Thinking About Health and Obesity:
How Consumers’ Mental Experiences Influence Health Judgments
Ian Skurnik, Carolyn Yoon, and Norbert Schwarz

Obesity is a global public health problem that cuts across age, race, social class, and culture. The causes of the international trend toward obesity are complex, and combating the condition requires changing public policy, the consumer’s social environment, and the health behavior of individual consumers. In this chapter, we focus on a particular kind of influence on consumer health: consumers’ own subjective mental experience while thinking about health-related issues. Because consumers cannot acquire, retain, and process all the information that they see, they often turn to their own subjective mental experiences as a source of information. For example, a statement can “feel” familiar or unfamiliar, a memory can come to mind easily or with effort, and printed messages can seem easy or hard to read (for a review, see Schwarz et al. 2007). We review how mental experiences such as these systematically influence consumers’ assessments of their own health behavior and risk status, and their judgments about whether information is true or false. Throughout the chapter we suggest ways for health communicators to improve their message design and execution, and to avoid or minimize some systematic consumer biases.

Obesity, Health, and Consumer Decision-Making

By recent estimates, 300 million people across the world are obese, and over 1 billion people are overweight (Edwards and Roberts 2009). A worldwide trend toward obesity continues, and population weight has been shifting toward the heavier end of the distribution (Bell, Ge, and
Popkin 2001). According to the U.S. Centers for Disease Control and Prevention, nearly one third of adults and one sixth of children in the United States are classified as obese, tripling the rate of obesity in the United States since 1980. The effects and consequences of obesity are serious and wide-ranging. Obese individuals and their families experience diminished health and fitness, and increased risk of related disease (especially cardiovascular diseases and type 2 diabetes). Care for obese people is also expensive: obese people are much more costly to treat than people of normal weight, and over the five years ending in 2001, obesity-related diseases accounted for over a quarter of the increase in U.S. medical costs (CDC 2009). The obesity trend has even been linked to global warming, through increased greenhouse gas emissions from heightened consumption, production, and transportation of food (Edwards and Roberts 2009).

Combating obesity, like other social marketing and public health efforts, is difficult. The “product” being promoted is not a traditional good or service, but a change in behavior, environment, or policy. Public health messages that target individual consumers usually try to convince consumers to give up a current behavior, to replace a current behavior with an alternative, or to refrain from a behavior in the future. Even if consumers embrace the advocated behavior in the abstract, they may consider it unimportant or intrusive, and it may oppose a long-established behavior that they value. In response to these impediments to behavior change, many public health campaigns aim to positively reinforce healthy behaviors through education or reminders, in the hope that providing comprehensive and accurate information will lead consumers to change their unhealthy behaviors. Of course, it is critical that consumers base their health choices on correct data. But merely conveying detailed health facts and advice to consumers ignores the way they acquire and use that information. As we review in more detail below, consumers’ judgments and decisions are not only a function of what is on their minds—
that is, the declarative information they attend to; instead, the subjective experiences that accompany thinking are informative in their own right and influence the conclusions consumers draw and the decisions they make.

For many consumers, the underlying causes of obesity are linked to mundane daily behaviors and choices. No one consciously makes a plan to adopt a diet that will be unhealthy over the long run. Instead, an unhealthy diet often results from small, repeated choices in consumption whose effects accumulate over time, such as deciding what to eat in what portion size, choosing what leisure activities to engage in or abstain from, and assessing one’s own risk of unwanted consequences from any particular behavior. In addition, for any given decision, consumers often have access to a wide range of health information from a variety of sources, such as health professionals, websites, advertisements, friends, and television dramas. To make optimal decisions, consumers face several daunting challenges: sorting through the information, remembering it later on, and putting it to use. During the course of their daily lives, we argue, consumers often make these small choices rapidly and without detailed reflection or reliance on background research and records, conditions that give considerable weight to momentary gut reactions and intuitive decision-making at the expense of more analytic considerations.

