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Incorporating Bayesian Ideas into
Health-Care Evaluation
David J. Spiegelhalter

Abstract. We argue that the Bayesian approach is best seen as providing
additional tools for those carrying out health-care evaluations, rather than
replacing their traditional methods. A distinction is made between those
features that arise from the basic Bayesian philosophy and those that come
from the modern ability to make inferences using very complex models.
Selected examples of the former include explicit recognition of the wide
cast of stakeholders in any evaluation, simple use of Bayes theorem and use
of a community of prior distributions. In the context of complex models,
we selectively focus on the possible role of simple Monte Carlo methods,
alternative structural models for incorporating historical data and making
inferences on complex functions of indirectly estimated parameters. These
selected issues are illustrated by two worked examples presented in a
standardized format. The emphasis throughout is on inference rather than
decision-making.

Key words and phrases: Bayes theorem, prior distributions, sceptical
prior distribution, data monitoring committee, cost-effectiveness analysis,
historical data, decision theory.

1. INTRODUCTION

The Bayesian approach to inference and decision-
making has a tradition of controversy. In recent years,
however, a more balanced and pragmatic perspec-
tive has developed, reflected in a notable increase in
Bayesian publications in biostatistics in general and
health-care evaluation in particular. The argument of
this paper is that this perspective naturally leads to the
view of Bayesian methods as adding to, rather than re-
placing, standard statistical techniques.

This somewhat ecumenical perspective is based on
acknowledging that traditional methods of designing
and analyzing studies have strongly contributed to
advances in medical care, whether these comprise
new drugs, devices or even organizational initiatives.
Nevertheless it should be clear that the process of get-
ting an intervention into routine practice makes de-
mands that are not easily met by classical techniques.
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For example, when carrying out a clinical trial, the
many sources of evidence and judgement available
may be inadequately summarized by a single “alter-
native hypothesis,” monitoring may be complicated by
simultaneous publication of related studies and multi-
ple subgroups may need to be analyzed and reported.
Randomized trials may not be feasible or may take a
long time to reach conclusions, and a single clinical
trial will also rarely be sufficient to inform a policy de-
cision, such as embarking on or continuing a research
or drug development program, regulatory approval of
a drug or device or recommendation of a treatment
at an individual or population level. Since standard
statistical methods are designed for summarizing the
evidence from single studies or pooling evidence from
similar studies, they have difficulties dealing with the
pervading complexity of multiple sources of evidence.
Furthermore, the Bayesian approach can be charac-
terized as a means of rational learning from experi-
ence in the face of uncertainty, and since advances in
health-care typically happen through incremental gains
in knowledge rather than paradigm-shifting break-
throughs, this domain appears particularly amenable to
a Bayesian perspective.

156



BAYESIAN IDEAS AND HEALTH-CARE EVALUATION 157

This paper presents a personal perspective based
on experience of trying to communicate to “classi-
cally” trained statisticians. For such an audience it
can be helpful to break the additional benefits of a
Bayesian approach into two main strands: those that
are inherent to the Bayesian philosophy, and those
that arise through the ability provided by the “MCMC
revolution” to handle complex models. For example,
a recent issue ofStatistics in Medicine (Volume 22,
Number 10) comprised entirely of Bayesian analyses
using Markov chain Monte Carlo (MCMC) methods:
of these ten papers, all exploited the ability to handle
complex models, but only one gave any attention to an
informative prior distribution, and then only minimally
(Hanson, Bedrick, Johnson and Thurmond, 2003).

This division is reflected in the structure of this
paper. In Section 2 we focus on three selected features
of basic Bayesian analysis, which are then illustrated in
a fairly detailed example. We then go on in Section 3 to
identify three important features of complex modelling
followed again by an example. It will be clear that the
emphasis throughout is firmly on inference rather than
decision-making: this is primarily to avoid overlap with
Berry (2004), but also reflects personal enthusiasm.
This issue is briefly discussed in Section 4, which also
attempts to put current developments in perspective
and outlines some issues in increasing appropriate use
of Bayesian methods.

Of course, this paper can only scratch the surface of a
burgeoning literature, and only a sample of references
is provided in the text. For basic arguments for the
Bayesian approach in this context it is difficult to
improve upon the classic papers by Jerome Cornfield,
for example, Cornfield (1966, 1969, 1976). More
recent introductions and polemics include Etzioni and
Kadane (1995), Berry and Stangl (1996a) and Kadane
(1995), while Spiegelhalter, Myles, Jones and Abrams
(2000) systematically reviews the literature, Berry and
Stangl (1996b) contains a wide range of applications,
and O’Hagan and Luce (2003) is an excellent free
primer. Much of the material presented in this paper is
taken from Spiegelhalter, Abrams and Myles (2004),
to which we refer for further detail.

2. THREE SELECTED FEATURES OF BASIC
BAYESIAN ANALYSIS

A number of generic characteristics of the Bayesian
paradigm make it especially suitable for application
to health-care evaluations. Here we focus on a limited
selection: acknowledgment of subjectivity and context,

simple use of Bayes theorem and use of a “community”
of prior distributions in order to assess the impact of
new evidence. Of course many other important issues
could be identified, including the ease of prediction,
reporting probabilities of events of direct interest,
use of prior distributions in sample size assessment
and power calculations and so on: these features are
reflected in the references given above.

2.1 Acknowledgment of Subjectivity and Context

Bayesian analysis is rooted in probability theory,
whose basic rules are generally considered as self-
evident. However, as Lindley (2000) emphasizes, the
rules of probability can be derived from “deeper” ax-
ioms of reasonable behavior of an individual (sayYou)
in the face of Your own uncertainty. The vital point
of this subjective interpretation is that Your probabil-
ity for an event is a property of Your relationship to
that event, and not an objective property of the event
itself. This is why, pedantically speaking, one should
always refer to probabilitiesfor events rather than
probabilitiesof events, since the probability is condi-
tioned on the context, which includes the observer and
all the observer’s background knowledge and assump-
tions. Bayesian methods therefore explicitly allow for
the possibility that the conclusions of an analysis may
depend on who is conducting it and their available ev-
idence and opinion, and therefore an understanding of
the context of the study is vital:

Bayesian statistics treats subjectivity with
respect by placing it in the open and under
the control of the consumer of data (Berger
and Berry, 1988).

This view appears particularly appropriate to the
complex circumstances in which evaluations of health-
care interventions are carried out. Apart from method-
ological researchers, at least five different viewpoints
might be identified:

• sponsors—for example, the pharmaceutical indus-
try, medical charities or granting bodies such as
the U.S. National Institutes of Health, and the U.K.
Medical Research Council;

• investigators—that is, those responsible for the con-
duct of a study, whether industry or publicly funded;

• reviewers—for example, journal editors regarding
publication, and regulatory bodies for approval of
pharmaceuticals or devices;

• policy makers—for example, agencies responsible
for setting health policy taking into account cost-
effectiveness, such as the U.K. National Institute
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for Clinical Excellence (NICE), or individual health
maintenance organizations (HMOs),

• consumers—for example, individual patients or
clinicians acting on their behalf.

