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Abstract

Richardson and Green (1997) present a method of performing a Bayesian analysis of data
from a finite mixture distribution with an unknown number of components. Their method is
a Markov Chain Monte Carlo (MCMC) approach, which makes use of the “reversible jump”
methodology described by Green (1995). We describe an alternative MCMC method which
views the parameters of the model as a (marked) point process, extending methods suggested by
Ripley (1977) to create a Markov birth-death process with an appropriate stationary distribution.
Our method is easy to implement, even in the case of data in more than one dimension, and we
illustrate it on both univariate and bivariate data. There appears to be considerable potential
for applying these ideas to other contexts, as an alternative to more general reversible jump
methods, and we conclude with a brief discussion of how this might be achieved.

Keywords: Bayesian analysis, Birth-death process, Markov process, MCMC, Mixture model,
Model Choice, Reversible Jump, Spatial point process
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1 Introduction

Finite mixture models are typically used to model data where each observation is assumed to
have arisen from one of k groups, each group being suitably modelled by a density from some
parametric family. The density of each group is referred to as a component of the mixture, and is
weighted by the relative frequency of the group in the population. This model provides a framework
by which observations may be clustered together into groups for discrimination or classification (see
for example McLachlan and Basford, 1988). For a comprehensive list of such applications see Tit-
terington et al. (1985). Mixture models also provide a convenient and flexible family of distributions
for estimating or approximating distributions which are not well modelled by any standard paramet-
ric family, and provide a parametric alternative to non-parametric methods of density estimation,
such as kernel density estimation. See for example Roeder (1990), West (1993) and Priebe (1994).

This paper is principally concerned with the analysis of mixture models in which the number
of components k is unknown. In applications where the components have a physical interpretation,
inference for k may be of interest in itself. Where the mixture model is being used purely as
a parametric alternative to non-parametric density estimation, the value of k chosen affects the
flexibility of the model and thus the smoothness of the resulting density estimate. Inference for
k may then be seen as analogous to bandwidth selection in kernel density estimation. Procedures
which allow k to vary may therefore be of interest whether or not k has a physical interpretation.

Inference for k may be seen as a specific example of the very common problem of choosing
a model from a given set of competing models. Taking a Bayesian approach to this problem, as
we do here, has the advantage that it provides not only a way of selecting a single “best” model,
but also a coherent way of combining results over different models. In the mixture model context
this might include performing density estimation by taking an appropriate average of density es-
timates obtained using different values of k. While model choice (and model averaging) within
the Bayesian framework are both theoretically straightforward, they often provide a computational
challenge, particularly when (as here) the competing models are of differing dimension. The use of
Markov Chain Monte Carlo (MCMC) methods (see Gilks et al., 1996, for an introduction) to per-
form Bayesian analysis is now very common, but MCMC methods which are able to jump between
models of differing dimension have become popular only recently, in particular through the use of
the “reversible jump” methodology developed by Green (1995). Reversible jump methods allow
the construction of an ergodic Markov chain with the joint posterior distribution of the parameters
and the model as its stationary distribution. Moves between models are achieved by periodically
proposing a move to a different model, and rejecting it with appropriate probability to ensure that
the chain possesses the required stationary distribution. Ideally these proposed moves are designed
to have a high probability of acceptance so that the algorithm explores the different models ade-
quately, though this is not always easy to achieve in practice. As usual in MCMC methods, quanti-
ties of interest may be estimated by forming sample path averages over simulated realizations of this
Markov chain. The reversible jump methodology has now been applied to a wide range of model
choice problems, including change point analysis (Green, 1995), Quantitative Trait Locus analysis
(Stephens and Fisch, 1998), and mixture models (Richardson and Green, 1997).

In this paper we present an alternative method of constructing an ergodic Markov chain with
appropriate stationary distribution, when the number of components k is considered unknown. The
method is based on the construction of a continuous time Markov birth-death process (as described
by Preston, 1976) with the appropriate stationary distribution. MCMC methods based on these (and
related) processes have been used extensively in the point process literature to simulate realizations
of point processes which are difficult to simulate from directly; an idea which originated with Kelly
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and Ripley (1976) and Ripley (1977) (see also Glötzl, 1981; Stoyan et al., 1987). These realizations
can then be used for significance testing (as in Ripley, 1977), or likelihood inference for the param-
eters of the model (see for example Geyer and Møller, 1994, and references therein). More recently
such MCMC methods have been used to perform Bayesian inference for the parameters of a point
process model, where the parameters themselves are (modelled by) a point process (see for example
Baddeley and van Lieshout, 1993; Lawson, 1996).

In order to apply these MCMC methods to the mixture model context, we view the parameters
of the model as a (marked) point process, with each point representing a component of the mixture.
The MCMC scheme allows the number of components to vary by allowing new components to
be “born” and existing components to “die”. These births and deaths occur in continuous time,
and the relative rates at which they occur determine the stationary distribution of the process. The
relationship between these rates and the stationary distribution is formalised in Section 3 (Theorem
3.1). We then use this to construct an easily simulated process, in which births occur at a constant
rate from the prior, and deaths occur at a rate which is very low for components which are critical in
explaining the data, and very high for components which do not help explain the data. The accept-
reject mechanism of reversible jump is thus replaced by a mechanism which allows both “good”
and “bad” births to occur, but reverses bad births very quickly through a very quick death.

Our method is illustrated in Section 4, by fitting mixtures of normal (and t) distributions to uni-
variate and bivariate data. We found that the posterior distribution of the number of components for
a given data set typically depends heavily on modelling assumptions such as the form of the distribu-
tion for the components (normals or ts) and the priors used for the parameters of these distributions.
In contrast, predictive density estimates tend to be relatively insensitive to these modelling assump-
tions. Our method appears to have similar computational expense to that of Richardson and Green
(1997) in the context of mixtures of univariate normal distributions, though direct comparisons
are difficult. Both methods certainly give computationally tractable solutions to the problem, with
rough results available in a matter of minutes. However, our approach appears the more natural and
elegant in this context, exploiting the natural nested structure of the models and exchangeability of
the mixture components. As a result we remove the need for calculation of a complicated Jacobian,
reducing the potential for making algebraic errors. In addition, the changes necessary to explore
alternative models for the mixture components (replacing normals with t distributions for example)
are trivial.

We conclude with a discussion of the potential for extending the birth-death methodology
(BDMCMC) to other contexts, as an alternative to more general reversible jump (RJMCMC) meth-
ods. One interpretation of BDMCMC is as a continuous-time version of RJMCMC, with a limit
on the types of moves which are permitted in order to simplify implementation. BDMCMC is eas-
ily applied to any context where the parameters of interest may be viewed as a point process, and
where the likelihood of these parameters may be explicitly calculated (this latter rules out Hidden
Markov Models for example). We consider briefly some examples (a multiple change-point prob-
lem, and variable selection in regression models) where these conditions are fulfilled, and discuss
the difficulties of designing suitable birth-death moves. Where such moves are sufficient to achieve
adequate mixing BDMCMC provides an attractive easily-implemented alternative to more general
RJMCMC schemes.
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2 Bayesian methods for mixtures

2.1 Notation and missing data formulation

We consider a finite mixture model in which data xn = x1; : : : ; xn are assumed to be indepen-
dent observations from a mixture density with k (k possibly unknown but finite) components:

p(x j�;�; �) = �1f(x;�1; �) + � � �+ �kf(x;�k; �); (1)

where � = (�1; : : : ; �k) are the mixture proportions which are constrained to be non-negative and
sum to unity; � = (�1; : : : ; �k) are the (possibly vector) component specific parameters, with � i

being specific to component i; and � is a (possibly vector) common parameter which is common to
all components. Throughout this paper p(� j �) will be used to denote both conditional densities and
distributions.

It is convenient to introduce the missing data formulation of the model, in which each observa-
tion xj is assumed to arise from a specific but unknown component z j of the mixture. The model
(1) can be written in terms of the missing data, with z1; : : : ; zn assumed to be realizations of in-
dependent and identically distributed discrete random variables Z 1; : : : ; Zn with probability mass
function

Pr(Zj = i j�;�; �) = �i (j = 1; : : : ; n; i = 1; : : : ; k): (2)

Conditional on the Zs, x1; : : : ; xn are assumed to be independent observations from the densities

p(xj jZj = i;�;�; �) = f(xj ;�i; �) (j = 1; : : : ; n): (3)

Integrating out the missing data Z1; : : : ; Zn then yields the model (1).

