughran and Ritter (1995) cross-sectional regressions does not change the basic pattern that the \textit{ISSUE} slopes are significant negative. Even when we use the
true betas in the cross-sectional regressions, the issue dummy has significant negative slopes in all regressions. This result suggests another important reason why standard asset pricing tests are likely to over-reject the CAPM. The risk-return relation given by equation (14) is highly nonlinear. But when we fit linear regressions even without any measurement errors in betas, we implicitly assume that the price of risk, \( \zeta_{mt} \), is constant. This misspecification leads to the rejection of the CAPM, even when the conditional CAPM holds in the model. To account for the nonlinearity, we replace the true betas with the true expected returns (see Appendix A for their calculation details). Notably, none of the firm characteristics are significant in the regressions, and the true expected returns have slopes that are all reliably different from zero but insignificantly different from one.

### 3.4 Operating Performance Following Seasoned Equity Offerings

Loughran and Ritter (1997) document that the operating performance of issuing firms displays substantial improvement prior to the equity offerings, but then deteriorates. Issuing firms also are disproportionately high-investing and high-growth firms. They interpret the evidence using Jensen’s (1993) hypothesis that corporate culture excessively focuses on growth, and managers are as overly optimistic about the future profitability as outside investors.

We use simulated panels to replicate Loughran and Ritter’s (1997) Table II by reporting the medians of the operating performance for issuing firms and matching firms for nine years around the issuance. Our matching procedure follows that of Loughran and Ritter (see Appendix B.2 for details). We consider four operating performance measures: (i) operating income before depreciation scaled by assets, measured as \( \pi_{jt}/k_{jt} \) in the model; (ii) prof-
itability, \((k_{jt+1} - k_{jt} + a_{jt})/k_{jt}\) from the clean surplus relation; (iii) investment-to-assets, \(i_{jt}/k_{jt}\); and (iv) market-to-book, \(p_{jt}/k_{jt}\).

Table 4 reports the details. Consistent with Loughran and Ritter (1997), issuers in the model experience post-issue deterioration in the operating performance. After equity issuance, the operating income-to-assets and profitability of issuers become significantly lower than those of nonissuers. Issuers also have significantly higher investment-to-assets and market-to-book than matching nonissuers. However, the model-implied operating income-to-assets and profitability are higher than those observed in the data. A possible reason is that capital in the model corresponds to the fixed assets that are only part of the total assets in the data.

What drives the deteriorating accounting performance of firms after issuing equity? Intuitively, firm-level profitability in the model is driven by the persistent and mean-reverting firm-specific productivity given by equation (2). Ex-post, issuers tend to be firms that have recently experienced relatively high firm-specific shocks, \(\epsilon_{jt+1}^z\). But going forward, issuers face the same conditional, standard normal distribution of the shocks as other firms do.

When we as econometricians look back at the historical sample, we are likely to observe the mean-reverting behavior in the firm-specific productivity, \(z_{jt}\). Further, the more extreme the shocks on \(z_{jt}\) prior to equity issuance, the faster the speed of mean-reversion afterward that we are likely to observe.

### 3.5 Long-Term Stock-Price Performance Following Cash Distributions

Firms raising capital underperform matching firms in the future three to five years. But when firms distribute cash back to shareholders, they outperform matching firms. Ikenberry,
Lakonishok, and Vermaelen (1995) show that the average abnormal four-year buy-and-hold return after the announcements of open market share repurchases is 12.1% in 1980–1990. Further, the average abnormal return is 45.3% for value firms, but is insignificant negative for growth firms. Similarly, Michaely, Thaler, and Womack (1995) show that stock prices continue to drift in the same direction in the years following the announcements of dividend initiations and omissions.

We aim to replicate Tables 3 and 4 in Ikenberry, Lakonishok, and Vermaelen (1995) using our simulated panels. We identify firms with positive dividends in the model as those conducting stock repurchases in the data. As noted, the model only pins down the total amount of payout, not its specific forms: The Miller-Modigliani (1961) dividend irrelevancy theorem holds in our model. We report mean annual returns from buying an equal-weighted portfolio of repurchasing firms, beginning in the month following the repurchase and for the subsequent four years. We also report total compounded returns for up to four years, and compare the returns of the cash distributing firms to the returns of the reference portfolio. Finally, we examine these annual buy-and-hold returns and compounded holding-period returns by book-to-market quintiles. We follow closely Ikenberry et al. in forming the reference portfolio (see Appendix B.3 for details).

Although qualitatively going in the right direction, the model cannot fully explain the magnitude of the positive long-term stock-price drift following cash distributions. Panel A of Table 5 reports annual buy-and-hold returns and compounded holding period returns up to four years following share repurchases. The model predicts that cash distributing firms indeed earn higher average returns than nondistributing firms. But the magnitude of the average return differences in the simulated data is in general lower than those in the data.
Figure 5 reports the empirical distributions for the differences in annual buy-and-hold returns up to four years between the repurchase portfolio and its reference portfolio. The empirical estimates for the first three post-formation years are in the right tails of their corresponding simulated distributions ($p$-values = 0.025, 0.002, and 0, respectively). The empirical estimate for the fourth year is in the extreme left tail of its empirical distribution ($p$-value = 1). Further, Panels B to F in Table 5 report that the magnitude of the long-run stock-price drift following cash distribution also is higher in value firms than that in growth firms in the model. However, the magnitude of the drift in the model is again lower than that in the data.

### 3.6 Long-Term Operating Performance Following Cash Distributions

Using data of announcements of open market share repurchases from 1981 to 2000, Lie (2005) finds that, relative to industry peers, firms that announce repurchases exhibit superior operating performance, but the performance declines following the announcements.

We aim to replicate Lie’s (2005) Table 3 by examining both unadjusted and adjusted operating performance around announcements of share repurchases. Unadjusted performance is the operating performance for the cash distributing firms. We measure operating performance in the model as operating profits scaled by capital, $\pi_{jt}/k_{jt}$. Adjusted performance is the unadjusted performance less the performance for control firms. Following Lie, we use two sets of control firms. The first set consists of firms that are similar in book value of assets. We choose as the control firm the firm that has capital closest to that of the cash distributing firm. The second set consists of firms that have similar pre-event performance characteristics and market-to-book (see Appendix B.4 for details).

Table 6 reports the results. The unadjusted performance displays deteriorations in
performance from the announcement quarter to future quarters. The mean change of performance from quarter 0 to +4 is $-0.40\%$ in the data, and the mean change in the model is similar, $-0.41\%$. The industry-adjusted performance shows that, both in the data and in the model, cash distributing firms perform better than their respective peers before and after the announcements. Moreover, the superior performance tends to diminish over time, suggesting that operating performance mean-reverts.