Each of these broad categories can be further sub-
divided. Thus a characteristic of health-care evalua-
tion is that the investigators who plan and conduct a
study are generally not the same body as that which
makes decisions on the basis of the evidence provided
in part by that study. An immediate consequence of this
complex cast of stakeholders is that it is not generally
straightforward to implement a decision-theoretic ap-
proach that is based around a single decision-maker.
In addition, there are a range of possible prior distribu-
tions, which may in turn be used for design but possibly
not in reporting results. All this reinforces the need for
an extremely flexible approach, with a clear specifica-
tion of whose beliefs and values are being expressed,
and the necessity of taking forward in parallel a range
of possible opinions.

2.2 Simple Use of the Bayes Theorem

The use of MCMC methods can lead to the use of
extravagantly complex models, but here we consider
two important applications of Bayes theorem used in
its simplest analytic form: the interpretation of positive
trial results, and using approximate normal likelihoods
and priors.

Bayes’ theorem is often introduced through exam-
ples based on diagnostic testing for a disease of known
prevalence. For fixed sensitivity and specificity the
posterior probability after a positive test result (or
the “predictive value positive”) can be calculated, and
the frequent conflict of this value with naive intuition
can be a good educational warning to take into ac-
count the prior probability (prevalence). In the context
of health-care evaluation, the equivalent of a positive
test is a “significant” finding in a clinical trial, which al-
most inevitably receives disproportionately more pub-
licity than a negative finding.

There have been frequent attempts to adapt Bayesian
ideas as an aid to interpretation of positive clinical trial
results. For example, Simon (1994) points out that if
one carries out clinical trials with Type I errorα = 0.05
and power (1− Type II error) 1− β = 0.80, then if
only 10% of investigated treatments are truly effective
(not an unreasonable estimate), then Bayes theorem
shows that 36% of claimed “discoveries” will be false
positives. This figure will be even higher if there is ad-
ditional external evidence against a particular interven-
tion, prompting Grieve (1994) to suggest that Bayes

theorem provides “a yardstick against which a sur-
prising finding may be measured.” Increasing attention
to “false discovery rates” (Benjamini and Hochberg,
1995), which are essentially measures of the “predic-
tive value positive,” has refocused attention on this con-
cept within the context of classical multiple testing.

Our second example concerns the simple use of
Bayes theorem when data has been analyzed using
standard statistical packages. In parametric models
Bayes theorem is often taught using binomial likeli-
hoods and conjugate beta distributions, but this frame-
work does not fit in well with comparative evaluations
for which interest will generally lie with odds ratios
or hazard ratios, classically estimated using logistic or
Cox regression analyses provided within standard sta-
tistical packages. Practitioners will therefore generally
have data summaries comprising estimates and stan-
dard errors of a log(odds ratio) or a log(hazard ratio),
and these can be interpreted as providing normal like-
lihoods and incorporated into a Bayesian analysis.

To be specific, suppose we have a classical esti-
mate y, with standard errors, of a true log(odds
ratio) or a log(hazard ratio)θ , and this is interpreted
as providing a normal likelihood based on the sam-
pling distributiony ∼ N [θ, σ 2/m], wheres = σ/

√
m,

with σ known. Then if we are willing to approximate
our prior distribution forθ by θ ∼ N [µ,σ 2/n0], the
simplest application of Bayes theorem gives a poste-
rior distribution

θ |y ∼ N

[
n0µ + mym

n0 + m
,

σ 2

n0 + m

]
.

The choice ofσ is essentially one of convenience
since we are matching three parameters (σ,m,n0)
to two specified quantities (the likelihood and prior
variability), but perhaps remarkably it turns out that
σ = 2 leads to a valuem that is generally interpretable
as the “effective number of events” (Spiegelhalter,
Abrams and Myles, 2004): for example, Tsiatis (1981)
shows that in a balanced trial with small treatment
effect, the estimated log(hazard ratio) has approximate
variance 4/m, where m is the observed number of
events. This formulation aids interpretation as one can
translate both prior input and evidence from data on a
common scale, as we shall see in Section 2.4.

2.3 Flexible Prior Specification

For a “classical” audience, it is important to clarify
a number of possible misconceptions that may arise
concerning the prior distribution. In particular, a prior
is not necessarily specified beforehand: Cox (1999)
states that:
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I was surprised to read that priors must
be chosen before the data have been seen.
Nothing in the formalism demands this.
Prior does not refer to time, but to a situa-
tion, hypothetical when we have data, where
we assess what our evidence would have
been if we had had no data. This assess-
ment may rationally be affected by having
seen the data, although there are consider-
able dangers in this, rather similar to those
in frequentist theory.

Naturally when making predictions or decisions one’s
prior distribution needs to be unambiguously specified,
although even then it is reasonable to carry out sensi-
tivity analysis to alternative choices.

The prior is also not necessarily unique, since the
discussion in Section 2.1 should make clear that there
is no such thing as the “correct” prior. Instead, Kass
and Greenhouse (1989) introduced the term “commu-
nity of priors” to describe the range of viewpoints that
should be considered when interpreting evidence, and
therefore a Bayesian analysis is best seen as providing
a mapping from a space of specified prior beliefs to
appropriate posterior beliefs.

Members of this “community” may include the
following:

• “Clinical” priors representing expert opinion—Eli-
citation methods for such priors were reviewed by
Chaloner (1996), who concluded that fairly simple
methods are adequate, using interactive feedback
with a scripted interview, providing experts with
a systematic literature review, basing elicitation on
2.5% and 97.5% percentiles, and using as many
experts as possible. Recent reports of elicitation
before clinical trials include Fayers et al. (2000) and
Chaloner and Rhame (2001).

• “Evidence-based” priors representing a synthesis
of available evidence—Since conclusions strongly
based on beliefs that cannot be “objectively” sup-
ported are unlikely to be widely regarded as convinc-
ing, it is valuable to summarize available evidence.
Possible models for incorporation of past data are
discussed in Section 3.2.

• “Reference” priors—It is attractive to seek a “non-
informative” prior to use as a baseline analysis,
and such analyses have been suggested as a way
of making probability statements about parameters
without being explicitly Bayesian (Burton, 1994;
Shakespeare, Gebski, Veness and Simes, 2001). But
the problems are well known: uniform priors on

one scale are not uniform on a transformed scale,
and apparently innocuous prior assumptions can
have a strong impact particularly when events are
rare. Special problems arise in hierarchical mod-
elling, both with regard to appropriate priors on
nuisance parameters such as baseline risks, and se-
lection of a default prior for the between-group
variability. For the latter, attention has concen-
trated on placing a prior directly on the degree of
shrinkage (Christiansen and Morris, 1997b; Daniels,
1999; Natarajan and Kass, 2000; DuMouchel and
Normand, 2000; Spiegelhalter, 2001), although a
half-normal prior on the between-group standard
deviation appears to be a transparent and flexible
means of incorporating a degree of prior information
(Spiegelhalter, Abrams and Myles, 2004).