2.2 Hierarchical model

We assume a hierarchical model for the prior on the parameters (k;�;�; �), with (�1; �1); : : : ; (�k; �k)
being exchangeable. (For an alternative approach see Escobar and West (1995) who use a prior
structure based on the Dirichlet process.) Specifically we assume that the prior distribution for
(k;�;�) given hyperparameters !, and common component parameters �, has Radon–Nikodym
derivative (“density”) r(k;�;� j!; �) with respect to an underlying symmetric measure M (de-
fined below). For notational convenience we drop for the rest of the paper the explicit dependence
of r(� j!; �) on ! and �. To ensure exchangeability we require that, for any given k, r(�) is invariant
under relabelling of the components, in that

r
�
k; (�1; : : : ; �k); (�1; : : : ; �k)

�
= r
�
k; (��(1); : : : ; ��(k)); (��(1); : : : ; ��(k))

�
(4)

for all permutations � of 1; : : : ; k.
In order to define the symmetric measure M we introduce some notation. Let U k�1 denote the

Uniform distribution on the simplex

Sk�1 = f(�1; : : : ; �k�1) : �1; : : : ; �k�1 � 0 \ �1 + � � �+ �k�1 � 1g:

Let � denote the parameter space for the �i (so �i 2 � for all i), let � be some measure on �, and
let �k be the induced product measure on �k. (For most of this paper � will be Rm for some m,
and � can be assumed to be Lebesgue measure.) Now letMk be the product measure �k�Uk�1 on
�k�Sk�1, and finally defineM to be the induced measure on the disjoint union[1k=1(�

k�Sk�1).
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A special case

Given ! and �, let k have prior probability mass distribution p(k j!; �). Suppose � and � are a
priori independent given k; ! and �, with � 1; : : : ; �k being independent and identically distributed
from a distribution with density ep(� j!; �) with respect to �, and � having a uniform distribution
on the simplex Sk�1. Then

r(k;�;�) = p(k j!; �)ep(�1 j!; �) : : :ep(�k j!; �): (5)

Note that this special case includes the specific models used by Diebolt and Robert (1994) and
Richardson and Green (1997) in the context of mixtures of univariate normal distributions.

2.3 Bayesian inference via MCMC

Given data xn, Bayesian inference may be performed using MCMC methods, which involve the
construction of a Markov chain f�(t)g with the posterior distribution p(� jx n) of the parameters
� = (k;�;�; �) as its stationary distribution. Given suitable regularity conditions (see for example
Tierney, 1996, p.65), quantities of interest may be consistently estimated by sample path averages.
For example, if �(0); �(1); : : : is a sampled realization of such a Markov chain, then inference for k
may be based on an estimate of the marginal posterior distribution

Pr(k = i jxn) = lim
N!1

1

N
#ft : k(t) = ig

�
1

N
#ft : k(t) = ig (N large), (6)

and similarly the predictive density for a future observation may be estimated by

p(xn+1 jx
n) �

1

N

NX
t=1

p(xn+1 j �
(t)): (7)

More details, including details of the construction of a suitable Markov chain when k is fixed,
can be found in the paper by Diebolt and Robert (1994), chapters of the books by Robert (1994)
and Gelman et al. (1995), and the article by Robert (1996). Richardson and Green (1997) describe
the construction of a suitable Markov chain when k is allowed to vary using the reversible jump
methodology developed by Green (1995). We now describe an alternative approach.

3 Constructing a Markov chain via simulation of point processes

3.1 The parameters as a point process

Our strategy is to view each component of the mixture as a point in parameter space, and adapt
theory from the simulation of point processes to help construct a Markov chain with the posterior
distribution of the parameters as its stationary distribution. Since, for given k, the prior distribution
for (�;�) defined at (4) does not depend on the labelling of the components, and the likelihood

L(k;�;�; �) = p(xn jk;�;�; �) =
nY

j=1

[�1f(xj ;�1; �) + � � �+ �kf(xj ;�k; �)] (8)

is also invariant under permutations of the components labels, the posterior distribution

p(k;�;� jxn; !; �)/ L(k;�;�; �)r(k;�;�) (9)
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Figure 1: Illustration of births and deaths as defined by (10) and (11). a) Representation of 0:2N (�1; 1) +
0:6N (1; 2) + 0:2N (1; 3) as a set of points in parameter space. N (�; �2) denotes the univariate normal
distribution with mean � and variance �2. b) Resulting model after death of component 0:6N (1; 2) in a). c)
Resulting model after birth of component at 0:2N (0:5; 2) in b).

will be similarly invariant. Fixing ! and �, we can thus ignore the labelling of the components and
can consider any set of k parameter values

�
(�1; �1); : : : ; (�k; �k)

	
as a set of k points in [0; 1]��,

with the constraint that �1 + � � �+ �k = 1 (see, for example, Figure 1a.) The posterior distribution
p(k;�;� jxn; !; �) can then be seen as a (suitably constrained) distribution of points in [0; 1]� �,
or in other words a point process on [0; 1]� �. Equivalently the posterior distribution can be seen
as a marked point process in �, with each point � i having an associated mark �i 2 [0; 1], with the
marks being constrained to sum to unity.

This view of the parameters as a marked point process (which is also outlined by Dawid, 1997)
allows us to use methods similar to those in Ripley (1977) to construct a continuous time Markov
birth-death process with stationary distributionp(k;�;� jx n; !; �), with! and � kept fixed. Details
of this construction are given in the next section. In Section 3.4 we combine this process with
standard (fixed-dimension) MCMC update steps which allow ! and � to vary, to create a Markov
chain with stationary distribution p(k;�;�; !; � jx n).

3.2 Birth-death processes for the components of a mixture model

Let 
k denote the parameter space of the mixture model with k components, ignoring the la-
belling of the components, and let 
 =

S
k�1 
k. We will use set notation to refer to members of


, writing y =
�
(�1; �1); : : : ; (�k; �k)

	
2 
k to represent the parameters of the model (1) keeping

� fixed, and so we may write (�i; �i) 2 y for i = 1; : : : ; k. Note that (for given ! and �) the
invariance of L(�) and r(�) under permutation of the component labels allows us to define L(y) and
r(y) in an obvious way.

We define births and deaths on 
 as follows:

Births: If at time t our process is at y =
�
(�1; �1); : : : ; (�k; �k)

	
2 
k and a birth is said to occur

at (�; �) 2 [0; 1]� �, then the process jumps to

y[(�; �) :=
n�
�1(1� �); �1

�
; : : : ;

�
�k(1� �); �k

�
;
�
�; �

�o
2 
k+1: (10)

Deaths: If at time t our process is at y =
�
(�1; �1); : : : ; (�k; �k)

	
2 
k and a death is said to
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occur at (�i; �i) 2 y, then the process jumps to

yn(�i; �i) :=
n� �1

1� �i
; �1

�
; : : : ;

� �i�1
1� �i

; �i�1

�
;� �i+1

1� �i
; �i+1

�
; : : : ;

� �k
1� �i

; �k

�o
2 
k�1: (11)

Thus a birth increases the number of components by one, while a death decreases the number
of components by one. These definitions have been chosen so that births and deaths are inverse
operations to each other, and the constraint �1 + � � � + �k = 1 remains satisfied after a birth or
death; they are illustrated in Figure 1. With births and deaths thus defined, we consider the following
continuous time Markov birth-death process:

When the process is at y 2 
k, let births and deaths occur as independent Poisson processes as
follows:

Births: Births occur at overall rate �(y), and when a birth occurs it occurs at a point (�; �) 2
[0; 1] � �, chosen according to density b

�
y; (�; �)

�
with respect to the product measure

U1 � �, where U1 is the uniform (Lebesgue) measure on [0; 1].

Deaths: When the process is at y =
�
(�1; �1); : : : ; (�k; �k)

	
, each point (�j ; �j) dies indepen-

dently of the others as a Poisson process with rate

Æj(y) = d
�
yn(�j ; �j) ; (�j ; �j)

�
(12)

for some d : 
 � ([0; 1] � �) ! R+. The overall death rate is then given by Æ(y) =P
j Æj(y).

The time to the next birth/death event is then exponentially distributed, with mean 1=
�
�(y)+ Æ(y)

�
,

and it will be a birth with probability �(y)=(�(y) + Æ(y)), and a death of component j with proba-
bility Æj(y)=(�(y) + Æ(y)). In order to ensure that the birth-death process doesn’t jump to an area
with zero “density” we impose the following conditions on b and d:

b
�
y; (�; �)

�
= 0 whenever r

�
y[(�; �)

�
L
�
y[(�; �)

�
= 0; (13)

d
�
y; (�; �)

�
= 0 whenever r(y)L(y) = 0: (14)

The following Theorem then gives sufficient conditions on b and d for this process to have stationary
distribution p(k;�;� jxn; !; �).