The model fails to reproduce the empirical pattern that the changes in performance-adjusted performance from quarter 0 to future quarters show significant improvements. The mean and median changes from quarter 0 to quarter +4 are 0.21\% and 0.12\% in the data, respectively. Lie (2005) interprets this evidence as suggesting that cash distributing firms exhibit performance improvements relative to pre-event expectations. Because the firm-specific productivity is the primary source of firm heterogeneity, matching on pre-event performance adequately captures the expected decline in performance. As a result, the performance-adjusted performance for cash distributing firms (columns two and four in Panel C of Table 6) in the model is close to zero in magnitude.

4 Discussion

Our quantitative results shed light on what drives the external financing anomalies. Our goal in this section is not to refute existing explanations of the external financing anomalies, but to show that our investment-based explanation differs in fundamental ways.

There are currently three leading explanations for the external financing anomalies. First, behavioral market timing argues that managers can create value for existing shareholders by timing financing decisions to exploit mispricing in inefficient markets. And in-
vestors underreact to the pricing implications of market timing, generating long-term drifts following these corporate events (e.g., Ritter 1991; Loughran and Ritter 1995; Spiess and Affect-Graves 1995). Second, inadequate risk adjustment argues that the anomalies arise because empirical expected-return models are misspecified (e.g., Brav, Geczy, and Gompers 2000; Eckbo, Masulis, and Norli 2000; Lyandres, Sun, and Zhang 2007). Third, pseudo market timing (e.g., Schultz 2003) argues that event studies tend to find long-term underperformance ex post, even though there is no underperformance ex ante. If early in a sample period, SEOs underperform, there will be few SEOs in the future because investors would have lower demands for them. The average performance will be weighed more toward the early SEOs that underperformed. If early SEOs outperform, there will be more SEOs in the future. The early positive performance will be weighed less in the average performance. Weighing each period equally as in calendar-time factor regressions solves this problem.

While sympathetic to the idea of managerial market timing (e.g., Graham and Harvey 2001), we argue that investor underreaction is unlikely to be the main driving force of the external financing anomalies. From the evidence that the announcement effects and the long-term drifts following equity offerings are both negative in the U. S. data, it appears that investors underreact to equity offerings. However, the announcement effects of private placements of equity and bank loan announcements in the U. S. as well as seasoned equity offerings in Japan are all positive, going in the opposite direction as their negative long-term drifts (e.g., Kang, Kim, and Stulz 1999; Hertzel, Lemmon, Linck, and Rees 2002; Billett, Flannery, and Garfinkel 2006). This evidence suggests overreaction.

This logic inconsistency does not exist in our neoclassical model. Intuitively, from the flow of funds constraint, firms raising capital should invest more and earn lower expected
returns, and firms distributing capital should invest less and earn higher expected returns. More likely, short-term and long-term movements are driven by different economic forces, with short-term movements driven by asymmetric information and long-term movements driven by time-varying expected returns related to capital investment. Equity offerings in the U.S. are likely to signal negative news such as insufficient internal funds and the intrinsic value (based on unobservable private signals) being lower than the market value (based on observable public signals). But private placements of equity and bank loans are likely to signal positive news because large block shareholders and banks, from their ongoing repeated relationships with the firms, possess information advantage and can monitor the operations of the firms. Further, because of the main bank system in Japan, equity shares are mostly held by banks and other large institutional investors.

Our theoretical work provides the microfoundation for explanations based on inadequate risk adjustment. Brav, Geczy, and Gompers (2000) document that the underperformance following seasoned equity offerings is concentrated primarily in small-growth firms, and suggest that the underperformance reflects the more pervasive size and value effects in returns. We lend support to their argument because both equity issuers and small-growth firms invest more than other firms. Eckbo, Masulis, and Norli (2000) report that a multifactor model can reduce the post-issue underperformance to an insignificant level. Our investment mechanism can potentially drive their risk evidence. Lyandres, Sun, and Zhang (2007) show that adding an investment factor into standard calendar-time factor regressions substantially reduces the magnitude of the new issues puzzle. Our work provides the theoretical foundation for their empirical tests.

We also provide an economic explanation for Schultz’s (2003) premise that firms are
more likely to issue when stock prices are high. We show that equity financing is highly
procyclical: Firms invest more and naturally issue more equity in expansions when stock
prices are relatively high. More important, our investment-based explanation applies to
calendar-time as well as event-time evidence.

5 Conclusion

Our quantitative results suggest that the $q$-theory is a good start to understanding exter-
nal financing anomalies that are often interpreted as behavioral market timing. However,
our simple model leaves many questions unanswered. We conclude by suggesting several
directions for future work.

A dynamic structure of payout policy that characterizes the trade-offs between divi-
dends and share repurchases can be incorporated into the neoclassical investment frame-
work. Our simple model cannot fully capture the magnitude of the positive drift following
cash distributions observed in the data. The most likely reason is that distributing cap-
ital is costless in our model. This assumption is unrealistic because dividends are highly
persistent in the data. While adding capital distribution costs into our current setup can
help, at least mechanically, a more satisfactory solution would be to thoroughly model the
trade-offs underlying the payout policy.

The neoclassical investment model also can be extended to incorporate defaultable
bond. The extended model can address the issue of time series predictability with the new
equity share (the ratio of common stock issues to the sum of common stock and bond issues
in dollar volume per month). Baker and Wurgler (2000) document that the new equity
share is a strong negative predictor of future stock market returns. Our results on pro-
cyclical equity issuance waves are encouraging, but a serious investigation of the time series predictability with the new equity share requires a dynamic model of debt financing. The extended model also can shed light on why the magnitude of the long-term underperformance following equity issues is higher than that following debt issues and why we observe significant positive stock-price drift following capital distributions to shareholders but not to bondholders. Finally, the extended model can shed light on the puzzling negative relation between financial distress and average stock returns (e.g., Dichev 1998; Campbell, Hilscher, and Szilagyi 2007) and the credit spread puzzle (e.g., Huang and Huang 2003).
Figure Legends

Figure 1: The Value and Optimal Policy Functions. This figure plots the the value function \(v(k, z, \bar{x})\), Panel A), optimal investment-to-assets ratio \(i/k(k, z, \bar{x})\), Panel B), and optimal payout-to-assets ratio \(d/k(k, z, \bar{x})\), Panel C) as functions of capital stock \(k\) and firm-specific productivity \(z\). We fix the aggregate productivity at its long-run average level, \(x = \bar{x}\), to focus on the cross-sectional variation of these variables. The arrows in each panel indicate the direction along which \(z\) increases.

Panel 1A: \(v(k, z, \bar{x})\).

Panel 1B: \(i/k(k, z, \bar{x})\).

Panel 1C: \(d/k(k, z, \bar{x})\).

Figure 2: Fundamental Determinants of Risk. This figure plots beta (\(\beta_{jt}\) defined in equation 15) as a function of capital stock, \(k_{jt}\), and firm-specific productivity, \(z_{jt}\), while fixing the aggregate productivity at its long-run average, \(x_t = \bar{x}\). Panel A plots \(\beta_{jt}\) in the benchmark parametrization. The arrow in Panel A indicates the direction along which \(z_{jt}\) increases. We also conduct five comparative static experiments: (i) high curvature in the production function, \(\alpha = 0.50\) (Panel B); (ii) low fixed costs of production, \(f = 0\) (Panel C); (iii) high physical adjustment costs, \(a = 50\) (Panel D); (iv) low fixed costs of financing, \(\lambda_0 = 0.04\) (Panel E); and (v) high variable costs of financing, \(\lambda_1 = 0.075\) (Panel F). In Panels B to F, the solid curves are from the benchmark parametrization, and the broken lines are from alternative parameter specifications.