• “Sceptical” priors that express archetypal doubts
about large effects—Informative priors that express
scepticism about large treatment effects have been
put forward both as a reasonable expression of
doubt, and as a way of controlling early stopping
of trials on the basis of fortuitously positive results.
Kass and Greenhouse (1989) suggest that a

cautious reasonable sceptic will recom-
mend action only on the basis of fairly
firm knowledge,

but that these sceptical

beliefs we specify need not be our own,
nor need they be the beliefs of any actual
person we happen to know, nor derived in
some way from any group of “experts.”

Mathematically speaking, a sceptical prior about
a treatment effect will have a mean of zero and a
shape chosen to include plausible treatment differ-
ences which determines the degree of scepticism.
Spiegelhalter, Freedman and Parmar (1994) argue
that a reasonable degree of scepticism may corre-
spond to a feeling that the trial has been designed
around an alternative hypothesis that is optimistic,
formalized by a prior with only a small probabilityγ
(say 5%) that the treatment effect is as large as the
alternative hypothesisθA.

In Section 2.2 we emphasized how a “significant”
positive trial result may be tempered by taking
into account prior prevalence, and Matthews (2001)
extended those ideas to allow for the full likelihood
observed. Specifically, he derives a simple formula
for working backward from the observed likelihood
to the sceptical prior centered on 0 that would just
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give a 95% posterior interval that included 0—if
that degree of scepticism were considered plausible,
then the trial results could not be considered as
convincing. An example is provided in Section 2.4.

Sceptical priors have been used in a number of
case studies (Fletcher et al., 1993; Parmar,
Ungerleider and Simon, 1996; DerSimonian, 1996;
Heitjan, 1997; Dignam et al., 1998; Cronin et al.,
1999; Harrell and Shih, 2001). A senior Food and
Drug Administration (FDA) biostatistician (O’Neill,
1994) has stated that he

would like to see [sceptical priors] ap-
plied in more routine fashion to provide
insight into our decision making.

• “Enthusiastic” priors that express archetypal opti-
mism—As a counterbalance to the pessimism ex-
pressed by the sceptical prior, Spiegelhalter,
Freedman and Parmar (1994) suggest an “enthusias-
tic” prior centered on the alternative hypothesis and
with a low chance (say 5%) that the true treatment
benefit is negative.

The community of prior opinions becomes particu-
larly important when faced with the difficult issue of
whether to stop a clinical trial. Kass and Greenhouse
(1989) express the crucial view that “the purpose of a
trial is to collect data that bring to conclusive consen-
sus at termination opinions that had been diverse and
indecisive at the outset,” and this idea may be formal-
ized as follows:

1. Stopping with a “positive” result (i.e., in favor
of the new treatment) might be considered if a
posterior based on asceptical prior suggested a high
probability of treatment benefit.

2. Stopping with a “negative” result (i.e., equivocal or
in favor of the standard treatment) may be based on
whether the results were sufficiently disappointing
to make a posterior based on anenthusiastic prior
rule out a treatment benefit.

In other words we should stop if we have convinced
a reasonable adversary that they are wrong. Fayers,
Ashby and Parmar (1997) provide a tutorial on such
an approach, and Section 2.4 describes its application
by a data monitoring committee of two cancer trials.

2.4 Example 1: Bayesian Monitoring of
the CHART Trials

Here we illustrate the selected ideas described pre-
viously in the context of two clinical trials in which

the data monitoring committee used Bayesian tech-
niques to inform the decision whether to stop early.
More detail is provided in Parmar et al. (2001) and
Spiegelhalter, Abrams and Myles (2004).

Intervention. In 1986 a new radiotherapy technique
called CHART (continuous hyper-fractionated acceler-
ated radiotherapy) was introduced. Its concept was to
give radiotherapy continuously (no weekend breaks),
in many small fractions (three a day) and acceler-
ated (the course completed in twelve days). There are
clearly considerable logistical problems in efficiently
delivering CHART, as well as concerns about possible
increased side effects.

Aim of studies. Promising nonrandomized and pilot
studies led the U.K. Medical Research Council to insti-
gate two large randomized trials to compare CHART to
conventional radiotherapy in both nonsmall-cell lung
and head-and-neck cancer, and in particular to assess
whether CHART provides a clinically important dif-
ference in survival that compensates for any additional
toxicity and problems of delivering the treatment.

Study design. The trials began in 1990, random-
ized in the proportion 60 :40 in favor of CHART,
with planned annual meetings of the data monitor-
ing committee (DMC) to review efficacy and toxicity
data. No formal stopping procedure was specified in
the protocol.

Outcome measure. Full data were to become avail-
able on survival (lung) or disease-free survival (head-
and-neck), with results presented in terms of estimates
of the hazard ratioh, defined as the ratio of the hazard
under CHART to the hazard under standard treatment.
Hence hazard ratios less than 1 indicate superiority
of CHART.

Planned sample sizes. 600 patients were to be en-
tered in the lung cancer trial, with 470 expected
deaths, giving 90% power to detect at the 5% level
a 10% improvement (15% to 25% survival). Under
a proportional hazards assumption, this is equivalent
to an alternative hypothesis (hazard ratio) ofhA =
log(0.25)/ log(0.15) = 0.73. The head-and-neck trial
was to have 500 patients, with 220 expected recur-
rences, giving 90% power to detect at the 5% level
a 15% improvement (45% to 60% disease-free sur-
vival), equivalent to an alternative hypothesis ofhA =
log(0.60)/ log(0.45) = 0.64.

Statistical model. A proportional hazards Cox model
provides an approximate normal likelihood (Sec-
tion 2.2) forθ = log(h)= log(hazard ratio), based on

ym ∼ N

[
θ,

σ 2

m

]
,
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where ym is the estimated log(hazard ratio),σ = 2
andm is the “equivalent number of events” in a trial
balanced in recruitment and follow-up.

Prospective analysis? Yes, the prior elicitations were
conducted before the start of the trials, and the
Bayesian results presented to the DMC at each of
their meetings.

Prior distributions. Although the participating clini-
cians were enthusiastic about CHART, there was con-
siderable scepticism expressed by oncologists who
declined to participate in the trial. Eleven opinions
were elicited for the lung cancer trial and nine for the
head-and-neck (Spiegelhalter, Freedman and Parmar,
1994), using a questionnaire described in detail in
Parmar, Spiegelhalter and Freedman (1994). We use
the arithmetic average of the distributions as a sum-
mary, since we wish to represent an “average”
clinician. The prior distribution expressed a median
anticipated 2-year survival benefit of 10%, and a
10% chance that CHART would offer no survival
benefit at all. The histogram was then transformed
to a log(hazard ratio) scale assuming a 15% baseline
survival and aN [µ,σ 2/n0] distribution fitted, giv-
ing µ = −0.28, σ = 2, σ/

√
n0 = 0.23, which implies

n0 = 74.3, so the prior evidence is equivalent to that
provided by a trial in which around 74 deaths had
been observed, balanced equally between arms. For
the head-and-neck trial, the fitted prior mean log(h)
is θ0 = −0.33 with standard deviation 0.26, equiva-
lent to n0 = 61.0. Figure 1 shows the fit of the nor-
mal distributions to the transformed histograms are
quite reasonable, and the similarity between the two
sets of opinions is clear, each supporting around a
25% reduction in hazard, but associated with consider-
able uncertainty. Asceptical prior was also derived us-
ing the ideas in Section 2.3: the prior mean is 0 and the
precision is such that the prior probability that the true
benefit exceeds the alternative hypothesis is low (5%
in this case). For the lung trial, the alternative hypoth-
esis isθA = log(0.73) = −0.31, so assumingσ = 2
givesn0 = 110. For the head-and-neck, the alternative
hypothesis isθA = log(0.64) = −0.45, which gives a
sceptical prior withn0 = 54. These sceptical prior dis-
tributions are displayed in Figure 2 with the clinical
priors derived above.