Theorem 3.1. Assuming the general hierarchical prior on (k;�;�) given in Section 2.2, and keep-
ing! and � fixed, the birth-death process defined above has stationary distributionp(k;�;� jx n; !; �),
provided b and d satisfy

(k + 1)d
�
y; (�; �)

�
r
�
y[(�; �)

�
L
�
y[(�; �)

�
k(1� �)k�1 = �(y)b

�
y; (�; �)

�
r(y)L(y) (15)

for all y 2 
k and (�; �) 2 [0; 1]� �.

Proof. The proof is deferred to the appendix (Section 7).
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3.3 Naive algorithm for a special case

We now consider the special case described at (5), where

r(y) = p(k j!; �)ep(�1 j!; �) : : :ep(�k j!; �): (16)

Suppose that we can simulate from ep(� j!; �), and consider the process obtained by setting
�(y) = �b (a constant), with b

�
y; (�; �)

�
= k(1 � �)k�1ep(� j!; �). Applying Theorem 3.1 we

find that the process has the correct stationary distribution, provided that when the process is at
y =

�
(�1; �1); : : : ; (�k; �k)

	
, each point (�j ; �j) dies independently of the others as a Poisson

process with rate

d
�
yn(�j ; �j) ; (�j ; �j)

�
= �b

L
�
yn(�j; �j)

�
L(y)

p(k � 1 j!; �)

kp(k j!; �)
(j = 1; : : : ; k): (17)

Algorithm 3.1 below simulates this process. We note that the algorithm is very straightforward
to implement, requiring only the ability to simulate from ep(� j!; �), and to calculate the model
likelihood for any given model. The main computational burden is in calculating the likelihood, and
it is important that calculations of densities are stored and reused where possible.

Algorithm 3.1. To simulate a process with appropriate stationary distribution.
Starting with initial model y =

�
(�1; �1); : : : ; (�k; �k)

	
2 
k, iterate the following steps:

1. Let the birth rate �(y) = �b.

2. Calculate the death rate for each component, the death rate for component j being given by
(17):

Æj(y) = �b
L
�
yn(�j; �j)

�
L(y)

p(k � 1 j!; �)

kp(k j!; �)
(j = 1; : : : ; k): (18)

3. Calculate the total death rate Æ(y) =
P

j Æj(y).

4. Simulate the time to the next jump from an exponential distribution with mean 1=
�
�(y) +

Æ(y)
�
.

5. Simulate the type of jump: birth or death with respective probabilities

Pr(birth) =
�(y)

�(y) + Æ(y)
; Pr(death) =

Æ(y)

�(y) + Æ(y)
:

6. Adjust y to reflect the birth or death (as defined by (10) and (11)):

Birth: Simulate the point (�; �) at which a birth takes place from the density b
�
y; (�; �)

�
=

k(1 � �)k�1ep(� j!; �) by simulating � and � independently from densities k(1 �
�)k�1 and ep(� j!; �) respectively. We note that the former is the Beta distribution
with parameters (1; k), which is easily simulated from by simulating Y 1 � �(1; 1)
and Y2 � �(k; 1) and setting � = Y1=(Y1 + Y2), where �(n; �) denotes the Gamma
distribution with mean n=�.

Death: Select a component to die: (�j ; �j) 2 y being selected with probability Æ j(y)=Æ(y)
for j = 1; : : : ; k:

9



7. Return to step 2.

Remark 3.2. Algorithm 3.1 seems rather naive in that births occur (in some sense) from the prior,
which may lead to many births of components which do not help to explain the data. Such compo-
nents will have a high death rate (17) and so will die very quickly, which is inefficient in the same
way as an accept-reject simulation algorithm is inefficient if many samples are rejected. However,
in the examples we consider in the next section this naive algorithm performs reasonably well, and
so we have not considered any cleverer choices of b

�
y; (�; �)

�
which may allow births to occur in a

less naive way (see Section 5.2 for further discussion).

3.4 Constructing a Markov Chain

If we fix ! and � then Algorithm 3.1 simulates a birth-death process with stationary distribution
p(k;�;� jxn; !; �). This can be combined with MCMC update steps which allow! and � to vary to
create a Markov chain with stationary distribution p(k;�;�; !; � j xn). By augmenting the data xn

by the missing data zn = (z1; : : : ; zn) described in Section 2.1, and assuming the existence and use
of the necessary conjugate priors, we can use Gibbs sampling steps to achieve this as in Algorithm
3.2 below; Metropolis–Hastings updates could also be used, removing the need to introduce the
missing data or use conjugate priors.

Algorithm 3.2. To simulate a Markov chain with appropriate stationary distribution.
Given the state �(t) = �(t) at time t, simulate a value for �(t+1) = �(t+1) as follows:

Step 1: Sample (k(t)
0

;�(t)0;�(t)0) by running the birth-death process for a fixed time t0, starting
from (k(t);�(t);�(t)) and fixing (!; �) to be (!(t); �(t)). Set k(t+1) = k(t)

0

.

Step 2: Sample (zn)(t+1) from p(zn jk(t+1);�(t)0;�(t)0; �(t); !(t); xn):

Step 3: Sample �(t+1); !(t+1) from p(�; ! jk(t+1);�(t)0 ;�(t)
0

; xn; zn).

Step 4: Sample �(t+1);�(t+1) from p(�;� j k(t+1); �(t+1); !(t+1); xn; zn).

Provided the full conditional posterior distributions for each parameter give support to all parts
of the parameter space, this will define an irreducible Markov chain with stationary distribution
p(k;�;�; !; �; zn jxn) suitable for estimating quantities of interest by forming sample path aver-
ages as in (6) and (7). The proof is straightforward and is omitted here (see Stephens, 1997, p.84).
Step 1 of the algorithm involve movements between different values of k by allowing new com-
ponents to be “born”, and existing components to “die”. Steps 2, 3 and 4 allow the parameters
to vary with k kept fixed. Step 4 is not strictly necessary to ensure convergence of the Markov
chain to the correct stationary distribution, but is included to improve mixing. Note that (as usual in
Gibbs sampling) the algorithm remains valid if any or all of !; � and � are partitioned into separate
components which are updated one at a time by a Gibbs sampling step, as will be the case in our
examples.

4 Examples

Our examples demonstrate the use of Algorithm 3.2 to perform inference in the context of both
univariate and bivariate data xn, which are assumed to be independent observations from a mixture
of an unknown (finite) number of normal distributions:

p(x j�;�;�) = �1Nr(x;�1;�1) + � � �+ �kNr(x;�k;�k): (19)
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Here Nr(x;�i;�i) denotes the density function of the r-dimensional multivariate normal distribu-
tion with mean �i and variance-covariance matrix �i. In the univariate case (r = 1) we may write
�2 for �.

Prior distributions

We assume a truncated Poisson prior on the number of components k:

p(k) /
�k

k!
(k = 1; : : : ; kmax = 100); (20)

where � is a constant; we will perform analyses with several different values of �. Conditional on
k we base our prior for the model parameters on the hierarchical prior suggested by Richardson
and Green (1997) in the context of mixtures of univariate normal distributions. A natural general-
ization of their prior to r dimensions is obtained by replacing univariate normal distributions with
multivariate normal distributions, and replacing gamma distributions with Wishart distributions, to
give

�i � Nr(�; �
�1) (i = 1; : : : ; k) (21)

��1i j� � Wr(2�; (2�)
�1) (i = 1; : : : ; k) (22)

� � Wr(2g; (2h)
�1) (23)

� � D() (24)

where � is a hyperparameter; �; � and h are r � r matrices; � is an r � 1 vector; �;  and g are
scalars; D() denotes the symmetric Dirichlet distribution with parameter  and density

�(k)

�()k
��11 : : : ��1k�1(1� �1 � � � � � �k�1)

�1;

and Wr(m;A) denotes the Wishart distribution in r dimensions with parameters m and A. This
last is usually introduced as the distribution of the sample covariance matrix, for a sample of size m
from a multivariate normal distribution in r dimensions with covariance matrix A. Because of this
interpretationm is usually taken as an integer, and for m � r W r(m;A) has density

Wr(V ;m;A) = KjAj�
m
2 jV j

m�r�1
2 exp

�
�1

2 tr(A�1V )
	
I(V positive definite) (25)

on the space of all symmetric matrices (� Rr(r+1)=2), where I(�) denotes an indicator function and

K�1 = 2
mr
2 �r(r�1)=4

rY
s=1

�

�
m+ 1� s

2

�
:

However, (25) also defines a density for non-integer m provided m > r� 1. Methods of simulating
from the Wishart distribution (which work for non-integer m > r � 1) may be found in Ripley
(1987). For m � r � 1 we will use Wr(m;A) to represent the improper distribution with density
proportional to (25). (This is not the usual definition ofW r(m;A) for m � r�1, which is a singular
distribution confined to a subspace of symmetric matrices.) Where an improper prior distribution is
used, it is important to check the integrability of the posterior.
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For univariate data we follow Richardson and Green (1997), who take (�; �; �; g; h; ) to be
(data-dependent) constants with the following values:

� = �1 � =
1

R2
1

� = 2

g = 0:2 h =
100g

�R2
1

 = 1

where �1 is the midpoint of the observed interval of variation of the data, and R 1 is the length of
this interval. The value � = 2 was chosen to express the belief that the variances of the components
are similar, without restricting them to be equal. For bivariate data (r = 2) we felt that a slightly
stronger constraint would be appropriate, and so increased � to 3, making a corresponding change
in g and obvious generalizations for the other constants to give

� = (�1; �2) � =

 
1
R2
1

0

0 1
R2
2

!
� = 3

g = 0:3 h =

 100g
�R2

1

0

0 100g
�R2

2

!
 = 1

where �1 and �2 are the midpoints of the observed intervals of variation of the data in the first and
second dimension respectively, and R1 and R2 are the respective lengths of these intervals. We note
that the prior on � in the bivariate case

� � W2(0:6; (2h)
�1)

is an improper distribution, but careful checking of the necessary integrals shows that the posterior
distributions are proper.