Panel 2A: \(\beta(k, z, \bar{x})\), the benchmark parametrization.
Panel 2B: $\beta(k, z, \bar{x})$, high curvature in the production function, $\alpha = 0.50$.

Panel 2C: $\beta(k, z, \bar{x})$, low fixed costs of production, $f = 0$.

Panel 2D: $\beta(k, z, \bar{x})$, high physical adjustment costs, $a = 50$.

Panel 2E: $\beta(k, z, \bar{x})$, low fixed costs of financing, $\lambda_0 = 0.04$.

Panel 2F: $\beta(k, z, \bar{x})$, high variable costs of financing, $\lambda_1 = 0.075$.

Figure 3: Empirical Distributions for the Mean $CI$-Spread and the Slopes and $t$-Statistics of the Fama-MacBeth (1973) Cross-Sectional Regressions of Benchmark-Adjusted Returns on $CI$ and $CI \times DCF$. Panel A reports the mean $CI$-spread across 1,000 simulations as well as its value in the real data, 16.9\% per annum. $CI$ denotes capital investment. The $CI$-spread is the zero-investment portfolio that has a long position in the lowest $CI$ quintile and a short position in the highest $CI$ quintile. In each simulation, we also run Fama-MacBeth (1973) cross-sectional regression: 

$$r_{jt+1}^a = l_{0t} + l_{1t} CI_{jt} + l_{2t} CI_{jt} \times DCF_{jt} + u_{jt+1},$$

in which $r_{jt+1}^a$ is the benchmark-adjusted value-weighted return on individual stock $j$ at month $t$. $DCF$ is the dummy variable based on cash flow, measured as operating income scaled by total assets, measured in the model as $y_{jt}/k_{jt}$. If the cash flow of one firm is above the median cash flow of the year, its $DCF$ equals one, and zero otherwise. Panel B reports the joint empirical distribution of average $l_{1t}$ and average $l_{2t}$. Panel C reports the joint empirical distribution of their Fama-MacBeth $t$-statistics.

Panel 3A: Mean $CI$-spread.

Panel 3B: Slopes of $CI$ and $CI \times DCF$. 

34
Panel 3C: $t$-statistics of $CI$ and $CI \times DCF$.

Figure 4: Empirical Distributions for the Slopes on the New Issues Dummy from the Fama-MacBeth (1973) Cross-Sectional Regressions of Percentage Stock Returns. We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. Panel A reports the histogram of the slope for the new issues dummy ($ISSUE$) from the Fama-MacBeth (1973) monthly cross-sectional regressions of percentage stock returns: $r_{jt+1} = b_0 + b_1 ISSUE_{jt} + e_{jt+1}$. $r_{jt+1}$ is the percentage stock return of firm $j$ during month $t$. $ISSUE_{jt}$ is a dummy variable that equals one if firm $j$ has conducted equity offerings at least once within the past 60 months preceding month $t$, and zero otherwise. Panel B reports the histogram of the $ISSUE$ slope from the monthly cross-sectional regressions: $r_{jt+1} = b_0 + b_1 \log(ME_{jt}) + b_2 \log(BM_{jt}) + b_3 ISSUE_{jt} + u_{jt+1}$, in which $ME_{jt}$ is the market capitalization of firm $j$ at the most recent fiscal year-end prior to month $t$, and $BM_{jt}$ is the book value of equity divided by the market capitalization of firm $j$ at the most recent fiscal year-end prior to month $t$. Panel B reports the results with the full sample. We also split the each simulated sample into two: The light-volume sample contains the months with the fraction of issuing firms below the median fraction across all the months in the sample, and the heavy-volume sample contains the months with the fraction of issuing firms above its median. Panel C reports the histogram of the $ISSUE$ slope using the light-volume sample, and Panel D reports the histogram of the $ISSUE$ slope using the heavy-volume sample. In each panel, we also report the corresponding $ISSUE$ slope estimated by Loughran and Ritter (1995) using the real data.

Panel 4A: The $ISSUE$ slope in univariate regressions.
Panel 4B: The ISSUE slope in multiple regressions (all months).

Panel 4C: The ISSUE slope in multiple regressions (light volume).

Panel 4D: The ISSUE slope in multiple regressions (heavy volume).

Figure 5: Empirical Distributions for the Differences in Annual Buy-and-Hold Returns up to Four Years between the Repurchase Portfolio and the Reference Portfolio. We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. In each simulation, we construct the reference portfolio using benchmark returns corresponding to the repurchase sample, matched on the basis of size and book-to-market ranking. To form reference portfolio, we sort all firms in our simulated panel into one of 50 size and book-to-market portfolios (the intersections of ten size deciles and five book-to-market quintiles). We rank all firms in the beginning of the calendar year and hold them for the following 12 months. Beginning in the next month, we calculate the one-year buy-and-hold return for each firm in a given portfolio. We then use the equal-weighted average of all annual returns in a given portfolio as the benchmark returns for firms ranked in that particular size and book-to-market portfolio. We rebalance the portfolio annually. We perform the empirical analysis on each simulated panel and report the histogram of the difference in annual buy-and-hold returns up to four years between the repurchase portfolio and the reference portfolio. The empirical estimates from Ikenberry, Lakonishok, and Vermaelen (1995, Table 3) are also reported in each panel.

Panel 4A: Difference in annual buy-and-hold returns (Year 1).

Panel 4B: Difference in annual buy-and-hold returns (Year 2).
Panel 4C: Difference in annual buy-and-hold returns (Year 3).

Panel 4D: Difference in annual buy-and-hold returns (Year 4).
A Computation

To solve the dynamic value-maximization problem given in equation (12), we use the value function iteration method on a discrete state space described by Burnside (1999). We use a grid with 50 points for the capital stock with an upper bound $k$. The upper bound is large enough to be nonbinding at all times. We construct the grid for capital stock recursively, following McGrattan (1999), i.e., $k_i = k_{i-1} + c_k \exp (c_k (i - 2))$, where $i = 1, \ldots, 50$ is the index of grid points and $c_k$ and $c_k^2$ are two constants chosen to provide the desired number of grid points and $k$, given a pre-specified lower bound $\underline{k}$. This recursive construction assigns more grid points around $\underline{k}$, where the value function has most of its curvature. The state variables $x$ and $z$ in equations (1) and (2), respectively, are defined on continuous state spaces. To compute the numerical solution to the model, we need to transform the continuous state spaces into discrete state spaces. Because both productivity processes are highly persistent in monthly frequency, we use the method described in Rouwenhorst (1995). We use 15 grid points for $x$ process and 17 points for $z$ process. In all cases our quantitative results are robust to finer grids.