Evidence from study. For the lung cancer trial, the
data reported at each of the annual meetings of the
independent data monitoring committee is shown in
Table 1 (Parmar et al., 2001): the final row is that of
the published analysis. Recruitment stopped in early
1995 after 563 patients had entered the trial. It is clear

FIG. 1. Average opinion for lung cancer and head-and-neck
CHART trials with normal distributions fitted with matching mean
and variance.

that the extremely beneficial early results were not
retained as the data accumulated, although a clinically
important and statistically significant difference was
eventually found. Perhaps notable is that in 1993 the
DMC recommended continuation of the trial when the
2-sidedP -value was 0.001.

FIG. 2. Sceptical and clinical priors for both lung and
head-and-neck CHART trials, showing prior probabilities that
CHART has superior survival. The sceptical priors express a
5% prior probability that the true benefit will be more extreme
than the alternative hypotheses of h = 0.73 for the lung trial and
h = 0.64 for the head-and-neck trial.
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TABLE 1
Summary data reported at each meeting of the CHART lung trial DMC. The “effective number of deaths” m is derived from

the likelihood-based 95%interval, in that the standard error of the estimated log(hazard ratio) is assumed to be 2/
√

m

Actual
deaths

Effective
deaths m

Classical hazard ratio 2-sided
P -value

“Sceptical” hazard ratio

Date No. patients Estimate 95% interval Estimate P(h < 0.80)

1992 256 78 76 0.55 (0.35–0.86) 0.007 0.79 0.56
1993 380 192 190 0.63 (0.47–0.83) 0.001 0.73 0.73
1994 460 275 253 0.70 (0.55–0.90) 0.003 0.78 0.60
1995 563 379 346 0.75 (0.61–0.93) 0.004 0.80 0.48
1996 563 444 488 0.76 (0.63–0.90) 0.003 0.81 0.52

For the head-and-neck cancer trial, the data reported
at each meeting of the independent data monitoring
committee showed no strong evidence of benefit shown
at any stage of the study: at the final analysis the
likelihood-based hazard ratio estimate was 0.95 with
95% interval 0.79 to 1.14.

Bayesian interpretation. For the lung trial, the DMC
were presented with survival curves, and posterior dis-
tributions and tail areas arising from a reference prior
[uniform on a log(h) scale]. Following the discussion
in Section 2.3, the posterior distribution resulting from
the sceptical prior was emphasized in view of the pos-
itive findings, in order to check whether the evidence
was sufficient to persuade a reasonable sceptic.

Figure 3 shows the sceptical prior distributions at
the start of the lung cancer trial, and the likelihood
(essentially the posterior under the reference prior)
and posterior for the results available in subsequent
years. Under the reference prior there is substantial
reduction in the estimated effect as the trial progresses,
while the sceptical results are remarkably stable and
Table 1 shows that the initial estimate in 1992 remains
essentially unchanged.

Before the trial the clinicians were demanding
a 13.5% improvement before changing treatment
(Parmar et al., 2001): however, the inconvenience and
toxicity were found to be substantially less than ex-
pected and so the probability of improvement of at
least 7% was calculated, around half the initial de-
mands, and equivalent toh of around 0.80. Such “shift-
ing of the goalposts” is entirely reasonable in the light
of the trial data. Figure 3 and the final column of
Table 1 show that the sceptical posterior distribution is
centered around these clinical demands, showing that
these data should persuade even a sceptic that CHART
both improves survival and, on balance, is the prag-
matic treatment of choice.

Since the results for the head-and-neck trial were es-
sentially negative, it is appropriate to monitor the trial

assuming a more enthusiastic prior: we adopt the ex-
perts’s clinical prior, since this expresses considerable
optimism. The initial clinical demands were a 13%
change in survival from 45% to 58%, but in paral-
lel with the lung trial we have reduced this to a 7%
improvement. The results are described in detail in
Parmar et al. (2001): the final posterior expresses a
17% chance that CHART reduces survival, 8% chance
that it reduces a clinically significant (> 7%) im-
provement and 75% chance that the effect lies in the
“grey area” in between. The data should therefore be
sufficient to convince a reasonable enthusiast that, on
the basis of the trial evidence, CHART is not of clini-
cal benefit in head-and-neck cancer.

Sensitivity analysis. We can use the results of
Matthews (2001) to see what degree of scepticism
would have been necessary not to have found the fi-
nal lung results convincing. Had the effective number
of events underlying our sceptical prior beenn0 = 701,
this would have just led the 95% posterior interval for
the hazard ratio to include 1. Since this prior distrib-
ution would have restricted plausible hazard ratios to
a 95% prior interval of 0.86 to 1.14, this can be con-
sidered too great a degree of reasonable scepticism and
hence the trial results can be considered convincing of
survival benefit.

Comments. There are two important features of the
prospective Bayesian analysis of the CHART trial.
First, while classical stopping rules may well have led
the DMC to have stopped the lung trial earlier, per-
haps in 1993 when the two-sidedP -value was 0.001
this would have overestimated the benefit. The DMC
allowed the trial to continue, and consequently pro-
duced a strong result that should be convincing to wide
range of opinion. Second, after discovering that the
secondary aspects of the new treatment were less unfa-
vorable than expected, the DMC is allowed to “shift the
goalposts” and not remain with unnecessarily strong
clinical demands.
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FIG. 3. Prior, “likelihood” ( posterior based on reference prior) and posterior distributions for the CHART lung cancer trial assuming
a sceptical prior. The likelihood becomes gradually less extreme, providing a very stable posterior estimate of the treatment effect when
adopting a sceptical prior centered on a hazard ratio of 1. Demands are based on a 7% improvement from 15% to 22% 2-year survival,
representing a hazard ratio of 0.80.