In our examples we consider the following priors:

1. The Fixed-� prior, which is the name we give to the prior given above. The full conditional
posterior distributions required for the Gibbs sampling updates (Steps 2-4 in Algorithm 3.2)
are then (using j : : : to denote conditioning on all other variables)

p(zj = i j � � � ) / �iNr(xj ;�i;�i) (26)

� j � � � � Wr

�
2g + 2k�;

h
2h+ 2

X
i

��1i

i�1�
(27)

� j � � � � D( + n1; : : : ;  + nk) (28)

�i j � � � � Nr

�
(ni�

�1
i + �)�1(ni�

�1
i �xi + ��); (ni�

�1
i + �)�1

�
(29)

��1i j � � � � Wr

�
2�+ ni;

h
2� +

X
j:zj=i

(xj � �i)(xj � �i)
T
i�1�

(30)

for i = 1; : : : ; k and j = 1; : : : ; n, where ni is the number of observations allocated to
class i (ni = #fj : zj = ig) and �xi is the mean of the observations allocated to class i
(�xi =

P
j:zj=i

xj=ni:) The Gibbs sampling updates were performed in the order �;�;�;�:
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2. The Variable-� prior, in which � and � are also treated as hyperparameters on which we place
“vague” priors. This is an attempt to represent the belief that the means will be close together
when viewed on some scale, without being informative about their actual location. It is also
an attempt to address some of the objections to the Fixed-� prior discussed in Section 5.1.
We chose to place an improper uniform prior distribution on �, and a “vague”W r(l; (lIr)�1)
distribution on � where Ir is the r � r identity matrix. In order to ensure the posterior
distribution for � is proper, this distribution is required to be proper, and so we require l >
r � 1. We used l = r � 1 + 0:001 as our default value for l. (In general, fixing a distribution
to be proper in this way is not a good idea. However, in this case it can be shown that if
l = r�1+ � then inference for �;� and k is not sensitive to � for small �, although numerical
problems may occur for very small �.)

The full conditional posteriors are then as for the Fixed-� prior, with the addition of:

� j � � � � Nr(��; (k�)
�1) (31)

� j � � � � Wr(�; l+ k; (lIr + SS)�1) (32)

where �� =
P

i �i=k and SS =
P

i(�i � �)(�i � �)T . The Gibbs sampling updates in
Algorithm 3.2 were performed in the order �; �; �;�;�;�:

These priors are both examples of the special case considered in Section 3.3, and so Algorithm
3.1 can be used. They may be viewed as convenient for the purposes of illustration, and we warn
against considering them as “non-informative” or “weakly” informative. In particular we will see
that inference for k can be highly sensitive to the priors used. Further discussion is deferred to
Section 5.1.

Values for (t0; �b)

Algorithm 3.1 requires the specification of a birth-rate � b, and Algorithm 3.2 requires the speci-
fication of a (virtual) time t0 for which the birth-death process is run. Doubling� b is mathematically
equivalent to doubling t0, and so we are free to fix t0 = 1, and specify a value for �b. In all our
examples we used �b = � (the parameter of the Poisson prior in (20)), which gives a convenient
form of the death rates (18) as a likelihood ratio which does not depend on �. Larger values of � b

will result in better mixing over k, at the cost of more computation time per iteration of Algorithm
3.2, and it is not clear how an optimal balance between these factors should be achieved.

4.1 Example 1: Galaxy data

As our first example we consider the galaxy data first presented by Postman et al. (1986), con-
sisting of the velocities (in 103 km/s) of distant galaxies diverging from our own, from six well-
separated conic sections of the Corona Borealis. The original data consists of 83 observations, but
one of these observations (a velocity of 5:607 � 103 km/s) does not appear in the version of the
data given by Roeder (1990), which has since been analyzed under a variety of mixture models by a
number of authors, including Crawford (1994), Chib (1995), Carlin and Chib (1995), Escobar and
West (1995), Phillips and Smith (1996) and Richardson and Green (1997). In order to make our
analysis comparable with these we have chosen to ignore the missing observation. A histogram of
the data overlaid with a Gaussian kernel density estimate is shown in Figure 2. The multimodality
of the velocities may indicate the presence of super clusters of galaxies surrounded by large voids,
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Figure 2: Histogram of the galaxy data, with bin-widths chosen by eye. Since histograms are rather un-
reliable density estimation devices (see for example Roeder, 1990) we have overlaid the histogram with a
non-parametric density estimate using Gaussian kernel density estimation, with bandwidth chosen automati-
cally according to a rule given by Sheather and Jones (1991), calculated using the S function width.SJ from
Venables and Ripley (1997).

each mode representing a cluster as it moves away at its own speed (Roeder, 1990, gives more
background).

We use Algorithm 3.2 to fit the following mixture models to the galaxy data:

a) A mixture of normal distributions using the Fixed-� prior described in Section 4.

b) A mixture of normal distributions using the Variable-� prior described in Section 4.

c) A mixture of t distributions on p = 4 degrees of freedom:

p(x j�;�;�2) = �1tp(x;�1; �
2
1) + � � �+ �ktp(x;�k; �

2
k); (33)

where tp(x;�i; �2i ) is the density of the t-distribution with p degrees of freedom, with mean � i

and variance p�2i =(p � 2) (see for example Gelman et al., 1995, p. 476). The value p = 4
was chosen to give a distribution similar to the normal distribution with slightly “fatter tails”,
since there was some evidence when fitting the normal distributions that extra components were
being used to create longer tails. We used the Fixed-� prior for (�;�;� 2). Adjusting the birth-
death algorithm to fit t distributions is simply a matter of replacing the normal density with the
t density when calculating the likelihood. The Gibbs sampling steps are performed as explained
in Stephens (1997).

We will refer to these three models as “Normal, Fixed-�”; “Normal, Variable-�”; and “t4, Fixed-�”
respectively. For each of the three models we performed the analysis with four different values
of the parameter � (the parameter of the truncated Poisson prior on k): 1,3,6 and 25. The choice
of � = 25 was considered in order to give some idea of how the method would behave as � was
allowed to get very large.

Starting points, computational expense, and mixing behaviour

For each prior we performed 20 000 iterations of Algorithm 3.2, with the starting point being
chosen by setting k = 1, setting (�; �) to the values chosen for the Fixed-� prior, and sampling the
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Figure 3: Results from using Algorithm 3.2 to fit the three different models to the galaxy data using � = 3.
The columns show results for Left: Normals, Fixed-�; Middle: Normals, Variable-�; Right: t4s, Fixed-�.

other parameters from their joint prior distribution. In each case the sampler moved quickly from
the low likelihood of the starting point to an area of parameter space with higher likelihood. The
computational expense was not great. For example, the runs for � = 3 took 150-250 seconds (CPU
times on a Sun UltraSparc 200 workstation, 1997), which corresponds to about 80-130 iterations
per second. Roughly the same amount of time was spent performing the Gibbs sampling steps as
performing the birth-death calculations. The main expense of the birth-death process calculations is
in calculating the model likelihood, and a significant saving could be made by using a look-up table
for the normal density (this was not done).

In assessing the convergence and mixing properties of our algorithm we follow Richardson and
Green (1997) in examining firstly the mixing over k, and then the mixing over the other parameters
within k. Figure 3a shows the sampled values of k for the runs with � = 3. A rough idea of
how well the algorithm is exploring the space may be obtained from the percentages of iterations
which changed k, which in this case were 36%, 52%, and 38% for models a)-c) respectively. More
information can be obtained from the autocorrelation of the sampled values of k (Figure 3b) which
show that successive samples have a high autocorrelation. This is due to the fact that k tends to
change by at most one in each iteration, and so many iterations are required to move between small
and large values of k.