Once the discrete state space is available, the conditional expectation operator in (12) can be carried out as matrix multiplication. We calculate expected returns, $E_t[r_{jt+1}] = E_t[v_{jt+1}]/(v_{jt} - o_{jt})$, in the same way. Once expected returns are calculated, we can back out true betas, $\beta_{jt}$, from equation (14). To this end, we solve the real interest rate, $r_{ft}$, and the price of risk, $\zeta_{mt}$, on a grid of $x_t$ based on equations (4) and (5). We use piecewise linear interpolation extensively to obtain firm value, optimal investment, and expected returns that do not lie directly on the grid points. Finally, we use discrete, global search routine in maximizing the right-hand side of the value function (12) by computing the objective
function on an even-spaced grid of $k$, with boundary $[k, \overline{k}]$ with 20,000 points.

B Empirical Procedures

B.1 Calculating Characteristic-Adjusted Excess Returns for the Corporate Investment Portfolios

To calculate the characteristic-adjusted excess returns of the CI portfolios, we follow Titman, Wei, and Xie (2004). We form 125 benchmark portfolios that capture these characteristics. Starting in year $t$, the universe of common stocks is sorted into five portfolios based on firm size at the end of year $t-1$. The breakpoints for size are obtained by sorting all firms into quintiles based on their size measures at the end of year $t-1$ in ascending order. Firms in each size portfolio are further sorted into quintiles based on their book-to-market ratio at the end of year $t-1$. Finally, the firms in each of the 25 size and book-to-market portfolios are sorted into quintiles based on their prior-year return. In all, we obtain 125 benchmark portfolios. We calculate excess returns using these 125 characteristic-based benchmark portfolios. Each year, each stock is assigned to a benchmark portfolio according to its rank based on size, book-to-market, and prior returns. Excess monthly returns of a stock are then calculated by subtracting the returns of the corresponding benchmark portfolio from the returns of this particular stock. The excess returns on individual stocks are then used to calculate the value-weighted excess monthly returns on the test portfolios formed on $CI$.

B.2 Matching Issuers with Nonissuers

Following Loughran and Ritter (1997), we choose matching nonissuers by matching each issuing firm with a firm that has not issued equity during the prior five years as follows.
If there is at least one nonissuer with end-of-year zero assets within 25 to 200 percent of the issuing firm, the nonissuer with the closest operating income-to-asset ratio is used. In the real data, if no nonissuer meets this criterion, Loughran and Ritter (1997) then rank all nonissuers with year 0 assets of 90 to 110 percent of the issuer, and the firm with the closest, but higher operating income-to-asset ratio is used. Because we do not distinguish different industries in the model, we use the 25 to 200 percent restriction on end-of-year zero assets to choose matching nonissuer.

We also report the $Z$-statistics testing the equality of distributions between the issuers and nonissuers using the Wilcoxon matched-pairs signed-ranks test, and the $Z$-statistics testing the equality of distributions between the changes in the ratios from year 0 to year +4. Denote the difference in the accounting measure between issuer $i$ and its matching firm by $\text{diff}_i \equiv \text{measure(issuer}_i) - \text{measure(nonissuer}_i)$. We rank the absolute values of the $\text{diff}_i$ from 1 to $n^e$—the total number of issuing firms. We then sum the ranks of positive values of $\text{diff}_i$, and denote the sum with $D$. The $Z$-statistics are computed as $Z = (D - E[D]) / \sigma_D$, where $E[D] = n^e(n^e + 1)/4$ and $\sigma_D = n^e(n^e + 1)(2n^e + 1)/24$. Under the null hypothesis that the issuer and the nonissuer measures are drawn from the same distribution, $Z$ follows the standard normal distribution.

**B.3 Constructing the Reference Portfolios for Cash-Distributing Firms**

Following Ikenberry, Lakonishok, and Vermaelen (1995), we sort all firms in our simulated panel each month into one of 50 size and book-to-market portfolios by taking the intersections of ten size deciles and five book-to-market quintiles. All firms are ranked at the beginning of the calendar year, and are held for the following 12 months. Beginning in the
next month, the one-year buy-and-hold return is calculated for each firm in a given portfolio. We use the equally weighted average of all annual returns in a given portfolio as the benchmark return for the firms ranked in that particular size and book-to-market portfolio. The ranking of a particular firm may change from year to year. To accommodate this feature, we allow the benchmark to change over time. To examine annual buy-and-hold returns and compounded holding-period returns by book-to-market quintiles, we rank all firms into size deciles, and further sort each decile into book-to-market quintiles. The lowest book-to-market ratios are assigned to quintile one. We form the reference portfolio using benchmark returns corresponding to the repurchase sample, matched on size and book-to-market.

**B.4 Construction of the Control Firms Following Lie (2005)**

For each cash-distributing firm, we first identify all firms with operating performance within $\pm20\%$ of the performance of the cash-distributing firm in the announcement quarter (quarter 0), operating performance for the four quarters ending with the quarter 0 within $\pm20\%$ of the corresponding performance for the cash-distributing firm, and pre-announcement market-to-book value of assets within $\pm20\%$ of that of the cash-distributing firm. From these firms indexed by $i$, we choose the firm with the lowest sum of absolute differences, defined as:

$$|\text{Performance}_{\text{Quarter 0}, \text{Cash-Distributing firm}} - \text{Performance}_{\text{Quarter 0,Firm } i}| +$$

$$|\text{Performance}_{\text{Four quarters ending with quarter 0, Cash-Distributing firm}} - \text{Performance}_{\text{Four quarters ending with quarter 0, Firm } i}|$$
References


Notes

¹We form ten portfolios by sorting all stocks on book assets (Compustat annual item 6). From 1951 to 2005, the equal-weighted small-minus-big portfolio earns an average return of 0.93% per month ($t = 3.07$). Using sales (item 12) as the sorting variable yields an average return of 0.62% per month ($t = 2.20$) for the small-minus-big portfolio.
Table 1: Unconditional Moments from the Simulated and Real Data

This table reports unconditional moments from the simulated data and from the real data. We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. We report the cross-simulations averaged moments. The average Sharpe ratio in the data is from Campbell and Cochrane (1999). The data moments of the real interest rate are from Campbell, Lo, and MacKinlay (1997). The data moments of aggregate market-to-book are from Pontiff and Schall (1999). All the other data moments are from Hennessy and Whited (2005).