3. THREE SELECTED FEATURES OF COMPLEX
BAYESIAN MODELLING

It is important to note that many of the advan-
tages claimed for the Bayesian approach follow from
the ability to handle complex models. In particular,
there has been extensive use of hierarchical models in
health-care evaluation: see, for example, applications
in subset analysis (Dixon and Simon, 1991; Simon,
Dixon and Friedlin, 1996), multicenter analysis (Gray,
1994; Stangl and Greenhouse, 1998), cluster random-
ized trials (Spiegelhalter, 2001; Turner, Omar and
Thompson, 2001), multiple N -of-1 studies (Zucker

et al., 1997), institutional comparisons (Goldstein and
Spiegelhalter, 1996; Christiansen and Morris, 1997a;
Normand, Glickman and Gatsonis, 1997) and meta-
analysis (Sutton et al., 2000; Whitehead, 2002). How-
ever, many of these analyses minimize the role of prior
information and could have been carried out using flex-
ible likelihood methods, such as simulating the distri-
bution of functions of maximum likelihood estimates
and so on.

Here we focus on three aspects that reflect a specif-
ically Bayesian input into complex modelling: com-
putation; incorporation of historical information, and
inference on complex functions of parameters.
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3.1 Computation

It is perhaps extraordinary that the Bayesian para-
digm, for so long held up as being impractical to full
implement, has become through simulation methodol-
ogy the easiest framework in which to carry out in-
ference in complex models. There is no need here
to describe the power of Markov chain Monte Carlo
methods for approximating required integrals using
simulated values from the posterior distribution: tu-
torial introductions are provided by Brooks (1998),
Casella and George (1992) and Gilks, Richardson and
Spiegelhalter (1996).

It may, however, be important to acknowledge the
continuing role of simpler Monte Carlo methods in cer-
tain contexts, in which quantities are simulated from
distributions expressing current uncertainty, and then
complex functions of these quantities calculated, of-
ten using standard spreadsheet software. The result-
ing distributions of the outputs of the spreadsheet
will reflect the uncertainty about the inputs. This use
of Monte Carlo methods can also be termedprob-
abilistic sensitivity analysis and is used extensively
in the context of risk analysis and cost-effectiveness
modelling. A schematic representation is shown in
Figure 4(a), where it is termed the “two-stage” ap-
proach since the two stages of producing the proba-
bility distributions, and then propagating their effects,
are separated. This is contrasted to the “integrated” ap-
proach in Figure 4(b) which is generally implemented
using MCMC methods.

Advantages of the integrated approach include the
following (Spiegelhalter and Best, 2003). First, there
is no need to assume parametric distributional shapes
for the posterior probability distributions, which may
be important for inferences for smaller samples. Sec-
ond, and perhaps most important, the appropriate prob-
abilistic dependence between unknown quantities is
propagated (Chessa et al., 1999), rather than assuming
either independence or being forced into, for example,
multivariate normality. This can be particularly vital
when propagating inferences which are likely to be
strongly correlated, say when considering both base-
line levels and treatment differences estimated from the
same studies.

Disadvantages of the integrated approach are its ad-
ditional complexity and the need for full Markov chain
Monte Carlo software. The “two-stage” approach,
in contrast, might be implemented, for example, as
macros for Excel, either from commercial software

FIG. 4. A schematic graph showing the two approaches to in-
corporating uncertainty about parameters into a cost-effectiveness
analysis. The (a) two-stage approach subjectively synthesizes data
and judgement to produce a prior distribution on the parameters
which is then propagated through the cost-effectiveness model. The
(b) unified or integrated approach adopts a fully Bayesian analy-
sis: after taking into account the available evidence, initial prior
opinions on the parameters are revised by Bayes theorem to poste-
rior distributions, the effects of which are propagated through the
cost-effectiveness model in order to make predictions. An integrated
Bayesian approach ensures that the full joint uncertainty concern-
ing the parameters is taken into account.

such as @RISK (Palisade Europe, 2001) and Crystal
Ball (Decisioneering, 2000), or self-written. However,
experience with such spreadsheets suggests that they
might not be particularly transparent for complex prob-
lems, due to clumsy handling of arrays and opaque for-
mula equations.

3.2 Incorporating Historical Data

The need for using historical data has been consid-
ered in a variety of contexts, such as exploiting his-
torical controls in randomized trials, modelling the
potential biases in observational studies and pooling
data from many sources in an evidence synthesis.
Within the Bayesian framework all these can be for-
malized as a means of using past evidence as a basis for
a prior distribution for a parameter of interest. Suppose,
for example, we have historical datay1, . . . , yH , each
assumed to depend on a parameterθh, h = 1, . . . ,H .
Numerous options are available for specifying the re-
lationship between theθh’s andθ , the parameter of in-
terest, and a basic structure is provided in Figure 5:

(a) Irrelevance—The historical data provides no rele-
vant information, so that eachθh is unrelated toθ .
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FIG. 5. Different assumptions relating parameters underlying
historical data to parameter of current interest: single arrows
represent a distribution; double arrows represent logical functions;
wobbly arrows represent discounting.

(b) Exchangeable—Current and past studies are jud-
ged “similar” to the extent thatθh, h = 1, . . . ,H ,
andθ are assumed exchangeable: for example,θh,
θ ∼ N [µ,τ2]. Exchangeability is a strong assump-
tion, but if this is judged reasonable, then it pro-
vides a simple model to use databases to provide
prior distributions (Gilbert, McPeek and Mosteller,
1977). For example, Lau, Schmid and Chalmers
(1995) and DerSimonian (1996) use cumulative
random-effects metaanalysis to provide a prior dis-
tribution for a subsequent trial, while Gould (1991)
suggests using past trials to augment current con-
trol group information, by assuming exchangeable
control groups.

Models can become more complex when we
wish to synthesize evidence from different study
“types,” say randomized, case-control or cohort
studies: this naturally leads to hierarchical ex-
changeability assumptions, which can specifically

allow for the quantitative within- and between-
“study-type” heterogeneity, and incorporate prior
beliefs regarding qualitative differences between
the various sources of evidence. Examples of
this approach include Prevost, Abrams and Jones
(2000), who pool randomized and nonrandomized
studies on breast cancer screening, and Larose
and Dey (1997), who similarly assume open and
closed studies are exchangeable, while Dominici,
Parmigiani, Wolpert and Hasselblad (1999) ex-
amine migraine trials and pool open and closed
studies of a variety of designs in a four-level hierar-
chical model. There is a clearly a difficulty in mak-
ing such exchangeability assumptions, since there
are few study-types and hence little information on
the variance component.

(c) Potential biases—Past studies may be biased, ei-
ther through lack of quality (internal bias) or be-
cause the setting is such that the studies are not
precisely measuring the underlyingquantity of
interest (external bias), or both: Eddy, Hasselblad
and Shachter (1992) identify a range of such
sources of bias and argue that their magnitudes
may be modelled and the historical results appro-
priately adjusted. A common choice is the exis-
tence of a simple biasδh so thatθh = θ + δh, and a
number of choices may be made about the distribu-
tion of δh. For example, Brophy and Joseph (2000)
consider possible sources of bias when using past
trials to create a prior for the GUSTO trial, while
Pocock (1976) assumes a bias with prior mean 0
when incorporating a group of historical controls
into a clinical trial.

Such models are clearly potentially controver-
sial, and careful sensitivity analysis is essential.
However, we note the increasing research con-
cerning the quantitative bias of observational stud-
ies: see, for example, Kunz and Oxman (1998),
Britton et al. (1998), Benson and Hartz (2000),
Ioannidis et al. (2001), Reeves et al. (2001) and
Sanderson et al. (2001).