In order to obtain a comparison with the performance of the reversible jump sampler of Richard-
son and Green (1997) we also performed runs with the prior they used for this data; namely a uni-
form prior on k = 1; : : : ; 30 and the Fixed-� prior on the parameters. For this prior our sampler
took 170 seconds and changed k in 34% of iterations, which compares favourably with the 11-18%
of iterations obtained by Richardson and Green (1997) using the reversible jump sampler (their Ta-
ble 1). We also tried applying the convergence diagnostic suggested by Gelman and Rubin (1992)
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Figure 4: Sampled values of means for three components, sampled using Algorithm 3.2 when fitting a variable
number of t4 components to the galaxy data, with Fixed-� prior, � = 1, and conditioning the resulting output
on k = 3. The output is essentially “unlabelled”, and so labelling of the points was achieved by applying
Algorithm 3.3 of Stephens (1997). The variable k sampler visits the minor mode at least 6 separate times in
1913 iterations, compared with once in 10 000 iterations for a fixed k sampler.

which requires more than one chain to be run from over-dispersed starting points (see the reviews
by Cowles and Carlin (1996) or Brooks and Roberts (1998) for alternative diagnostics). Based on
four chains of length 20 000, with two started from k = 1 and two started from k = 30, convergence
was diagnosed for the output of Algorithm 3.2 within 2500 iterations.

Richardson and Green (1997) note that allowing k to vary can result in much improved mixing
behaviour of the sampler over the mixture model parameters within k. For example, if we fix k and
use Gibbs sampling to fit k = 3 t4 distributions to the galaxy data with the Fixed-� prior, there
are two well-separated modes (a major mode with means near 10, 20, and 23 and a minor mode
with means near 10, 21 and 34). Our Gibbs sampler with fixed k struggled to move between these
modes, moving from major mode to minor mode and back only once in 10 000 iterations (results
not shown). We applied Algorithm 3.2 to this problem, using � = 1. Of the 10 000 points sampled,
there were 1913 visits to k = 3, during which the minor mode was visited on at least 6 different
occasions (Figure 4). In this case the improved mixing behaviour results from the ability to move
between the modes for k = 3 via states with k = 4: that is (roughly speaking), from the major
mode to the minor mode via a four component model with means near 10, 20, 23 and 34. If we
are genuinely only interested in the case k = 3 then the improved mixing behaviour of the variable
k sampler must be balanced against its increased computational cost, particularly as we generated
only 1913 samples from k = 3 in 10 000 iterations of the sampler. By truncating the prior on k to
allow only k = 3 and k = 4, and using � = 0:1 to favour the 3 component model strongly, we
were able to increase this to 7371 samples with k = 3 in 10 000 iterations, with about 6 separate
visits to the minor mode. Alternative strategies for obtaining a sample from the birth-death process
conditional on a fixed value of k are given by Ripley (1977).

Inference

The results in this section are based on runs of length 20 000with the first 10 000 iterations being
discarded as burn-in — numbers we believe to be large enough to give meaningful results based on
our investigations of the mixing properties of our chain. Estimates of the posterior distribution of k
(Figure 5) show that it is highly sensitive to the prior used, both in terms of choice of � and the prior
(Variable-� or Fixed-�) used on the parameters (�;�2). Corresponding estimates of the predictive
density (Figure 6) show that this is less sensitive to choice of model. Although the density estimates
become less smooth as � increases, even the density estimates for (the unreasonably large value of)
� = 25 do not appear to be over-fitting badly.
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Figure 5: Graphs showing estimates (6) of Pr(k = i) for i = 1; 2; : : :, for the galaxy data. These estimates
are based on the values of k sampled using Algorithm 3.2 when fitting the three different models to the
galaxy data with � = 1; 3; 6, with in each case the first 10 000 samples having been discarded as burn-in. The
three columns show results for Left: Normals, Fixed-�; Middle: Normals, Variable-�; Right: t4s, Fixed-�.
The posterior distribution of k can be seen to depend on the type of mixture used (normal or t 4), the prior
distribution for k (value of �), and the prior distribution for (�;� 2) (Variable-� or Fixed-�).
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Figure 6: Predictive density estimates (7) for the galaxy data. These are based on the output of Algorithm
3.2 when fitting the three different models to the galaxy data with � = 1; 3; 6; 25. The three columns show
results for Left: Normals, Fixed-�; Middle: Normals, Variable-�; Right: t4s, Fixed-�. The density estimates
become less smooth as � increases, corresponding to a prior distribution which favours a larger number of
components. However, the method appears to perform acceptably for even unreasonably large values of �.
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k = 2 3 4 5 6 > 6bp(k j t4; xn) 0.056 0.214 0.601 0.115 0.012 0.001
(0.014) (0.009) (0.011) (0.005) (0.001) (0.000)bp(k j normal; xn) 0.000 0.554 0.338 0.093 0.013 0.001

(0.014) (0.011) (0.004) (0.001) (0.000)

Table 1: Estimates of the posterior probabilitiesp(k j t4; xn) and p(k j normal; xn) for the galaxy data (Fixed-
� prior, � = 1). These are the means of the estimates from five separate runs of Algorithm 3.2, each run
consisting of 20 000 iterations with the first 10 000 iterations being discarded as burn-in; the standard errors
of these estimates are shown in brackets.

k = 2 3 4 5 6 > 6bp(t4; k jxn) 0.051 0.196 0.551 0.105 0.011 0.000bp(normal; k jxn) 0.000 0.047 0.028 0.008 0.001 0.000

Table 2: Estimates of the posterior probabilitiesp(t4; k jxn) and p(normal; k jxn) for the galaxy data (Fixed-
� prior, � = 1). See text for details of how these were obtained.

The large number of normal components being fitted to the data suggests that the data is not well
modelled by a mixture of normal distributions. Further investigation shows that many of these com-
ponents have small weight and are being used to effectively “fatten the tails” of the normal distribu-
tions, which explains why fewer t4 components are required to model the data. Parsimony suggests
that we should prefer the t4 model, and we can formalize this as follows. Suppose we assume that the
data has arisen from either a mixture of normals or a mixture of t4s, with p(t4) = p(normal) = 0:5.
For the Fixed-� prior with � = 1 we can estimate p(k j t4; xn) and p(k j normal; xn) using Algo-
rithm 3.2 (Table 1). By Bayes theorem we have

p(k j t4; x
n) =

p(k; t4 jx
n)

p(t4 j xn)
for all k (34)

and so

p(t4 jx
n) =

p(k; t4 j xn)

p(k j t4; xn)
=

p(xn jk; t4)p(k; t4)

p(k j t4; xn)p(xn)
for all k, (35)

and similarly

p(normal jxn) =
p(xn j k; normal)p(k; normal)

p(k j normal; xn)p(xn)
for all k. (36)

Thus if we can estimate p(xn jk; t4) for some k and p(xn jk; normal) for some k then we can
estimate p(t4 jxn) and p(normal jxn). Mathieson (1997) describes a method (a type of importance
sampling which he refers to as Truncated Harmonic Mean (THM) and which is similar to the method
described by DiCiccio et al. (1997)) of obtaining estimates for p(x n jk; t4) and p(xn jk; normal),
and uses this method to obtain the estimates

� log p(xn jk = 3; t4) � 227:64 and � log p(xn jk = 3; normal) � 229:08;

giving (using equations (35) and (36))

p(t4 j x
n) � 0:916 and p(normal jxn) � 0:084;
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Figure 7: Scatter plot of the Old Faithful data (from Härdle, 1991). The x axis shows the duration (in minutes)
of the eruption, and the y axis shows the waiting time (in minutes) before the next eruption.

from which we can estimate p(t4; k j xn) = p(t4 jxn)p(k j t4; xn), and similarly for normals — the
results are shown in Table 2. We conclude that for the prior distributions used, mixtures of t 4 distri-
butions are heavily favoured over mixtures of normal distributions, with four t 4 components having
the highest posterior probability. It would be relatively straightforward to modify our algorithm to
fit t distributions with an unknown number of degrees of freedom, thus automating the above model
choice procedure. It would also be straightforward to allow each component of the mixture to have
a different number of degrees of freedom.

4.2 Example 2: Old Faithful data

For our second example, we consider the Old Faithful data (the version from Härdle, 1991,
also considered by Venables and Ripley (1994)) which consists of data on 272 eruptions of the Old
Faithful geyser in the Yellowstone National Park. Each observation consists of two observations:
the duration (in minutes) of the eruption, and the waiting time (in minutes) before the next eruption.
A scatter plot of the data in two dimensions shows two moderately separated groups (Figure 7). We
used Algorithm 3.2 to fit a mixture of an unknown number of bivariate normal distributions to the
data, using � = 1; 3 and both the Fixed-� and Variable-� priors detailed in Section 4.