Next, we address how mental experiences influence consumers’ health-related judgments and decisions when they ask themselves certain questions: Am I at risk? Is the remedy realistic and feasible? Am I confident that changing my behavior will help? Subsequently we turn to the implications of mental experiences for the design of information campaigns and review how mental experiences influence recipients’ assessment of the truth value of the information presented to them.
Assessing the Implications of One’s Own Behavior

Suppose that two men are considering the extent to which they are personally at risk for heart disease, a potential consequence of long-term obesity. One man recalls three risk-increasing behaviors, and the other recalls eight similar behaviors. Which of the two is likely to feel more at risk for heart disease? No one has perfect and instant recall of all their past behaviors, so the logical answer seems to be that the man who listed eight reasons will feel more at risk; after all, he has more evidence to support the conclusion. In fact, the answer is often the opposite: the man who recalled three behaviors will feel most at risk. The reason for this counterintuitive judgment has to do with the mental experiences that accompany retrieving information from memory. When the information comes to mind relatively easily, as it does when listing just three behaviors, the experience of ease is taken to imply that the recalled behaviors are relatively frequent, recent, or representative (a bias known as the availability heuristic; Schwarz et al. 1991; Tversky and Kahneman 1973). In other words, the risk judgment did not depend solely on what information came to mind, but also on the mental experience that accompanied its coming to mind.

To illustrate this process, Rothman and Schwarz (1998) asked young men to remember either three or eight behaviors that they had engaged in that either increased or decreased their risk for heart disease. (A pretesting procedure had already established that most people found recalling three such behaviors easy and eight hard.) After this memory task, the men reported their personal perceived risk of heart disease and their intentions to change their behavior. If the
amount of behavior that the men could recall was the main driver of their risk assessment, then they should feel more at risk the more risk-increasing behaviors they recalled, and less at risk the more risk-decreasing behaviors they recalled. However, the opposite pattern would be expected if the men based their judgments on the relative ease of recalling their behaviors: the men should feel more at risk when they recall fewer risk-increasing behaviors, and less at risk when recalling fewer risk-decreasing behaviors.

An operative assumption is that risk assessments of this type are constructed in a somewhat ad hoc fashion. That is, individuals may not have a stable and chronically accessible assessment of their own risk for heart disease, so they construct a risk assessment in response to a request for one; their assessment is likely to be influenced by information that is available at the moment and seems relevant. Following this assumption, Rothman and Schwarz separated the responses of men who had a family history of heart disease from those who did not. Men without a family history of heart disease may be less motivated to think carefully about their responses and the implications of their behaviors. If so, these men would tend to rely on the more heuristic strategy of drawing inferences based on ease of recall. In contrast, men with a family history of the disease may think more carefully about the implications of the behaviors they recall; these men would be likely to rely on the content of what they recalled and place less weight on the ease of its retrieval.

Figure 6.1 shows the findings for risk assessments, which conform to the predictions outlined above. The left panel shows risk assessments for men with no family history of heart disease. These respondents concluded that they were at \textit{less} risk after listing three risk-decreasing behaviors than after listing eight such behaviors. Similarly, they felt they were \textit{more} at risk after listing three than eight risk-increasing behaviors. These findings are consistent with the
explanation that the men were relying on the ease of recalling their behaviors, over and above the implications of the amount of recalled behavior. The right panel shows results for men who had a family history of heart disease. These men inferred that they were at a lower risk after listing eight risk-decreasing behaviors than after listing three of these behaviors, and at a higher risk after listing eight rather than three risk-increasing behaviors. This pattern of findings for men with a family history of heart disease matches the notion that they relied on the content of what was recalled over and above the ease of its retrieval.

FIGURES 6.1, 6.2 NEAR HERE

Figure 6.2 shows results for the behavior change measure. Men with no family history were less concerned about changing their own behavior after listing fewer (3 vs. 8) risk-decreasing behaviors, and reported greater intentions to change after listing fewer (3 vs. 8) risk-increasing behaviors. As with the risk assessments, men who had a family history showed the opposite pattern: their perceived need for behavior change was reduced when they listed more risk-decreasing behaviors, or when they listed more risk-increasing behaviors.

The overall pattern of results illustrates the impact of ease of recall on judgments, and highlights the circumstances where mental experiences such as ease of retrieval are likely to play a role. Men with a family history of heart disease, which is a major risk factor for the disease, made judgments in line with the implications of the content and amount of behavior that they recalled. In contrast, men without a family history of heart disease, who were less motivated to reflect extensively on the implications of their behaviors, seemed to rely on their mental experiences as a source of information that qualified the implications of what they recalled. In general, research on mental experiences suggests that people are more likely to rely on mental experiences in judgment as a heuristic strategy: that is, when their motivation is low, they are
under time pressure, or they are otherwise unable or unwilling to process information extensively. When people are highly motivated and able to process information extensively and make choices in a compensatory fashion, the role of mental experiences is minimized or eliminated. The impact of mental experiences can also be eliminated when the relevance or source of the experience is called into question (Schwarz et al. 2007).