(d) Equal but discounted—Past studies may be as-
sumed to be unbiased, but their precision de-
creased in order to “discount” past data. In the
context of control groups, Kass and Greenhouse
(1989) state that “we wish to use this informa-
tion, but we do not wish to use it as if the histor-
ical controls were simply a previous sample from
the same population as the experimental controls.”
Ibrahim and Chen (2000) suggest the “power”
prior, in which we assumeθh = θ , but discount
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the historical evidence by taking its likelihood
p(yh|θh) to a powerα. For example, Greenhouse
and Wasserman (1995) downweight a previous
trial with 176 subjects to be equivalent to only
10 subjects: Fryback, Stout and Rosenberg (2001)
also discounted past trials to create a prior for the
GUSTO analysis. We note, however, that Eddy,
Hasselblad and Shachter (1992) are very strong in
their criticism of this method, as it does not have
any operational interpretation and hence no clear
means of assessing a suitable value forα.

(e) Functional dependence—The current parameter
of interest is a logical function of parameters
estimated in historical studies: this option is further
explored in Section 3.3.

(f) Equal—Past studies are measuring precisely the
parameters of interest and data can be directly
pooled—this is equivalent to assuming exchange-
ability of individuals.

Various combinations of these techniques are possi-
ble. For example, Berry and Stangl (1996a) assume a
fixed probabilityp that each historical patient is ex-
changeable with those in the current study [i.e., ei-
ther option (f) (complete pooling) with probabilityp
or option (a) (complete irrelevance) with probabil-
ity 1 − p], while Racine, Grieve, Fluhler and Smith
(1986) assume a certain prior probability that the
entire historical control group exactly matches the
contemporaneous controls and hence can be pooled.

Given the wide range of options concerning the way
in which historical data may be incorporated into a
model, there is clearly a need for both qualitative and
quantitative input into the modelling, based on both
judgements and substantive knowledge.

3.3 Inference on Complex Functions

This section expands on option (e) of Figure 5:
where we establish a functional relationship between
the parameter of interest and past data.

This could arise in the following context. Suppose
that a number of experimental interventions are in-
vestigated in a series of studies, where each study
compares a subset of the interventions with a control
group. We would like to draw inferences on the treat-
ment effects compared with control and possibly also
make comparisons between treatments that may well
have not ever been directly compared “head-to-head.”
We can call theseindirect comparisons, although the
term mixed comparisons has also been used. Higgins

and Whitehead (1996) and Hasselblad (1998) con-
sider a range of hierarchical models for this prob-
lem, while Song, Altman, Glenny and Deeks (2003)
carry out an empirical investigation and report that
such comparisons arrive at essentially the same conclu-
sions as head-to-head comparisons. A specific applica-
tion arises in the context of “active control” studies.
Suppose an established treatmentC exists for a condi-
tion, and a new interventionT is being evaluated. The
efficacy ofT would ideally be estimated in randomized
trial with a placeboP as the control group, but because
of the existence ofC this may be considered unethical.
HenceC may be used as an “active control” in a head-
to-head clinical trial, and inferences about the efficacy
of T may have to be estimated indirectly, using past
data onC-versus-P comparisons.

A more complex situation is as follows. Suppose we
are interested in drawing inferences on a quantityf

about which no direct evidence exists, but where
f can be expressed as a deterministic function of
a set of “fundamental” parametersθ = θ1, . . . , θN .
For example,f might be the response rate in a new
population made up of subgroups about which we
do have some evidence. More generally, we might
assume we have available a set ofK studies in
which we have observed datay1, . . . , yK which depend
on parametersψ1, . . . ,ψK , where eachψk is itself
a function of the fundamental parametersθ . This
structure is represented graphically in Figure 6. This
situation sounds very complex but in fact is rather
common, when we have many studies, each of which
informs part of a jigsaw, and which need to be put
together to answer the question of interest. An example
is provided in Section 3.4.

FIG. 6. Data yk in each of K studies depends on parameters ψk ,
which are known functions of fundamental parameters θ . We are
interested in some other function f of θ , and so need to propagate
evidence from the yk ’s.
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3.4 Example 2: Cost-Effectiveness of Alternative
Strategies for Pre-Natal HIV Testing

This example, derived from Ades and Cliffe (2002),
follows the “integrated” approach of Section 3.1,
simultaneously conducting a complex evidence syn-
thesis and propagating the results through a cost-
effectiveness model.

Intervention. Ades and Cliffe (2002) examine al-
ternative strategies for screening for HIV in pre-natal
clinics: universal screening of all women, ortargeted
screening of current injecting drug users (IDU) or
women born in sub-Saharan Africa (SSA).

Aim of study. To determine the optimal policy tak-
ing into account the costs and benefits; however, Ades
and Cliffe (2002) point out that the formulation is not
wholly realistic as the decision to screen universally
throughout England has now been taken, and in any
case a strategy of targeted testing may not be politi-
cally acceptable.

Study design. Synthesis of multiple sources of ev-
idence to estimate parameters of the epidemiological
model shown in Figure 7; however, direct evidence is
only available for a limited number of the fundamen-
tal parameters.

Outcome measure. SSA and IDU women will be
screened under both universal and targeted strategies,
and hence the only difference between the strategies
comprise the additional tests and additional cases
detected in the non-SSA, non-IDU group. Additional
tests per 10,000 women comprise those on non-SSA,
non-IDU women who are not already diagnosed, and
so the rate is given by 10,000(1 − a − b)(1 − eh).
The rate of new HIV cases detected is 10,000(1 −
a − b)e(1− h).

Statistical model and evidence from study. Table 2
summarizes the data sources available; full details and
references are provided by Ades and Cliffe (2002),
who also describe their efforts to select sources which
are as “independent” as possible.

The crucial aspect is that there is no direct evidence
concerning the vital parameterse andh for the low-
risk group, and hence their values must be inferred
indirectly from other studies. For this reason the
parameterw is introduced which is not part of the
epidemiological model: under the assumption that the
low-risk group has the same prevalence of subtype B as
SSA women, and that all IDU women are subtype B,
allows use of data source 12 on non-SSA women.

Prior distributions. Uniform priors for all propor-
tions are adopted.

FIG. 7. Probability tree showing how the proportions of women
in different risk groups can be constructed.

Computation and software. Markov chain Monte
Carlo (MCMC) methods were implemented using
WINBUGS.

Sensitivity analyses. In this section we focus on
the consistency of data sources rather than the usual
sensitivity analysis to model assumptions. We have
synthesized all available data but the results may be
misleading if we have included data that does not
fit our assumed model. A simple way of assessing
possible conflict is to compare the observed proportion
in the 12 sources with that fitted by the model, and
it is apparent from Table 2 that the observation for
source 4 is only just included in the 95% interval,
while the data for source 12 lies wholly outside its
estimated interval. This is only a crude method, since
a source may strongly influence its estimate, so a
better procedure is to leave each source out in turn,
reestimate the model and then predict the data we
would expect in a source that size. This predictive
distribution, easily obtained using MCMC methods,
is then compared to the observed data and a “cross-
validatory”P -value calculated.