Each run consisted of 20 000 iterations of Algorithm 3.2, with the starting point being chosen
by setting k = 1, setting (�; �) to the values chosen for the Fixed-� prior, and sampling the other
parameters from their joint prior distribution. In each case the sampler moved quickly from the
low likelihood of the starting point to an area of parameter space with higher likelihood. The runs
for � = 3 took about 7-8 minutes. Figure 8a shows the resulting sampled values of the number
of components k, which can be seen to vary more rapidly for the Variable-� model, due in part
to its greater permissiveness of extra components. For the runs with � = 3 the proportion of
iterations which resulted in a change in k were 9% (Fixed-�) and 39% (Variable-�). For � = 1
the corresponding figures were 3% and 10% respectively. Graphs of the autocorrelations (Figure
8b) suggest that the mixing is slightly poorer than for the galaxy data, presumably due to births of
reasonable components being less likely in the two-dimensional case. This poorer mixing means
that longer runs may be necessary to obtain accurate estimates of p(k jxn). The method of Gelman
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and Rubin (1992) applied to two runs of length 20 000 starting from k = 1 and k = 30 diagnosed
convergence within 10 000 iterations for the Fixed-� prior with � = 1; 3.

Estimates of the posterior distribution for k (Figure 8c) show that it depends heavily on the prior
used, while estimates of the predictive density (Figure 8d)) are less sensitive to changes in the prior.
Where more than two components are fitted to the data the extra components appear to be modelling
deviations from normality in the two obvious groups, rather than interpretable extra groups.

4.3 Example 3: Iris Virginica data

We now briefly consider the famous Iris data, collected by Anderson (1935) which consists of
four measurements (petal and sepal length and width) for 50 specimens of each of three species
(setosa, versicolor, and virginica) of iris. Wilson (1982) suggests that the virginica and versicolor
species may each be split into subspecies, though analysis by McLachlan (1992) using maximum
likelihood methods suggests that this is not justified by the data. We investigated this question for
the virginica species by fitting a mixture of an unknown number of bivariate normal distributions to
the 50 observations of sepal length and petal length for this species, which are shown in Figure 9.

Our analysis was performed with � = 1; 3 and with both Fixed-� and Variable-� priors. We
applied Algorithm 3.2 to obtain a sample of size 20 000 from a random starting point, and discarded
the first 10 000 observations as burn-in. The mixing behaviour of the chain over k was reasonable,
with the percentages of sample points for which k changed being 6% (� = 1) and 21% (� = 3)
for the Fixed-� prior, and 5% (� = 1) and 36% (� = 3) for the Variable-� prior. The mode of the
resulting estimates for the posterior distribution of k is at k = 1 for at least three of the four priors
used (Figure 10a) and the results seem to support the conclusion of McLachlan (1992) that the data
does not support a division into subspecies (though we note that in our analysis we used only two of
the four measurements available for each specimen). The full predictive density estimates in Figure
10b indicate that where more than one component is fitted to the data they are again being used to
model lack of normality in the data, rather than interpretable groups in the data.

5 Discussion

5.1 Density estimation, inference for k, and priors

Our examples demonstrate that a Bayesian approach to density estimation using mixtures of
(univariate or bivariate) normal distributions with an unknown number of components is computa-
tionally feasible, and that the resulting density estimates are reasonably robust to modelling assump-
tions and priors used. Extension to higher dimensions is likely to provide computational challenges,
but might be possible with suitable constraints on the covariance matrices (requiring them all to be
equal or all to be diagonal for example).

Our examples also highlight the fact that while inference for the number of components k in the
mixture is also computationally feasible, the posterior distribution for k can be highly dependent
on not just the prior chosen for k, but also the prior chosen for the other parameters of the mixture
model. Richardson and Green (1997), in their investigation of one-dimensional data, note that when
using the Fixed-� prior, the value chosen for � in the priorN (�; ��1) for the means �1; : : : ; �k has
a subtle effect on the posterior distribution of k. A very large value of �, representing a strong belief
that the means lie at � (chosen to be the midpoint of the range of the data) will favour models with
a small number of components and larger variances. Decreasing � to represent vaguer prior knowl-
edge about the means will initially encourage the fitting of more components with means spread
across the range of the data. However, continuing to decrease �, to represent vaguer and vaguer
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(c) Estimates (6) of Pr(k = i)
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(d) Predictive density estimates (7), dark shading corresponding to regions of high density, all shaded on the same
scale

Figure 8: Results for using Algorithm 3.2 to fit a mixture of normal distributions to the Old Faithful data. The
columns show results for Left: Fixed-� prior, � = 1; Left-middle: Variable-� prior, � = 1; Right-middle:
Fixed-� prior, � = 3; Right: Variable-� prior, � = 3. The posterior distribution of k can be seen to depend
on both the prior distribution for k (value of �), and the prior distribution for (�;�) (Variable-� or Fixed-�).
The density estimates appear to be less sensitive to choice of prior.
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Figure 9: Scatter plot of petal length against sepal length for the Iris Virginica data.
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(b) Predictive density estimates (7), dark shading corresponding to regions of high density, all shaded on the same
scale

Figure 10: Results for using Algorithm 3.2 to fit a mixture of normal distributions to the Iris Virginica data.
The columns show results for Left: Fixed-� prior, � = 1; Left-middle: Variable-� prior, � = 1; Right-
middle: Fixed-� prior, � = 3; Right: Variable-� prior, � = 3. The mode of the estimates of Pr(k = i) is
k = 1 for at least 3 of the four priors used, and seems to indicate that the data does not support splitting the
species into sub-species.
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knowledge on the location of the means, eventually favours fitting fewer components. In the limit,
as �! 0, the posterior distribution of k becomes independent of the data, and depends only on the
number of observations, heavily favouring a one component model for reasonable number of ob-
servations (Stephens, 1997; Jennison, 1997). Priors which appear to be only “weakly” informative
for the parameters of the mixture components may thus be highly informative for the number of
components in the mixture. Since very large and very small values of � in the Fixed-� prior both
lead to priors which are highly informative for k, it might be interesting to search for a value of
� (probably depending on the observed data) which leads to a Fixed-� prior which is “minimally
informative” for k in some well-defined way.

Where the main aim of the analysis is to define groups for discrimination (as in taxonomic
applications such as the iris data for example) it seems natural that the priors should reflect our
belief that this is a reasonable aim, and thus avoid fitting several similar components where one
will suffice. This idea is certainly not captured by the priors we used here, which Richardson and
Green (1997) suggest are more appropriate for “exploring heterogeneity”. Inhibition priors from
spatial point processes (as used by Baddeley and van Lieshout, 1993, for example) provide one way
of expressing a prior belief that the components present will be somewhat distinct. Alternatively
we might try distinguishing between the number of components in the model, and the number of
“groups” in the data, by allowing each group to be modelled by several “similar” components. For
example, group means might be a priori distributed on the scale of the data, and each group might
consist of an unknown number of normal components, with means distributed around the group
mean on a smaller scale than the data. The discussion following Richardson and Green (1997)
provides a number of other avenues for further investigation of suitable priors, and we hope that the
computational tools described in this paper will help make such further investigation possible.

5.2 Choice of birth distribution

The choice of birth distribution we made in Algorithm 3.1 is rather naive, and indeed we were
rather surprised that we were able to make much progress with this approach. Its success in the
Fixed-� model appears to stem from the fact that the (data-dependent) independent priors on the
parameters � are not so vague as to never produce a reasonable birth event, and yet not so tight as
to always propose components which are very similar to those already present. In the Variable-�
model the success of the naive algorithm seems to be due to the way in which the hyperparameters
� and � “adapt” the birth distribution to make the birth of better components more likely. Here we
may have been lucky, since the priors were not chosen with these properties in mind. In general
then it may be necessary to spend more effort designing sensible birth-death schemes to achieve
adequate mixing. Our results suggest that a strategy of allowing the birth distribution b(y; (�; �))
to be independent of y, but depend on the data, may result in a simple algorithm with reasonable
mixing properties. An ad hoc approach to improving mixing might involve simply investigating
mixing behaviour for more or less “vague” choices of b. A more principled approach would be
to choose a birth distribution which can be both easily calculated and simulated from directly, and
which roughly approximates the (marginal) posterior distribution of a randomly chosen element
of �. Such an approximation might be obtained from a preliminary analysis with a naive birth
mechanism, or perhaps standard fixed-dimension MCMC with large k.