Ease of recall can play a role in many behavioral choices relating to obesity. People often reflect, in at least a cursory way, on their own risk for gaining unwanted weight before making a choice about diet or activity. For instance, choosing what to have for dessert, or choosing to have a dessert at all, might be preceded by a memory search for recent unhealthy behaviors, such as dessert consumption at recent meals, prior snacking, or failing to exercise. A rapid search of memory might uncover a few such behaviors, while a longer search could turn up many more—yet a longer search will also feel more effortful than a rapid search, with ironic consequences. When a few recent unhealthy behaviors easily come to mind, our diner may refrain from dessert—yet when many unhealthy behaviors are recalled with more effort, our diner may decide that those behaviors are rare and happily indulge in chocolate cake. To date we know little about the environmental cues that trigger a brief versus extended search of memory and are hence likely to give rise to differential mental experiences. We consider this a promising avenue for future research.

Assessing the Risk Posed by Foods

Just as the ease or difficulty of recalling information from memory can affect judgments, so can the ease or difficulty of processing information that we encounter in the environment. In general,
familiar information that we have seen many times before is easier to perceive, recognize, learn, and remember than novel information that we encounter for the first time. This (correct) observation often gives rise to the reverse (and often erroneous) inference: if it is easy to process, it must be familiar. Accordingly, people perceive information that is easy to process as more familiar than information that is difficult to process—even when the mental experience results merely from an easy- or difficult-to-read print font or the ease with which a word can be pronounced (for a review see Schwarz 2004). This impression of familiarity has important implications for risk perception. As many researchers have observed, familiar hazards are perceived as less dangerous than unfamiliar ones, and consumers’ concern about a given hazard decreases as its familiarity increases (for a review see Breakwell 2007).

Studies by Song and Schwarz (2009) illustrate this relationship. They asked consumers to estimate the health risk posed by various (fictitious) food additives. To manipulate how easily consumers could process information about the food additives, the researchers gave them easy-to-pronounce (e.g., Magnalroxate) or hard-to-pronounce names (e.g., Hnegripitrom). Additives that were hard to pronounce were rated as more novel and more hazardous than easy-to-pronounce additives. Such findings suggest that easy-to-pronounce names have a familiar ring to them that makes it less likely that a product is considered hazardous.

Other research (e.g., Song and Schwarz 2008a) further showed that familiar information is less likely to be critically scrutinized than unfamiliar information—and an easy- vs. difficult-to-read print font is sufficient to trigger different perceptions of familiarity, resulting in differential levels of scrutiny. In combination with the risk findings, this observation suggests that mental experiences of ease or difficulty may influence how people think about their food. When background knowledge about a food item is low and new information about the food is
easy to process, the food item may not only seem more familiar and less hazardous, but also be less likely to become the topic of extensive scrutiny to begin with. From this perspective, familiar foods may pose a higher health risk than unfamiliar foods because they are less likely to become the subject of thoughtful attention. Moreover, contextual variables that make food seem less familiar may encourage more thoughtful eating.

On the other hand, when background knowledge about a food item is high, the effect of ease of processing is harder to predict. In some cases, people may ignore ease of processing in favor of the more extensive processing or recall that arises when rendering a judgment. If so, then ease of recall or processing would have relatively little influence on judgments (cf. the men with family history of heart disease in Rothman and Schwarz 1998). However, if people interpret ease of processing as familiarity due to their established subject-area expertise, they may feel more confident in an ease-based impression and may feel less need for a more thorough search of memory. Under such circumstances, ease of processing or recall would play a relatively larger role in judgment. These possibilities await empirical testing.

How Hard Will It Be to Do the Right Thing?

Prior research suggests that self-efficacy and motivation are generally predictive of health-promoting behaviors (e.g., Bandura 2004; Strecher et al. 1986; Kelly, Zyzanski, and Alemagno 1991), as are appropriate goal-setting (e.g., Cullen, Baranowski, and Smith 2001; Strecher et al. 1995) and self-regulatory processes (e.g., Carver and Scheier 1998; Schwarz 1999). These lines of research reflect the view that in order for consumers to be successful in changing their health-related behaviors, the behaviors must be planned, initiated, and maintained.
Unfortunately, strict adherence to health-promoting behaviors is difficult, which often leads to disengagement and failure.