Removing data-source 4 from the analysis leads
to the cross-validatoryP -values shown in the final
column of Table 2. The smallP -value for source 4
shows its lack of consistency with the remaining
data, whereas the predictions for the remaining data
seem quite reasonable. Removing source 4 from the
analysis leads to an estimate of 8,810 (8,717–8,872)
for additional tests per 10,000, and 2.73 (1.31–4.12)
for additional cases, so the removal of this diver-
gent source does not in fact have much influence on
the conclusions.
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TABLE 2
Available data from relevant studies, generally only allowing direct estimation of functions of fundamental parameters of interest. Also

provided are estimates and intervals based on full data, and the cross-validatory P -values based on excluding data source 4

Observed P -value
Data items and sources Parameter being estimated Data proportion Estimate 95% interval (excl. 4)

1 Proportion born in sub-Saharan
Africa (SSA), 1999

a 11,044/104,577 0.106 0.106 0.104–0.108 0.47

2 Proportion IDU last 5 years b 12/882 0.0137 0.0088 0.0047–0.149 0.46

3 HIV prevalence, women born
in SSA, 1997–1998

c 252/15,428 0.0163 0.0172 0.0155–0.0189 0.27

4 HIV prevalence in female
IDU’s, 1997–1999

d 10/473 0.0211 0.0120 0.0062–0.0219 0.004

5 HIV prevalence, women not
born in SSA, 1997–1998

db + e(1− a − b)

(1− a)

74/136,139 0.000544 0.000594 0.000478–0.000729 0.35

6 Overall HIV seroprevalence
in pregnant women, 1999

ca + db + e(1 − a − b) 254/102,287 0.00248 0.00235 0.00217–0.00254 0.21

7 Diagnosed HIV in SSA wom-
en as a proportion of all diag-
nosed HIV, 1999

f ca

f ca + gdb + he(1− a − b)

43/60 0.717 0.691 0.580–0.788 0.50

8 Diagnosed HIV in IDU’s as
a proportion of non-SSA
diagnosed HIV, 1999

gdb

gdb + he(1− a − b)

4/17 0.235 0.298 0.167–0.473 0.40

9 Overall proportion HIV
diagnosed

f ca + gdb + he(1− a − b)

ca + db + e(1 − a − b)

87/254 0.343 0.350 0.296–0.408 0.47

10 Proportion of infected IDU’s
diagnosed, 1999

g 12/15 0.800 0.747 0.517–0.913 0.44

11 Proportion of serotype B in
infected women from SSA,
1997–1998

w 14/118 0.119 0.111 0.065–0.171 0.43

12 Proportion of serotype B in
infected women not from
SSA, 1997–1998

db + we(1 − a − b)

db + e(1− a − b)

5/31 0.161 0.285 0.201–0.392 0.23

Additional tests per 10,000 10,000(1 − a − b)(1− eh) 8856 8,789–8,898

Additional HIV cases detected 10,000(1 − a − b)e(1 − h) 2.49 1.09–3.87

Costs and utilities. Ades and Cliffe (2002) specify
the cost per test asT = £3, and the net benefitK
per maternal diagnosis is judged to be around £50,000
with a range of £12,000 to £60,000. In this instance
there is explicit monetary net benefit from maternal
diagnosis and so it may be reasonable to takeK as
an unknown parameter, and Ades and Cliffe (2002)
perform a probabilistic sensitivity analysis by givingK

a somewhat complex prior distribution. In contrast, we
prefer to continue to treatK as a willingness-to-pay
for each unit of benefit, and therefore we conduct a
deterministic sensitivity analysis in whichK is varied
up to £60,000.

The pre-natal population in London isN = 105,000,
and hence the annual incremental net benefit (INB) of
implementing full rather than targeted screening is

INB = N(1− a − b)
(
Ke(1− h) − T (1− eh)

)
.

We would also like to know, for fixedK , the proba-
bility Q(K) = P ( INB > 0|data): when plotted as a
function of K this is known as the cost-effectiveness
acceptability curve (CEAC); see, for example, Briggs
(2000) and O’Hagan, Stevens and Montmartin (2000,
2001) for detailed discussionof these quantities from a
Bayesian perspective.
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We can also conduct a “value of information” analy-
sis (Claxton, Lacey and Walker, 2000). For some
unknown quantityθ , the “value of perfect informa-
tion” VPI(θ) is defined as the amount we would gain
by knowingθ exactly: VPI(θ) is 0 when INB(θ) > 0,
and−INB(θ) when INB(θ) < 0, and hence can be ex-
pressed as

VPI(θ) = max
(−INB(θ),0

)
.

Hence the “expected value of perfect information”
EVPI is

EVPI= E
[
max

(−INB(θ),0
)|data

]
.(1)

This may be calculated in two ways: first using MCMC
methods, and second by assuming a normal approx-
imation to the posterior distribution of INB(K) and
using a closed form identity. Taking a 10-year horizon

and discounting at 6% per year gives a multiplier of 7.8
(not discounting the first year) to the annual figure.

Bayesian interpretation. Following the previous find-
ings the analysis is conducted without data-source 4.
Figure 8(a) shows the normal approximations to the
posterior distributions of INB for different values ofK .
The expected INB and 95% limits are shown in Fig-
ure 8(b) forK up to £60,000, indicating that the policy
of universal testing is preferred on balance provided
that the benefitK from a maternal diagnosis is greater
than around £10,000:K is certainly judged to exceed
this value. The cost-effectiveness acceptability curve
in Figure 8(c) points a high probability of universal
testing being cost-effective for reasonable values ofK .
Figure 8(d) shows the EVPI (±2 Monte Carlo errors)
calculated using 100,000 MCMC iterations and also
using the approximation to the distribution of INB,
which provides an adequate approximation. The EVPI

FIG. 8. (a) and (b) incremental net benefits; (c) cost-effectiveness acceptability curve; and (d) expected value of perfect information
for universal versus targeted prenatal testing for HIV. Note the EVPI is maximized at the threshold value of K at which the optimal
decision changes.
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is substantial for low values ofK , but for values around
£50,000 the EVPI is negligible. Hence there appears to
be little purpose in further research to determine the
parameters more accurately.

4. CONCLUSIONS

4.1 Current Status of Bayesian Methods

As mentioned in Section 1, there has been a ma-
jor growth in Bayesian publications but these mainly
comprise applications of complex modelling. A no-
table exception is the use of Bayesian models in
cost-effectiveness analysis, in which informative prior
distributions may be based on a mixture of evidence
synthesis and judgement (O’Hagan and Luce, 2003).