A more sophisticated approach might allow the birth distribution b
�
y; (�; �)

�
to depend on y.

Indeed, the opposite extreme to our naive approach would be to allow all points to die at a constant
rate, and find the corresponding birth distribution using (15) (as in Ripley, 1977, for example).
However, much effort may then be required to calculate the birth rate �(�) (perhaps by Monte-
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Carlo integration), which limits the appeal of this approach. (This problem did not arise in Ripley,
1977, where simulations were performed conditional on a fixed value of k by alternating births
and deaths.) For this reason we believe that it is easier to concentrate on designing efficient birth
distributions which can be simulated from directly and whose densities can be calculated explicitly
so that the death rates (15) are easily computed.

5.3 Extension to other contexts

It appears from our results that, for finite mixture problems, our birth-death algorithm provides
an attractive alternative to the algorithm used by Richardson and Green (1997). There seems to be
considerable potential for applying similar birth-death schemes in other contexts as an alternative
to more general reversible jump methods. We now attempt to give some insight into for which
problems such an approach is likely to be feasible. We begin our discussion by highlightingthe main
differences between our Algorithm 3.1 and the algorithm used by Richardson and Green (1997).

A: Our algorithm operates in continuous time, replacing the accept-reject scheme by allowing
events to occur at differing rates.

B: Our dimension-changing birth and death moves do not make use of the missing data z n, effec-
tively integrating out over them when calculating the likelihood.

C: Our birth and death moves take advantage of the natural nested structure of the models, remov-
ing the need for the calculation of a complicated Jacobian, and making implementation more
straightforward.

D: Our birth and death moves treat the parameters as a point process, and do not make use of any
constraint such as �1 < � � � < �k (used by Richardson and Green, 1997, in defining their split
and combine moves).

We consider A to be the least important distinction. Indeed, a discrete time version of our birth-death
process using an accept-reject step could be designed along the lines of Geyer and Møller (1994),
or using the general reversible-jump formulation of Green (1995). (Similarly one can envision a
continuous time version of the general reversible jump formulation.) We have no good intuition for
whether discrete time or continuous time versions are likely to be more efficient in general, although
Geyer and Møller (1994) suggests that it is easier to obtain analytical results relating to mixing for
the discrete time version.

Point B raises an important requirement for application of our algorithm: we must be able to
calculate the likelihood for any given parameters. This requirement makes the method difficult to
apply to Hidden Markov Models, or other missing data problems where calculation of the likelihood
requires knowledge of the missing data. One solution to this problem would be to introduce the
missing data into the MCMC scheme, and perform births and deaths while keeping the missing data
fixed (along the lines of the births and deaths of “empty” components in Richardson and Green,
1997). However, where the missing data is highly informative for k this seems likely to lead to
poor mixing, and reversible jump methods which propose joint updates to the missing data and the
dimension of the model appear more sensible here.

In order to take advantage of the simplicity of the birth-death methodology, we must be able to
view the parameters of our model as a point process, and in particular we must be able to express
our prior in terms of a Radon–Nikodym derivative, r(�), with respect to a symmetric measure, as in
Section 2.2. This is not a particularly restrictive requirement, and we give two concrete examples
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below. These examples are in many ways simpler than the mixture problem since there are no
mixture proportions, and the marked point process becomes a point process on a space �. The
analogue of Theorem 3.1 for this simpler case, (which essentially follows directly from Preston
(1976) and Ripley (1977)) may be obtained by replacing the condition (15) with

(k+ 1)d(y;�)r(y[�)L(y[�) = �(y)b(y;�)r(y)L(y): (37)

Provided we can calculate the likelihood L(y), the viability of the birth-death methodology will
depend on being able to find a birth distribution which gives adequate mixing. The comments in
Section 5.2 provide some guidance here. It is clear that in some applications the use of birth and
death moves alone will make it difficult to achieve adequate mixing. However, the ease with which
different birth distributions may be tried, and the success of our algorithm in the mixture context
with minimal effort in designing efficient birth distributions, suggests that this type of algorithm is
worth trying before more complex reversible jump proposal distributions are implemented.

Example I: Change point analysis

Consider the change-point problem from Green (1995). The parameters of this model are the
number of change points k, the positions 0 < s1 < � � � < sk < L of the change points, and the
heights hi (i = 0; : : : ; k) associated with the intervals [s i; si+1], where s0 and sk+1 are defined to
be 0 and L respectively. In order to treat the parameters of the model as a point process, we drop
the requirement that s1 < � � � < sk , and define the likelihood of the model in terms of the order
statistics s(1) < � � � < s(k), and the corresponding heights h(i) (i = 0; : : : ; k) associated with the
intervals [s(i); s(i+1)], where s(0) and s(k+1) are defined to be 0 and L respectively.

Consider initially a prior in which k has prior probability mass distributionp(k), and conditional
on k, the si and hi are assumed to be independent, with si uniformly distributed on [0,L], and
hi � �(�; �). In the notation of previous sections we take � = h (0), �i = (s(i); h(i)), ! = (�; �),
� to be Lebesgue measure on � = [0; L]� [0;1),

r(k; s; h) = p(k)
kY
i=1

1

L
I(si 2 [0; L])�(hi;�; �); (38)

and � is ignored. With births and deaths on � defined in an obvious way, it is then straightforward
to use condition (37) to create a birth-death process on � = [0; L] � [0;1) with the posterior
distribution of � given � as its stationary distribution. This can then be alternated with standard
fixed-dimension MCMC steps (which allow h(0), and perhaps � and � to vary) to create an ergodic
Markov chain with the posterior distribution of the parameters as its stationary distribution. The
analogue of our naive algorithm for this prior would have birth distribution

b
�
y; (s; h)

�
=

1

L
I(s 2 [0; L])�(h;�; �): (39)

A more sophisticated approach would be to allow the birth of new change points to be concentrated
on areas which, based on the data, seem good candidates for change points (for example, by looking
at the marginal posterior distribution of the distribution of change points in a preliminary analy-
ses using the naive birth mechanism, or fixed-dimension MCMC), and allow the birth distribution
for the new h to depend on the new s, again being centred on regions which appear to be good
candidates based on the data .
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Now suppose that (as in Green, 1995) s(1); : : : ; s(k) are, given k, a priori distributed as the
even-numbered order statistics of 2k + 1 points independently and uniformly distributed on [0; L]:

p(s(1); : : : ; s(k)) =
(2k + 1)!

L2k+1
(s(1) � 0)(s(2) � s(1)) : : :(s(k) � s(k�1))(L� s(k))I(0 < s(1) < � � � < s(k) < L):

(40)

This corresponds to s1; : : : ; sk (which must be exchangeable) being a priori distributed as a random
permutation of these order statistics:

p(s1; : : : ; sk) =
1

k!

(2k + 1)!

L2k+1
(s(1) � 0)(s(2) � s(1)) : : :(s(k) � s(k�1))(L� s(k))

kY
i=1

I(si 2 [0; L])

(41)

giving a prior which corresponds to

r0(k; s; h) =
(2k + 1)!

k!L2k+1
(s(1) � 0)(s(2) � s(1)) : : :(s(k) � s(k�1))(L� s(k))

kY
i=1

I(si 2 [0; L])�(hi;�; �):

(42)

Given a birth-death scheme using the prior (39), it would be straightforward to modify this scheme
to use this second prior (42), for example by keeping the birth distribution fixed, and modifying
the calculation of the death rates by replacing r with r 0. The way in which priors are so easily
experimented with is one major attraction of the birth-death methodology.

Variable selection for regression models

Consider now the problem of selecting a subset of a given collection of variables to be included
in a regression model (see George and McCulloch, 1996, for example). (Similar problems include
deciding which terms to include in an autoregression, or which links to include in a Bayesian Be-
lief Network.) Let there be K possible variables to include, and let variable i be associated with a
parameter �i 2 R (i = 1; : : : ; K). A model which contains k of the variables can then be repre-
sented by a set of k points f(i1; �i1); : : : ; (ik; �ik)g in � = f1; : : : ; Kg � R, where i1; : : : ; ik are
distinct integers in f1; : : : ; Kg. The birth of a point (i; � i) then corresponds to adding variable i
to the regression. Note that the points are exchangeable in that the order in which they are listed
is irrelevant. A suitable choice for � in the definition of the symmetric measure M (Section 2.2)
would be the product measure of counting measure on f1; : : : ; Kg and Lebesgue measure on R.