Thus common sense suggests that people may be more likely to adopt healthy behaviors when the required change is easy rather than difficult to implement. Supporting this everyday experience, numerous studies show that high perceived effort is a major impediment to behavior change, from adopting an exercise routine (e.g., DuCharme and Brawley 1995) to changing one’s diet (e.g., Sparks, Guthrie, and Shepherd 1997). At present, it is poorly understood how people estimate the effort involved in novel and unfamiliar behavior. It seems likely, however, that one strategy of effort estimation involves mental simulation: when we want to know how effortful something is, we may run a mental simulation to see how it feels. If so, we may conclude that the behavior change requires tremendous effort when the new behavior is difficult to imagine, but much less effort when it is easy to imagine. Studies by Song and Schwarz (2008b) provide empirical support for this possibility and highlight, once again, how minor incidental influences can profoundly affect people’s judgments.

In one study, Song and Schwarz (2008b) asked people to read instructions for a new exercise routine. The instructions were printed in a font that was either easy or hard to read (see Figure 6.3 for an example). People who read the exercise instructions in an easy-to-read font estimated that the exercise would take less time to complete, would flow more naturally, and would be more enjoyable than people who read the same instructions in a difficult-to-read font. Not surprisingly, the former participants were also more willing than the latter to make the exercise part of their daily routine.
These and related findings (Song and Schwarz 2008b) illustrate that people misread the difficulty of reading as indicative of the difficulty of doing: the harder instructions are to read and the harder a behavior is to imagine, the more effortful it seems and the lower is the motivation to engage in it. Accordingly, variables that facilitate easy processing of health information—such as print fonts, layouts, and color contrast—may have a profound influence on recipients’ willingness to adopt a behavioral recommendation. Future research may fruitfully explore the power of these variables in naturalistic settings.

<<A>> Can I Trust the Information Offered?

As seen in our discussion of risk judgments, information that is easy to process is perceived as less novel and more familiar (e.g., Song and Schwarz 2009). This gives rise to the impression that one must have heard or seen it before, or why else would it seem familiar? This association between ease of processing and perceived familiarity has many important consequences, from perceptions of risk (Song and Schwarz 2009) to perceptions of social consensus and truth, to which we turn next.

Perceptions of Truth

As Festinger (1954) noted, when the objective truth is difficult to assess, we often rely on social consensus as a heuristic cue: when many people believe it, there is probably something to it. If so, any variable that makes a statement seem more familiar should also increase the likelihood that the statement is accepted as true. Empirically, this is the case.
For example, Skurnik and Monin (2009) had people read a series of rhyming and nonrhyming novel ad slogans (e.g., for a brand of olive oil, people saw either “The cooking aid that nature made” or “The cooking aid that nature crafted”). Rhyming slogans, compared to their nonrhyming counterparts, were rated as more familiar, despite the fact that all brands and slogans had been created for the research study. More important, the rhyming slogans were also rated as more believable than their nonrhyming counterparts. That is, people inferred from the ease of processing that resulted from rhyme structure that the statement was familiar as well as true.

Similarly, Reber and Schwarz (1999) observed that a given statement was more likely to be accepted as true when the color contrast of its print font made it easy rather than difficult to read.

A particularly powerful variable that increases ease of processing and perceived familiarity and truth is actual repetition: the more often we hear a statement, the more familiar it becomes, the more we assume that others agree (e.g., Weaver et al. 2007) and the more likely we are to accept it as true (e.g., Festinger 1954). This is the case even when all repetitions are simply due to a single repetitive voice. For example, Weaver et al. (2007) had people read information from a single communicator, who repeated some statements many times. Later, people were asked to estimate how widely the conveyed beliefs were shared. The more often a statement was presented, the higher the consensus was perceived for the statement, even though the only source of the statement was a single communicator. Numerous other studies (for a review see Schwarz et al. 2007) found that repeating the same statement reliably increases its perceived truth (e.g., Begg, Anas, and Farinacci 1992; Hasher, Goldstein, and Toppino 1977) unless the specific context suggests that familiar statements are probably not credible (Skurnik, Schwarz, and Winkielman 2000; Unkelbach 2007).
In addition, people may rely on ease of processing to infer the credibility of the communicator: when the message sounds familiar and true, the communicator appears more credible. This inference reverses the usual connection between credible sources and the information they convey. For example, Fragale and Heath (2004) had people read statements such as “The wax used to line Cup-o-Noodles cups has been shown to cause cancer in rats” either two or five times. Next, people tried to guess whether each statement had been taken from the *National Enquirer* (a low-credibility source) or *Consumer Reports* (a high-credibility source). The more often a statement had been presented, the more it was attributed to *Consumer Reports* rather than to the *National Enquirer*, an attribution that is well suited to further enhance the credibility of the statement.