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>The average annual risk-free rate</td>
<td>0.018</td>
<td>0.021</td>
</tr>
<tr>
<td>The annual volatility of risk-free rate</td>
<td>0.030</td>
<td>0.029</td>
</tr>
<tr>
<td>The average annual Sharpe ratio</td>
<td>0.430</td>
<td>0.405</td>
</tr>
<tr>
<td>The average annual investment-to-assets ratio</td>
<td>0.130</td>
<td>0.119</td>
</tr>
<tr>
<td>The volatility of investment-to-assets ratio</td>
<td>0.006</td>
<td>0.013</td>
</tr>
<tr>
<td>The frequency of equity issuance</td>
<td>0.099</td>
<td>0.285</td>
</tr>
<tr>
<td>The average new equity-to-asset ratio</td>
<td>0.042</td>
<td>0.043</td>
</tr>
<tr>
<td>The average market-to-book ratio</td>
<td>1.493</td>
<td>1.879</td>
</tr>
<tr>
<td>The volatility of market-to-book</td>
<td>0.230</td>
<td>0.242</td>
</tr>
</tbody>
</table>
Table 2: Excess Returns of Capital Investment (CI) Portfolios

Panel A presents the distribution of excess returns on five CI portfolios and the CI-spread portfolio. CI denotes the capital-investment measure based on investment-to-assets. We report the monthly mean excess returns, the standard deviation, the maximum, the median, and the minimum of the excess returns. The CI portfolios are constructed as follows. In year $t$, all stocks are sorted into quintiles based on their CI measures in ascending order to form five portfolios. Value-weighted monthly excess returns on a portfolio are calculated from year $t$ to year $t+1$. The excess return on an individual stock at time $t$ is calculated by subtracting the returns of characteristic-based benchmark portfolios from the stock return at time $t$. See Appendix B.1 for construction details of the benchmark. The CI-spread denotes the zero-investment portfolio that has a long position in the lowest portfolio. All portfolios are rebalanced annually. Panel B reports the results of the Fama-MacBeth (1973) cross-sectional regression:

$$r_{jt+1} = l_0 + l_1 CI_{jt} + l_2 CI_{jt} \times DCF_{jt} + \epsilon_{jt+1},$$

in which $r_{jt+1}$ is the benchmark-adjusted value-weighted return on individual stock $j$ at month $t$. $DCF$ is the dummy variable based on cash flow, measured as operating income scaled by total assets, measured in the model as $y_{jt}/k_{jt}$. If the cash flow of one firm is above the median cash flow of the year, its $DCF$ equals one, and zero otherwise. Panel C performs two cross-sectional regressions. The first regression is

$$r_{jt+1}^a = l_0 + l_1 CI_{jt} + l_2 CI_{jt} \times DCF_{jt} + l_3 \hat{\beta}_{jt} + u_{jt+1}^l,$$

in which $\hat{\beta}_{jt}$ is the 60-month rolling betas estimated by regressing $r_{jt+1}^a$ on the value-weighted industry returns in excess of the risk-free rate. The second regression is

$$r_{jt+1}^u = l_0 + l_1 CI_{jt} + l_2 CI_{jt} \times DCF_{jt} + l_3 \beta_{jt} + u_{jt+1}^u,$$

in which $\beta_{jt}$ is the true beta defined in equation (15). We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. The monthly flow variables are aggregated within one given year to create their corresponding annual variables. We perform the tests on each simulated panel and report the cross-simulation average slopes and test statistics. In Panels A and B, we also compare our results to those reported in Table 1 (Panel A) and Table 6 (Panel A) in Titman, Wei, and Xie (2004), respectively.

<table>
<thead>
<tr>
<th>CI Portfolio</th>
<th>Data Mean</th>
<th>Model Mean</th>
<th>Data Std</th>
<th>Model Std</th>
<th>Data Max</th>
<th>Model Max</th>
<th>Data Median</th>
<th>Model Median</th>
<th>Data Min</th>
<th>Model Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0.042</td>
<td>0.064</td>
<td>0.010</td>
<td>0.050</td>
<td>3.38</td>
<td>0.16</td>
<td>0.06</td>
<td>0.07</td>
<td>-3.11</td>
<td>-0.07</td>
</tr>
<tr>
<td>2</td>
<td>0.083</td>
<td>0.010</td>
<td>0.007</td>
<td>0.031</td>
<td>2.26</td>
<td>0.08</td>
<td>0.10</td>
<td>0.01</td>
<td>-2.76</td>
<td>-0.06</td>
</tr>
<tr>
<td>3</td>
<td>0.055</td>
<td>-0.007</td>
<td>0.006</td>
<td>0.023</td>
<td>1.84</td>
<td>0.05</td>
<td>0.03</td>
<td>-0.01</td>
<td>-2.07</td>
<td>-0.06</td>
</tr>
<tr>
<td>4</td>
<td>-0.083</td>
<td>-0.021</td>
<td>0.005</td>
<td>0.023</td>
<td>1.38</td>
<td>0.04</td>
<td>-0.06</td>
<td>-0.02</td>
<td>-1.88</td>
<td>-0.08</td>
</tr>
<tr>
<td>High</td>
<td>-0.127</td>
<td>-0.038</td>
<td>0.010</td>
<td>0.046</td>
<td>2.61</td>
<td>0.06</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-4.08</td>
<td>-0.13</td>
</tr>
<tr>
<td>CI-spread</td>
<td>0.169</td>
<td>0.101</td>
<td>0.009</td>
<td>0.004</td>
<td>3.30</td>
<td>0.07</td>
<td>0.12</td>
<td>0.07</td>
<td>-2.63</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Panel B: $r_{jt+1} = l_0 + l_1 CI_{jt} + l_2 CI_{jt} \times DCF_{jt} + \epsilon_{jt+1}$

Panel C: Cross-sectional regressions of $r_{jt+1}^a$ on CI, CI $\times$ DCF, and rolling market betas ($\hat{\beta}_{jt}$); and on CI, CI $\times$ DCF, and true betas ($\beta_{jt}$).

Panel A reports the Fama-MacBeth (1973) monthly cross-sectional regressions: 

\[ r_{jt+1} = b_0 + b_1 \log(ME_{jt}) + b_2 \log(BM_{jt}) + b_3 \text{ISSUE}_{jt} + u_{jt+1}, \]

in which \( r_{jt+1} \) denotes the percentage return on firm \( j \) during month \( t \). \( ME_{jt} \) is the market value of firm \( j \) on the most recent fiscal year ending before month \( t \). \( BM_{jt} \) is the ratio of the book value of equity to the market value of equity for firm \( j \) on the most recent fiscal year ending before month \( t \). \( \text{ISSUE}_{jt} \) is the dummy variable that equals one if firm \( j \) has conducted equity offerings at least once within the past 60 months preceding month \( t \) and zero otherwise. The light-issuance sample has all the months with the fraction of issuing firms below its median, and the heavy-issuance sample has all the months with the fraction of issuing firms above its median. We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. We perform the cross-sectional regressions on each simulated panel and report the cross-simulations averaged slopes and the Fama-MacBeth \( t \)-statistics. We compare our results to those of Loughran and Ritter (1995, Table VIII). In Panel B, we rerun the Loughran and Ritter (1995) regressions but adding the estimated beta, \( \hat{\beta}_{jt} \), the true beta, \( \beta_{jt} \), or the true expected return, \( E_t[r_{jt+1}] \), into the regressions. The estimated betas are from 60-month rolling-window regressions of individual stock excess returns, \( r_{jt+1} \), on the value-weighted market excess returns, \( p_{jt}r_{jt+1}/\sum_{j=1}^{n} p_{jt}r_{jt+1} \). Appendix A provides details of calculating the true betas and the true expected returns.