Suppose our prior is that variable i is present with probability p i, independently for all i, and
conditional on variable i being present, � i has prior p(�i), again independent for all i. Then we
have

r
�
k; (i1; �i1); : : : ; (ik; �ik)

�
=

(
0 if ia = ib for some a; b.

pi1p(�i1) : : :pikp(�ik) otherwise.
(43)

The choice of birth distribution b
�
y; (i; �i)

�
must in this case depend on y, in order to avoid adding

variables which are already present. A naive suggestion would be to set

b
�
y; (i; �i)

�
= bip(�i) (44)

with bi / pi for the variables i not already present in y. Again, more efficient schemes could be
devised by letting the births be data-dependent, possibly through examining the marginal posterior
distributions of the � i in preliminary analyses.
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7 Appendix: Proof of Theorem 3.1

Proof. Our proof draws heavily on the theory derived by Preston (1976), Section 5, for general
Markov birth-death processes on state space 
 =

S
k 
k where the 
k are disjoint. The process

evolves by jumps, of which only a finite number can occur in a finite time. The jumps are of two
types: “births”, which are jumps from a point in 
k to 
k+1, and “deaths”, which are jumps from a
point in 
k to a point in 
k�1. When the process is at y 2 
k the behaviour of the process is defined

by the birth rate �(y), the death rate Æ(y), and the birth and death transition kernels K (k)
� (y; �) and

K
(k)
Æ (y; �) which are probability measures on 
k+1 and 
k�1 respectively. Births and deaths occur

as independent Poisson processes, with rates �(y) and Æ(y) respectively. If a birth occurs then
the process jumps to a point in 
k+1, with the probability that this point is in any particular set

F � 
k+1 being given by K (k)
� (y;F ). If a death occurs then the process jumps to a point in 
 k�1,

with the probability that this point is in any particular set G � 
 k�1 being given by K
(k)
Æ (y;G).

Preston (1976) showed that for such a process to possess stationary distribution e� it is sufficient that
the following detailed balance conditions hold:

Definition 1 (Detailed Balance Conditions). e� is said to satisfy detailed balance conditions ifZ
F
�(y) de�k(y) = Z


k+1

Æ(z)K
(k+1)
Æ (z;F ) de�k+1(z) for k � 0, F � 
k (45)

and Z
G
Æ(z) de�k+1(z) = Z


k

�(y)K
(k)
� (y;G) de�k(y) for k � 0, G � 
k+1. (46)

These have the intuitive meaning that the rate at which the process leaves any set through the oc-
currence of a birth is exactly matched by the rate at which the process enters that set through the
occurrence of a death, and vice-versa.

We therefore check that p(k;�;� jxn; !; �) satisfies the detailed balance conditions for our
process, which corresponds to the general Markov birth-death process with birth rate �(y), death

rate Æ(y), and birth and death transition kernels K (k)
� (y; �) and K(k)

Æ (y; �) which satisfy

K
(k)
� (y;F ) =

Z
(�;�):y[(�;�)2F

b
�
y; (�; �)

�
d� �(d�) (47)

and

Æ(y)K
(k)
Æ (y;F ) =

X
(�;�)2y:yn(�;�)2F

d
�
yn(�; �); (�; �)

�
: (48)
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We begin by introducing some notation. Let � k represent the parameter space for the k-
component model, with the labelling of the parameters taken into account, and let 
 k be the cor-
responding space obtained by ignoring the labelling of the components. If (�;�) 2 � k, then we
will write [�;�] for the corresponding member of 
k. With � =

S
k�1 �k, let P (�) and eP (�) be

the prior and posterior probability measures on �, and let P k(�) and ePk(�) denote their respective
restrictions to �k. The prior distribution has Radon–Nikodym derivative r(k;�;�) with respect to
Uk�1 � �k . Thus for (�;�) 2 �k we have

dPkf(�;�)g = r(k;�;�)(k � 1)! d�1 : : : d�k�1 �(d�1) : : : �(d�k): (49)

Also, by Bayes theorem we have

d ePf(�;�)g / L([�;�])dPf(�;�)g

and so we will write

d ePf(�;�)g = f([�;�])dPf(�;�)g

for some f([�;�]) / L([�;�]).
Now let �(�) and e�(�) be the probability measures induced on 
 by P (�) and eP (�) respectively,

and let �k(�) and e�k(�) denote their respective restrictions to 
k. Then for any function g : 
! R
we have: Z


k

g(y) d�k(y) =

Z
�k

g([�;�]) dPk
�
(�;�)

	
(50)

and Z

k

g(y) de�k(y) = Z
�k

g([�;�]) dePk�(�;�)	
=

Z
g([�;�])f([�;�]) dPk

�
(�;�)

	
=

Z

k

g(y)f(y) d�k(y): (51)

We define births on � by

(�;�)[(�; �) :=
��
�1(1� �); �1

�
; : : : ;

�
�k(1� �); �k

�
;
�
�; �

��
(52)

and will require the following Lemma (which is essentially a simple change of variable formula):

Lemma 7.1. If (�;�) 2 �k and (�; �) 2 [0; 1]� � then

r(k;�;�)dPk+1
�
(�;�)[(�; �)

	
= r
�
k + 1; (�;�)[(�; �)

�
k(1� �)k�1 d� �(d�) dPk

�
(�;�)

	
:
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Proof.

LHS = r(k;�;�)dPk+1
�
(�;�)[(�; �)

	
= r(k;�;�)dPk+1

n�
(�1(1� �); �1); : : : ; (�k(1� �); �k); (�; �)

�o
[equation (52)]

= r(k;�;�)r
�
k + 1; (�;�)[(�; �)

�
k!(1� �)k�1 d�1 : : : d�k d� �(d�1) : : : �(d�k) �(d�)

[equation (49) and change of variable]

= r
�
k + 1; (�;�)[(�; �)

�
k(1� �)k�1 d� �(d�) dPk

�
(�;�)

	
[equation (49)]

= RHS:

Assume for the moment that r(y)L(y) > 0 for all y. Let I(�) denote the generic indicator
function, so I(x 2 A) = 1 if x 2 A and 0 otherwise. We check the first part of the detailed balance
conditions (45) as follows:

LHS =

Z
F

�(y) de�k(y)
=

Z

k

I(y 2 F )�(y)f(y) d�k (y) [equation (51)]

=

Z

k

I(y 2 F )�(y)f(y)

Z
[0;1]

Z
�

b
�
y; (�; �)

�
d� �(d�) d�k(y) [b must integrate to 1.]

RHS =

Z

k+1

Æ(z)K
(k+1)
Æ (z;F ) de�k+1(z)

=

Z

k+1

Æ(z)K
(k+1)
Æ (z;F ) f(z) d�k+1(z) [equation (51)]

=

Z

k+1

X
(�;�)2z:zn(�;�)2F

d
�
zn(�; �); (�; �)

�
f(z) d�k+1(z) [equation (48)]

=

Z
�k+1

k+1X
i=1

I([�;�]n(�i; �i) 2 F ) d
�
[�;�]n(�i; �i); (�i; �i)

�
�

� f([�;�]) dPk+1

�
(�;�)

	
[equation (50)]

=

Z
�k+1

(k + 1)I([�;�]n(�k+1; �k+1) 2 F ) d
�
[�;�]n(�k+1; �k+1); (�k+1; �k+1)

�
�

� f([�;�]) dPk+1

�
(�;�)

	
[by symmetry of Pk+1(�)]

=

Z
�k+1

(k + 1)I([�0;�0] 2 F ) d
�
[�0;�0]; (�; �)

�
f
�
[�0;�0][(�; �)

�
�

� dPk+1

�
(�0;�0)[(�; �)

	
[(�0;�0)[(�; �) = (�;�)]

=

Z
�k

Z
[0;1]

Z
�

I([�0;�0] 2 F )(k + 1) d
�
[�0;�0]; (�; �)

�
f
�
[�0;�0][(�; �)

�
�

�
r
�
k + 1; (�0;�0)[(�; �)

�
r(k;�0;�0)

k(1� �)k�1 d� �(d�) dPk

�
(�0;�0)

	
[Lemma 7.1]

=

Z

k

Z
[0;1]

Z
�

I(y 2 F )(k+ 1) d
�
y; (�; �)

�
f
�
y[(�; �)

�
�

�
r
�
y[(�; �)

�
r(y)

k(1� �)k�1 d� �(d�) d�k(y) [equation (50)]

30



and so LHS = RHS provided

(k + 1)d
�
y; (�; �)

�
f
�
y[(�; �)

�r�y[(�; �)�
r(y)

k(1� �)k�1 = �(y)b
�
y; (�; �)

�
f(y)

which is equivalent to the conditions (15) stated in the Theorem as f(y) / L(y). The remaining
detailed balance conditions (46) can be shown to hold in a similar way.

The condition that r(y)L(y) = 0 for all y can now be relaxed by applying the conditions (13)
and (14), and restricting the spaces �k and 
k to fy : r(y)L(y) > 0g.
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