Implications for Information Campaigns and Warnings

As the preceding findings indicate, the old saying that if you repeat something often enough, it will seem true has considerable empirical support. This observation has important implications for information campaigns that are designed to correct false beliefs and to dispel rumors. In a comprehensive study of World War II rumor transmission, Allport and Lepkin (1945) found that the biggest predictor of belief in a rumor was frequency of exposure to the rumor—this factor had a bigger impact on belief than education, political affiliation, age, and so on. This repetition-based enhancement of truth for rumors is especially relevant for social marketers, who are often in the position of trying to refute rumors about a treatment or behavior change that they are promoting.
An intuitive strategy to fight the influence of rumors is to widely counter the rumors by publicizing them as false information. However, the foregoing theorizing argues against this approach. Although such an anti-rumor campaign may have the desired impact immediately by convincing people about the false nature of a rumor, it may fail by ignoring how people will remember the information after a delay. Specifically, recall of specific information such as the source of a communication fades from memory, while processing fluency for previously seen information remains fairly intact (e.g., Johnson, Hashtroudi, and Lindsay 1993). Remembering a joke but forgetting who told it, or recalling a news story but forgetting its source, are everyday examples of this dissociation in memory. The implication is that warning people about false information could backfire over time: when people hear the rumor again, it seems more familiar and they are more likely to perceive it as true—having forgotten that the only reason why it seems familiar is that they had been told several times that it is false.

Skurnik et al. (2005) tested this possibility with claims about health behaviors and diet. They exposed people either once or three times to statements such as “Corn chips have twice as much fat as potato chips”; each statement was explicitly identified as “true” or “false” as it was presented. The people participating in the research were either younger adults (around age twenty) or older adults (over age seventy-two). The pattern of memory for statements suggests that older adults may be particularly vulnerable to the backfire effects of information campaigns. Numerous studies show that explicit memory—for example, recall of detailed source information—declines with age, whereas implicit memory—for instance, feelings of fluency and familiarity—stays largely intact (Park 2000). If so, older adults may be less likely to remember the details of previously seen information, which would be required to identify the information
as false, but they may still find previously seen statements easy to process and familiar, making the statements seem true.

Either immediately after reading the statements or after a three-day delay, people read the statements again and were asked to identify each one as true or false. Figure 6.4 shows the results. After a short delay (top panel), the younger adults were equally likely to misidentify a true statement as false and a false statement as true, indicating overall good memory for truth with a few random errors. The older adults, on the other hand, were more likely to misremember a false statement as true than a true statement as false. This “illusion of truth” effect shown in the older adults was more pronounced for information seen only once than three times, indicating that three exposures resulted in more accurate memory for truth.

<<FIGURE 6.4 NEAR HERE>>

After a three-day delay (bottom panel), memories of the younger adults mirrored those of the older adults after half an hour almost exactly. For statements seen once, younger adults showed an illusion of truth effect and misidentified 24 percent of the false statements as true; this effect was less pronounced for statements seen three times. The benefits of repetition to source recall were still with the younger adults. Finally, older adults misidentified 29 percent of the once-presented false statements as true. For statements shown three times, older adults thought that a full 40 percent of the false statements were true.

The overall pattern of results suggests an increasing reliance on experienced familiarity as source memory fades. Without a delay, younger adults remembered the presented information well; older adults’ memory was less good and they appeared to draw on their experienced familiarity when making truth judgments. Over the course of three days, younger adults’ memory for details fades as well, making their memory for truth similar to what older adults
showed after half an hour. Finally, older adults were particularly likely to accept false statements as true after three warnings, suggesting that repeated warnings increases the perceived familiarity of the statements for this age group, without the benefit of strong source recall. As a result, repeating false information, even in order to correct it, may put older adults at a particular risk, essentially turning warnings into recommendations.