| Panel A: Replicating Loughran and Ritter (1995, Table VIII) |  
| --- | --- | --- | --- | --- | ---  
| Sample | \( \log(ME) \) | \( \log(BM) \) | \( \text{ISSUE} \) |  
| Data | Model | Data | Model | Data | Model |  
| All months |  
| \(-0.05\) | 0.63 | \(0.30\) | 0.89 | \(-0.49\) | \(-0.81\) |  
| \((-0.91)\) | \((4.22)\) | \((4.57)\) | \((8.18)\) | \((-3.98)\) | \((-4.76)\) |  
| Periods following light volume |  
| \(-0.26\) | 0.88 | \(0.20\) | 1.00 | \(-0.17\) | 0.06 |  
| \((-3.12)\) | \((5.21)\) | \((1.80)\) | \((7.62)\) | \((-1.19)\) | \((0.31)\) |  
| Periods following heavy volume |  
| 0.16 | 0.39 | 0.39 | 0.79 | \(-0.60\) | \(-0.90\) |  
| \((2.11)\) | \((1.39)\) | \((6.30)\) | \((4.49)\) | \((-3.98)\) | \((-3.75)\) |  

| Panel B: Cross-sectional regressions controlling for rolling betas (\( \hat{\beta}_{jt} \)), true betas (\( \beta_{jt} \)), or true expected returns (\( E_t[r_{jt+1}] \)) |  
| --- | --- | --- | --- | --- | --- | --- |  
| Sample | \( \log(ME) \) | \( \log(BM) \) | \( \hat{\beta}_{jt} \) | \( \log(ME) \) | \( \log(BM) \) | \( \beta_{jt} \) | \( \log(ME) \) | \( \log(BM) \) | \( E_t[r_{jt+1}] \) |  
| Data | Model |  
| All months |  
| \(-0.30\) | \(-0.95\) | \(-0.31\) | 0.67 | \(-0.31\) | 0.96 |  
| \((-2.64)\) | \((-3.09)\) | \((-3.37)\) | \((15.45)\) | \((-1.52)\) | \((9.99)\) |  
| \((6.74)\) | \((8.29)\) | \((-2.25)\) | \((-4.04)\) | \((-1.12)\) | \((-1.53)\) | \((-2.96)\) | \((9.15)\) | \((-1.67)\) | \((0.90)\) | \((-1.28)\) | \((9.39)\) |  
| Periods following light volume |  
| 0.19 | 0.45 | \(-0.07\) | \(-0.16\) | \(-0.91\) | \(-0.61\) | \(-0.16\) | 0.82 | \(-0.08\) | 0.29 | \(-0.15\) | 0.89 |  
| \((4.63)\) | \((3.15)\) | \((-1.03)\) | \((-2.02)\) | \((-1.65)\) | \((-1.03)\) | \((-2.45)\) | \((8.09)\) | \((-1.67)\) | \((0.92)\) | \((-1.52)\) | \((8.93)\) |  
| Periods following heavy volume |  
| 1.08 | 0.66 | \(-0.47\) | \(-0.24\) | \(-0.55\) | \(-0.79\) | \(-0.39\) | 0.59 | \(-0.06\) | 0.86 | \(-0.32\) | 0.86 |  
| \((8.89)\) | \((9.30)\) | \((-3.73)\) | \((-4.57)\) | \((-1.41)\) | \((-1.58)\) | \((-3.19)\) | \((7.18)\) | \((-1.33)\) | \((0.85)\) | \((-1.06)\) | \((9.79)\) |
Table 4: Median Operating Performance Measures and Market-to-Book for Issuers and Matching Nonissuers

Panels A and B report the median operating performance measures for the issuing and matching firms. Panels C and D report the Z-statistics testing the equality of distributions between the issuers and matching nonissuers using the Wilcoxon matched-pairs signed-ranks test (see Appendix B.2 for details). We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. The monthly flow variables are aggregated within a given year to create annual variables. Stock variables are measured at the beginning of the year. We perform the tests on each simulated panel and report the cross-simulations averaged results. We also compare our results to those of Loughran and Ritter (1997, Table II).

<table>
<thead>
<tr>
<th>Event year</th>
<th>Operating income-to-assets</th>
<th>Profitability</th>
<th>Investment-to-assets</th>
<th>Market-to-book</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>−4</td>
<td>16.1%</td>
<td>26.0%</td>
<td>5.8%</td>
<td>12.7%</td>
</tr>
<tr>
<td>−3</td>
<td>16.6%</td>
<td>26.9%</td>
<td>6.0%</td>
<td>16.0%</td>
</tr>
<tr>
<td>−2</td>
<td>16.4%</td>
<td>28.5%</td>
<td>6.0%</td>
<td>19.6%</td>
</tr>
<tr>
<td>−1</td>
<td>17.0%</td>
<td>30.1%</td>
<td>6.4%</td>
<td>23.4%</td>
</tr>
<tr>
<td>0</td>
<td>15.8%</td>
<td>27.8%</td>
<td>6.3%</td>
<td>27.2%</td>
</tr>
<tr>
<td>+1</td>
<td>14.2%</td>
<td>25.8%</td>
<td>5.3%</td>
<td>15.7%</td>
</tr>
<tr>
<td>+2</td>
<td>12.7%</td>
<td>24.5%</td>
<td>3.9%</td>
<td>13.1%</td>
</tr>
<tr>
<td>+3</td>
<td>12.1%</td>
<td>23.6%</td>
<td>3.3%</td>
<td>13.3%</td>
</tr>
<tr>
<td>+4</td>
<td>12.1%</td>
<td>23.0%</td>
<td>3.2%</td>
<td>13.1%</td>
</tr>
</tbody>
</table>

Panel C: Z-statistics testing the equality of distributions between the issuers and matching nonissuers