When considering health-care evaluations one can-
not ignore the regulatory framework which controls the
release onto the market of both new pharmaceuticals
and medical devices. Given the need to exercise strict
control, it is hardly surprising that institutions such as
the U.S. Food and Drug Administration adopt a fairly
conservative line in statistical innovations and retain a
strong interest in frequentist properties of any statisti-
cal method. Nevertheless, it is important to note that
the latest international statistical guidelines for phar-
maceutical submissions to regulatory agencies state
that “the use of Bayesian and other approaches may be
considered when the reasons for their use are clear and
when the resulting conclusions are sufficiently robust”
(International Conference on Harmonisation E9 Expert
Working Group, 1999). Unfortunately they do not go
on to define what they mean by clear reasons and ro-
bust conclusions, and so it is still open as to what will
constitute an appropriate Bayesian analysis for a phar-
maceutical regulatory body.

A recent example has proved, however, that it is
possible to obtain regulatory approval for a large and
complex adaptive trial that uses a Bayesian monitor-
ing procedure. Berry et al. (2002) describe the design
of a phase II/III dose-finding study in acute stroke, in
which 15 different doses were to be given at random
at the start of randomization, with steady adaptation to
the range of doses around the ED95, that is, the mini-
mum dose that provides 95% of the maximum efficacy.
The original decision-theoretic stopping criterion was
replaced by one based on posterior tail-areas being less
than a certain value: a frequentist assessment of the size
and power of the study was based on pretrial simula-
tions and approved by the FDA. The trial was closely
monitored, with the statistician of the data monitor-
ing committee (myself) receiving weekly summaries

of the posterior distributions in order to check whether
the critical boundaries had been crossed. The DMC
recommended stopping when the “futility” boundary
was crossed after recruiting over 900 patients; the
trial stopped immediately and subsequently reported
an essentially “flat” dose–response curve (Krams et al.,
2003).

The greatest enthusiasm for Bayesian methods ap-
pears to be in U.S. FDA Center for Devices and
Radiological Health (CDRH) (Campbell, 1999). De-
vices differ from pharmaceuticals in having better
understood physical mechanisms, which means that
effectiveness is generally robust to small changes.
Since devices tend to develop in incremental steps, a
large body of relevant evidence often exists and com-
panies did not tend to follow established phases of drug
development. The fact that an application for approval
might include a variety of studies, including historical
controls and registries, suggests that Bayesian methods
for evidence synthesis might be appropriate.

4.2 The Role of Decision Theory

The debate about the appropriate role of formal
decision theory in health-care evaluation continues.
Claims for a strong role of decision theory include
the following:

• In the context of clinical trials, Lindley (1994)
categorically states that

clinical trials are not there for inference
but to make decisions,

while Berry (1994) states that

deciding whether to stop a trial requires
considering why we are running it in
the first place, and this means assessing
utilities.

Healy and Simon (1978) considers that

in my view the main objective of al-
most all trials on human subjects is (or
should be) a decision concerning the
treatment of patients in the future.

• Within a pharmaceutical company it is natural to try
to maximize profitability, and this naturally leads to
the use of utilities.

• Within a health-policy setting, decision theory and
economic argument clearly state that maximized
expected utility is the sole criteria for choosing
between two options. Therefore measures of “sig-
nificance,” posterior tail areas of incremental net
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benefit and so on are all irrelevant (Claxton and
Posnett, 1996). Claxton, Lacey and Walker (2000)
point out that:

Once a price per effectiveness unit has
been determined, costs can be incor-
porated, and the decision can then be
based on (posterior) mean incremental
net benefit measured in either monetary
or effectiveness terms.

Uncertainty is only taken into account through
evaluating the benefit of further experimentation, as
measured by a value of information analysis.

• To maximize the health return from the limited
resources available from a health budget, health-care
purchasers should use rational resource allocation
procedure. Otherwise the resulting decisions could
be considered as irrational, inefficient and unethical.

• Overall, a decision-theoretic framework provides a
formal basis for designing trials, assessing whether
to approve an intervention for use, deciding whether
an intervention is cost-effective and commissioning
further research.

Claims against the use of decision theory include
the following:

• It is unrealistic to place clinical trials within a
decision-theoretic context, primarily because the im-
pact of stopping a trial and reporting the results can-
not be predicted with any confidence: Peto (1985) in
the discussion of Bather (1985), states that:

Bather, however, merely assumes. . . “it is
implicit that the preferred treatment will
then be used for all remaining patients”
and gives the problem no further atten-
tion! This is utterly unrealistic, and leads
to potentially misleading mathematical
conclusions.

Peto goes on to argue that a serious decision-
theoretic formulation would have to model the
subsequent dissemination of a treatment.

• The idea of a null hypothesis (thestatus quo), which
lies behind the use of “statistical significance” or
posterior tail-areas, is fundamentally different from
an alternative hypothesis (a novel intervention). The
consequences and costs of the former are generally
established, whereas the impact of the latter must
contain a substantial amount of judgement. Often,
therefore, a choice between two treatments is not a
choice between two equal contenders to be decided

solely on the balance of net benefit—some convinc-
ing evidence is required before changing policy.

• A change in policy carries with it many hidden
penalties: for example, it may be difficult to reverse
if later found to be erroneous, and it may hinder the
development of other, better, innovations. It would
be difficult to explicitly model these phenomena
with any plausibility.

• Value of information analysis is strongly dependent
on having the “correct” model, which is never
known and generally cannot be empirically checked.
Sensitivity analysis can only compensate to some
extent for this basic ignorance.

Whitehead (1997, page 208) points out that the
theory of optimal decision making only exists for a
single decision-maker, and that no optimal solution
exists when making a decision on behalf of multiple
parties with different beliefs and utilities. He therefore
argues that internal company decisions at phase I and
phase II of drug development may be modelled as
decision problems, but that phase III trials cannot.

The discussion in Section 2.1 has revealed the com-
plexity of the context in which health-care evaluation
takes place, and clearly a simplistic decision-theoretic
approach is inappropriate. Nevertheless in the context
of any real decision that must be made, it would seem
beneficial to have at least a qualitative expression of
the potential gains and losses, and from there to move
toward a full quantitative analysis.

4.3 Increasing the Appropriate Use of
Bayesian Methods

We conclude by some brief personal opinions about
innovations that may lead to wider and improved use
of Bayesian methods.

First, we need a set of good workedexamples based
on realistic situations and that set good standards in
specification and analysis. Second, we need a structure
for reporting Bayesian analyses that permits rapid
critical appraisal: as Berry (2002) says:

There is as much Bayesian junk as there is
frequentist junk. Actually, there’s probably
more of the former because, to the uniniti-
ated, the Bayesian approach appears to pro-
vide a free lunch.

Third, following the running theme of this paper,
there is a need to understand andintegrate with the
current methodology and software used in studies.
Finally, it should be acknowledged that Bayesian
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methods donot provide a panacea. Problems should
be clearly highlighted and it should be acknowledged
that sampling properties of systems may be important
in some contexts. The general statistical community,
who are not stupid, have justifiably found somewhat
tiresome the tone of hectoring self-righteousness that
has often come from the Bayesian lobby. Fortunately
that period seems to be coming to a close, and with luck
the time has come for the appropriate use of Bayesian
thinking to be pragmatically established.
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