Once familiar false information begins to seem true, it can influence subsequent behaviors. For example, Skurnik, Yoon, and Schwarz (2010) tested whether false claims about diet would affect people’s choice of snacks by having people read a flyer with a series of “myths” and “facts” about diet. Of particular interest on the flyer were claims that generally nonhealthy foods (e.g., fudge cake, potato chips) had an unrecognized health benefit (e.g., high in antioxidants or potassium). The only task at the time was to assess the flyer’s suitability for public distribution.

After either five minutes or half an hour, at what appeared to be the end of the research session, people were asked to rate various statements about health and diet, including the statements from the earlier flyer. Then, ostensibly as part of a separate activity, people chose snacks for themselves from a set of alternatives, some of which were mentioned among the diet facts and myths on the flyer. If people were swayed by the flyer’s claims, then in the short term they may be willing to choose the unhealthy foods when their benefits were described as factual, but reject the same foods when the benefits were described as myths. However, if the fact and myth designations fade from memory more quickly than the core claim, then as time passes people may embrace the unhealthy foods they initially rejected.

Figure 6.5 shows mean truth ratings of statements from the flyer and new statements that did not appear on the flyer. True claims are consistently rated truer than new claims, and false
claims are consistently rated more false than new claims. However, the truth rating of false claims changes between the five-minute and half-hour delays. Specifically, false claims are rated as less false after half an hour has passed, in line with predictions. Figure 6.6 shows the likelihood of selecting a nonhealthy snack that was mentioned as having a health benefit in the flyer. As expected, when the benefit was described as a fact, people chose the food consistently across the delay. In contrast, when the benefit was described as a myth, people avoided the food immediately, but chose it more frequently after half an hour had passed.

<<FIGURES 6.5, 6.6 NEAR HERE>>

The overall picture is that warnings about false information can be effective at first, evoking the desired behavior from people. But as time passes, the details of the warning’s context fade from mind, leaving a core proposition that feels familiar; this familiarity makes the now-vague information seem true. In the end, the warning, which was initially effective, can have the opposite effect of what was intended.

<<A>>Conclusion

As this review illustrates, experiential information that accompanies thinking plays a crucial role in judgment. This experiential information can qualify and even reverse the conclusions implied by declarative thought content alone. Understanding how consumers draw conclusions and form judgments requires considering the interplay of declarative and experiential information.

This chapter has reviewed evidence that mental experiences affect a variety of specific judgments: ease of retrieval from memory is often interpreted as a sign of the frequency or recency of what was retrieved, fluency of processing is taken as a sign of reduced risk, difficulty
in processing can signify harm or trouble in performance, and familiarity can stand in for truth. In domains relevant to obesity and health, people are exposed to a great deal of information from a variety of sources (e.g., news reports, websites, advertisements, contact with medical professionals, advice from friends and family). Not all sources are credible, and even information from credible sources can change over time. Sorting through this information is a critical but difficult task. The difficulties of dealing with this abundant and complex dynamic array of information mean that consumers often process health messages in a passive and heuristic manner.

It is during such situations that consumers are particularly likely to rely on their subjective mental experiences to assess health information and behaviors. What seem like mundane, low-stakes decisions, with no import for long-term health and happiness, can thus build through their repetition into a public health problem. Consumers are most likely to base their judgments on cognitive experiences when they have too much information to process in too short a time, their memory is not precise enough to support a given query, or they have no reason to doubt their intuitions and rapid reactions. Conversely, the effects of cognitive feelings on judgment should decrease when consumers have abundant time and expertise to consider the bases for judgment and high personal involvement in the judgment process or outcome. Factors such as prior dieting experience or a family history of obesity may thus minimize the effects of cognitive experiences. In general, consumers should be more immune to the effects of subjective mental experiences when cognitive feelings can be attributed to a cause not linked to the judgment at hand and when supporting materials can replace incomplete memories. When presenting false information (presumably to warn people that it is false or to debunk the information), it seems best to focus the audience’s attention on what is true, rather than to
emphasize the false information and thereby make it more familiar. Finally, it is important to understand circumstances when it is desirable to encourage or minimize the role of mental experiences in judgment. For instance, suppose the goal of a communication campaign is to convince consumers that their eating behavior is putting them at risk for obesity. If a consumer finds that unhealthy eating behaviors are easily retrieved from memory, then those behaviors will tend to seem more frequent and perhaps lead to behavior change. Asking these consumers to reflect on all their unhealthy behaviors may have the opposite effect; if the examples are so hard to recall, consumers may reason, then there are probably not too many of them. Exploring the links between mental experiences and message strategies is a fruitful area for future research.