<table>
<thead>
<tr>
<th>Event year</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>−4</td>
<td>−0.92</td>
<td>−0.03</td>
<td>−2.10</td>
<td>4.84</td>
<td>12.00</td>
<td>−8.26</td>
<td>3.65</td>
<td>−4.14</td>
</tr>
<tr>
<td>−3</td>
<td>2.87</td>
<td>−2.74</td>
<td>1.12</td>
<td>9.36</td>
<td>13.69</td>
<td>3.71</td>
<td>5.64</td>
<td>10.41</td>
</tr>
<tr>
<td>−2</td>
<td>4.73</td>
<td>−7.48</td>
<td>3.42</td>
<td>15.40</td>
<td>16.16</td>
<td>23.56</td>
<td>8.87</td>
<td>32.07</td>
</tr>
<tr>
<td>−1</td>
<td>7.68</td>
<td>−14.69</td>
<td>6.58</td>
<td>23.56</td>
<td>17.10</td>
<td>43.96</td>
<td>16.98</td>
<td>42.53</td>
</tr>
<tr>
<td>0</td>
<td>−1.06</td>
<td>−49.80</td>
<td>6.50</td>
<td>32.77</td>
<td>15.46</td>
<td>49.58</td>
<td>10.36</td>
<td>47.56</td>
</tr>
<tr>
<td>+1</td>
<td>−3.02</td>
<td>5.65</td>
<td>0.35</td>
<td>−13.83</td>
<td>14.55</td>
<td>40.27</td>
<td>7.52</td>
<td>26.60</td>
</tr>
<tr>
<td>+2</td>
<td>−5.29</td>
<td>4.92</td>
<td>−5.26</td>
<td>−16.29</td>
<td>11.24</td>
<td>20.57</td>
<td>4.11</td>
<td>11.81</td>
</tr>
<tr>
<td>+3</td>
<td>−5.40</td>
<td>4.90</td>
<td>−6.58</td>
<td>−8.70</td>
<td>8.64</td>
<td>8.81</td>
<td>1.74</td>
<td>1.44</td>
</tr>
<tr>
<td>+4</td>
<td>−4.43</td>
<td>4.64</td>
<td>−5.76</td>
<td>−7.54</td>
<td>7.91</td>
<td>0.63</td>
<td>−0.51</td>
<td>−0.85</td>
</tr>
</tbody>
</table>

Panel D: Z-statistics testing the equality of distributions between the change in the ratios from year 0 to year +4

<table>
<thead>
<tr>
<th>Event year</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to +4</td>
<td>−4.59</td>
<td>−5.09</td>
<td>−5.57</td>
<td>−7.46</td>
<td>−5.96</td>
<td>59.25</td>
<td>−8.52</td>
<td>45.70</td>
</tr>
</tbody>
</table>
Table 5: Annual Buy-and-Hold Returns and Compounded Holding Period Returns up to Four Years Following Market Share Repurchases, the Full Sample and the Subsamples by Book-to-Market Quintiles

This table reports annual and compounded buy-and-hold percentage returns following share repurchases for up to four years. Panel A reports the results using the full sample, and Panels B to F reports the results by book-to-market quintile ranking. Compounded holding-period returns assume annual rebalancing. We form equally weighted portfolios for the whole sample. We construct the reference portfolio using benchmark returns corresponding to the repurchase sample, matched on the basis of size and book-to-market ranking. To form the reference portfolio, we sort all firms in our simulated panel each month into one of 50 size and book-to-market portfolios (the intersections of ten size deciles and five book-to-market quintiles). We rank all firms in the beginning of the calendar year and hold them for the following 12 months. Beginning in the next month, we calculate the one-year buy-and-hold return for each firm in a given portfolio. We then use the equally weighted average of all annual returns in a given portfolio as the benchmark returns for firms ranked in that particular size and book-to-market portfolio. We rebalance the portfolio annually. We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. We perform the empirical analysis on each simulated panel and report the cross-simulations averaged results. We also compare our results to those reported in Ikenberry, Lakonishok, and Vermaelen (1995, Tables 3 and 4).

<table>
<thead>
<tr>
<th></th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
</tr>
<tr>
<td><strong>Panel A: All firms</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>20.80</td>
<td>10.49</td>
<td>18.76</td>
<td>9.74</td>
<td>2.04</td>
<td>0.75</td>
</tr>
<tr>
<td>Year 2</td>
<td>18.12</td>
<td>8.85</td>
<td>15.81</td>
<td>8.61</td>
<td>2.31</td>
<td>0.24</td>
</tr>
<tr>
<td>Year 3</td>
<td>21.77</td>
<td>8.21</td>
<td>17.18</td>
<td>8.06</td>
<td>4.59</td>
<td>0.14</td>
</tr>
<tr>
<td>Year 4</td>
<td>8.56</td>
<td>7.85</td>
<td>9.51</td>
<td>7.73</td>
<td>-0.96</td>
<td>0.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
</tr>
<tr>
<td><strong>Panel B: Book-to-market quintile 1 (growth stocks)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>15.72</td>
<td>11.10</td>
<td>16.83</td>
<td>10.38</td>
<td>-1.11</td>
<td>0.73</td>
</tr>
<tr>
<td>Year 2</td>
<td>17.86</td>
<td>9.86</td>
<td>16.60</td>
<td>9.73</td>
<td>1.26</td>
<td>0.13</td>
</tr>
<tr>
<td>Year 3</td>
<td>12.00</td>
<td>9.46</td>
<td>13.61</td>
<td>9.36</td>
<td>-0.61</td>
<td>0.10</td>
</tr>
<tr>
<td>Year 4</td>
<td>4.98</td>
<td>9.12</td>
<td>6.42</td>
<td>9.03</td>
<td>-1.44</td>
<td>0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
</tr>
<tr>
<td><strong>Panel C: Book-to-market quintile 2</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>20.59</td>
<td>10.95</td>
<td>18.43</td>
<td>10.26</td>
<td>2.16</td>
<td>0.69</td>
</tr>
<tr>
<td>Year 2</td>
<td>12.34</td>
<td>9.45</td>
<td>15.07</td>
<td>9.30</td>
<td>-2.73</td>
<td>0.15</td>
</tr>
<tr>
<td>Year 3</td>
<td>22.39</td>
<td>8.89</td>
<td>17.29</td>
<td>8.77</td>
<td>5.10</td>
<td>0.11</td>
</tr>
<tr>
<td>Year 4</td>
<td>3.20</td>
<td>8.50</td>
<td>6.99</td>
<td>8.40</td>
<td>-3.79</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
</tr>
<tr>
<td><strong>Panel D: Book-to-market quintile 3</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>19.49</td>
<td>10.85</td>
<td>16.46</td>
<td>10.23</td>
<td>3.03</td>
<td>0.62</td>
</tr>
<tr>
<td>Year 2</td>
<td>18.23</td>
<td>9.18</td>
<td>17.33</td>
<td>8.99</td>
<td>0.90</td>
<td>0.18</td>
</tr>
<tr>
<td>Year 3</td>
<td>20.77</td>
<td>8.51</td>
<td>16.57</td>
<td>8.37</td>
<td>4.20</td>
<td>0.14</td>
</tr>
<tr>
<td>Year 4</td>
<td>7.45</td>
<td>8.06</td>
<td>10.35</td>
<td>7.94</td>
<td>-2.90</td>
<td>0.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
</tr>
<tr>
<td><strong>Panel E: Book-to-market quintile 4</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>23.43</td>
<td>10.72</td>
<td>22.84</td>
<td>10.08</td>
<td>3.55</td>
<td>0.64</td>
</tr>
<tr>
<td>Year 2</td>
<td>15.16</td>
<td>8.85</td>
<td>12.73</td>
<td>8.64</td>
<td>2.43</td>
<td>0.21</td>
</tr>
<tr>
<td>Year 3</td>
<td>24.05</td>
<td>8.06</td>
<td>18.32</td>
<td>7.91</td>
<td>5.73</td>
<td>0.15</td>
</tr>
<tr>
<td>Year 4</td>
<td>12.44</td>
<td>7.60</td>
<td>11.06</td>
<td>7.48</td>
<td>1.38</td>
<td>0.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
<th>Repurchase firms</th>
<th>Reference portfolio</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
<td>Data Model</td>
</tr>
<tr>
<td><strong>Panel F: Book-to-market quintile 5 (value stocks)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>24.15</td>
<td>10.42</td>
<td>19.49</td>
<td>9.58</td>
<td>4.66</td>
<td>0.83</td>
</tr>
<tr>
<td>Year 2</td>
<td>26.01</td>
<td>8.29</td>
<td>17.23</td>
<td>7.98</td>
<td>8.78</td>
<td>0.31</td>
</tr>
<tr>
<td>Year 3</td>
<td>29.81</td>
<td>7.35</td>
<td>20.49</td>
<td>7.17</td>
<td>9.32</td>
<td>0.18</td>
</tr>
<tr>
<td>Year 4</td>
<td>16.17</td>
<td>6.88</td>
<td>12.94</td>
<td>6.75</td>
<td>3.23</td>
<td>0.64</td>
</tr>
</tbody>
</table>
### Table 6: Quarterly Operating Performance Around Cash Distributions

This table reports levels of and changes in quarterly operating performance around announcements of cash distributions. In the model, operating performance is measured as operating income scaled by assets, $\pi_{it}/k_{jt}$, at the beginning and end of the fiscal quarter. Quarter 0 is the fiscal quarter of the announcement. Industry-adjusted operating performance is the paired difference between the operating performance of the sample firms and the operating performance of their respective industry- and size-matched control firms. Performance-adjusted operating performance is the paired difference between the operating performance of the sample firms and the operating performance of their respective industry-, performance-, and market-to-book-matched control firms. We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. We perform the empirical analysis on each simulated panel and report the cross-simulations averaged results. We also compare our results to those reported in Lie (2005, Table 3).

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Panel A: Unadjusted</th>
<th>Panel B: Industry-adjusted</th>
<th>Panel C: Performance-adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td>Panel A: Levels of operating performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−2</td>
<td>0.0514</td>
<td>0.0709</td>
<td>0.0469</td>
</tr>
<tr>
<td>−1</td>
<td>0.0488</td>
<td>0.0687</td>
<td>0.0455</td>
</tr>
<tr>
<td>0</td>
<td>0.0462</td>
<td>0.0665</td>
<td>0.0442</td>
</tr>
<tr>
<td>1</td>
<td>0.0450</td>
<td>0.0651</td>
<td>0.0434</td>
</tr>
<tr>
<td>2</td>
<td>0.0441</td>
<td>0.0641</td>
<td>0.0428</td>
</tr>
<tr>
<td>3</td>
<td>0.0430</td>
<td>0.0632</td>
<td>0.0419</td>
</tr>
<tr>
<td>4</td>
<td>0.0426</td>
<td>0.0624</td>
<td>0.0415</td>
</tr>
<tr>
<td>5</td>
<td>0.0421</td>
<td>0.0617</td>
<td>0.0416</td>
</tr>
<tr>
<td>6</td>
<td>0.0408</td>
<td>0.0611</td>
<td>0.0416</td>
</tr>
<tr>
<td>7</td>
<td>0.0403</td>
<td>0.0606</td>
<td>0.0409</td>
</tr>
<tr>
<td>8</td>
<td>0.0398</td>
<td>0.0602</td>
<td>0.0404</td>
</tr>
<tr>
<td>Panel B: Changes in operating performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to +1</td>
<td>−0.0011</td>
<td>−0.0014</td>
<td>−0.0003</td>
</tr>
<tr>
<td>0 to +2</td>
<td>−0.0024</td>
<td>−0.0024</td>
<td>−0.0006</td>
</tr>
<tr>
<td>0 to +4</td>
<td>−0.0040</td>
<td>−0.0041</td>
<td>−0.0013</td>
</tr>
<tr>
<td>0 to +8</td>
<td>−0.0075</td>
<td>−0.0063</td>
<td>−0.0031</td>
</tr>
</tbody>
</table>

This table reports levels of and changes in quarterly operating performance around announcements of cash distributions. In the model, operating performance is measured as operating income scaled by assets, $\pi_{it}/k_{jt}$, at the beginning and end of the fiscal quarter. Quarter 0 is the fiscal quarter of the announcement. Industry-adjusted operating performance is the paired difference between the operating performance of the sample firms and the operating performance of their respective industry- and size-matched control firms. Performance-adjusted operating performance is the paired difference between the operating performance of the sample firms and the operating performance of their respective industry-, performance-, and market-to-book-matched control firms. We simulate 1,000 artificial panels, each of which has 5,000 firms and 480 monthly observations. We perform the empirical analysis on each simulated panel and report the cross-simulations averaged results. We also compare our results to those reported in Lie (2005, Table 3).
Figure 1: The Value and Optional Policy Functions
Figure 2: Fundamental Determinants of Risk

Panel A: $\beta(k, z, \bar{x})$, the benchmark parametrization

Panel C: $\beta(k, z, \bar{x})$, high curvature in the production function, $\alpha = 0.50$

Panel B: $\beta(k, z, \bar{x})$, low fixed costs of production, $f = 0$

Panel D: $\beta(k, z, \bar{x})$, high physical adjustment costs, $a = 50$

Panel E: $\beta(k, z, \bar{x})$, low fixed costs of financing, $\lambda_0 = 0.04$

Panel F: $\beta(k, z, \bar{x})$, high variable costs of financing, $\lambda_1 = 0.075$
Figure 3: Empirical Distributions for the Mean CI-Spread and the Slopes and t-Statistics of the Fama-MacBeth (1973) Cross-Sectional Regressions of Benchmark-Adjusted Returns on CI and CI \times DCF

Panel A: Mean CI-spread

Panel B: Slopes of CI and CI \times DCF

Panel C: t-statistics of CI and CI \times DCF
Figure 4: Empirical Distributions for the Slopes on the New Issues Dummy from the Fama-MacBeth (1973) Cross-Sectional Regressions of Percentage Stock Returns

Panel A: The ISSUE slope in univariate regressions
Panel B: The ISSUE slope in multiple regressions (all months)

Panel C: The ISSUE slope in multiple regressions (light volume)
Panel D: The ISSUE slope in multiple regressions (heavy volume)
Figure 5: Empirical Distributions for the Differences in Annual Buy-and-Hold Returns up to Four Years between the Repurchase Portfolio and the Reference Portfolio

Panel A: Difference in annual buy-and-hold returns (Year 1)

Panel B: Difference in annual buy-and-hold returns (Year 2)

Panel C: Difference in annual buy-and-hold returns (Year 3)

Panel D: Difference in annual buy-and-hold returns (Year 4)