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APPENDIX 10: ANALYSIS OF VARIANCE (ANOVA) 

supplemental material to the text of 

Modern Marketing Research: Concepts, Methods, and Cases 

by Feinberg, Kinnear, and Taylor 

 

Statistical Analysis of Experiments 

Analysis of variance (ANOVA) is among the main methods used in social science. Although it 

is, strictly speaking, a special case of regression, the techniques associated with it have become 

so rich that ANOVA is often treated as a special subject in itself. It is important to understand 

exactly what its requirements and assumptions are, so let us start there: ANOVA can be applied 

when the researcher is analyzing one intervally scaled dependent variable and one or more 

nominally scaled independent variables. 

ANOVA is often discussed in terms of three somewhat different procedures. (Before trying 

to make sense of them, you may wish to go back and review the material on basic statistical 

inference and regression in Chapters 8 and 9.) These three ANOVA procedures are: 

 

Model I: Fixed Effects. In this model, the researcher makes inferences only about 

differences among the j treatments actually administered, and about no other treatment that 

might have been included. In other words, no interpolation between treatments is made. For 

example, if the treatments were high, medium, and low advertising expenditures, no 

inferences are drawn about advertising expenditures between these three levels. 

Model II: Random Effects. In the second model, the researcher assumes that only a random 

sample of the treatments about which he or she wants to make inferences has been used. 

Here, the researcher would be prepared to interpolate results between treatments, if need be. 

Model III: Mixed Effects. In the third model, the researcher has some fixed and some 

random independent variables (treatments). 

 

The major differences among these models relate to the formulas used to calculate sampling 

error and to some data assumptions. We shall show the calculations only for the fixed-effects 

model because the basic approach and the principles to be established are the same for the other 

models. Also, in marketing research, most experiments fit the fixed-effects model, as the 

experiments usually include all treatments that are relevant to the decision to be made. 

Additional detail on calculations, especially for Models II and III, can be found in any standard 

text on ANOVA models. 

In applying the fixed-effects model, the researcher must make several assumptions about the 

data. Specifically: 

 

1. For each treatment population, j, the experimental errors are independent and normally 

distributed about a mean of zero with an identical variance (this variance is determined as 

part of the estimation procedure). 

2. The sum of all treatment effects is zero. 

3. In the calculations presented here, each treatment group has the same number of 

observations. This assumption is not generally necessary, but it simplifies the calculations; 

most ANOVA programs will not require this assumption. 
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In experimentation, the null hypothesis is that the treatment effects equal zero. If τj represents 

the effect of treatment j, and the total number of treatments is t, we can write the null hypothesis 

as 

 

021 ==⋅⋅⋅==⋅⋅⋅== tj ττττ  

 

or in the equivalent notation 

 

),....,2,1(0 tjj ==τ  

 

where j = a specific treatment. The alternative hypothesis is that 

 

)....,2,1(0 tjj ==/τ  

 

Note that this asserts that at least one of the treatments is nonzero, not that they all are. If the 

treatments have had no effect, we would expect the scores on the dependent variable to be the 

same in each group, so that the mean values would be the same in each group. So our null 

hypothesis is equivalent to the statement that 

 

µµµµ == j....21  

 

where 1, 2, . . ., j represent treatment groups, and µ represents the mean for the entire population, 

without regard to groups. So we see that ANOVA is essentially a procedure for simultaneously 

testing for the equality of two or more means. In this way, it extends the usual (pooled) t-test for 

the equality of the means of exactly two groups. 

 

Completely Randomized Design 

ANOVA applied to a completely randomized design (CRD) is called “one-way” ANOVA 

because it is being applied to categories of exactly one independent variable. Table 10A.1 

presents results generated by a CRD. The measures on the dependent variable, Y, are taken on 

the test units. Here, there are four test units in each of three treatments, so we have 4 × 3 = 12 

test units. The units are stores in the relevant geographic region where each of three coupon 

plans was applied. The dependent variable is the number of cases of cola sold the day after the 

different coupons were run in local newspapers. The treatments are the three categories of the 

independent variable, T. 

 

T1 Coupon plan 1 

T2 Coupon plan 2 

T3 Coupon plan 3 

 

So, we have three treatments, 12 test units, and an interval-scaled measure on each test unit, 

ensuring that ANOVA can be applied. 
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In Table 10A.1, we define the mean of each treatment group as 

 

n
MY

j

jj

∑
==

.

..

Y
 

 

Table 10A.1 Completely Randomized Design with Three Treatments (Coupon Plans) 
 

 Treatments (j) 

 Coupon plan 1 Coupon plan 2 Coupon plan 3 

Test units (i) 20 17 14 

 18 14 10 

 15 13 7 

 11 8 5 

Treatment 

totals 
64Y.1 =∑  52Y.2 =∑  36Y.3 =∑  

Treatment 

means 

1664/4

/nY

MY

1.1

.1.1

==

∑=

=

 

1352/4

/nY

MY

2.2

.2.2

==

∑=

=

 

936/4

/nY

MY

1.3

.3.3

==

∑=

=

 

  Grand total 152365264..Y =++=∑  

  Grand mean 

12.7152/12

)
3

n
2

n
1

Y../(nM..Y

==

++== ∑
 

Note: n1 = n2 = n3 = nj = 4 

 

The use of the period (.) in front of the j implies that we are calculating the mean by adding 

all i’s in the jth treatment group. Note also that ∑Yi: indicates the sum of all j’s for given i, and 

∑Y.. indicates the sum of all i’s and all j’s. In our example, 

 

9
4

36
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13
4
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2.2.

16
4

64

1.1.

==

==

==

MY

MY

MY

 

 

We also define the grand mean of all observations across all treatment groups as Y .. or M. 

Here 

 

7.12
12

365264
M =

++
=  

 

These various means will be used to interpret the results and calculations of an ANOVA. In 

an experimental context, we want to determine whether the treatments have had an effect on the 

dependent variable. (By “effect” we mean a functional relationship between the treatment Tj and 



Appendix 10: ANOVA Feinberg, Kinnear & Taylor: Modern Marketing Research Page 4 

the dependent variable Y.) That is, do different treatments give systematically different scores on 

the dependent variable? For example, in our coupon plan example, if the plans have had differing 

effects on sales, we would expect the amount of sales in the stores in treatment T1 to differ 

systematically from T2 and T3. If in fact they did, the mean of each treatment group would also 

differ. In ANOVA, an effect is defined as a difference in treatment means from the grand mean. 

What we are doing in ANOVA mirrors our development throughout all regression-based 

statistical models: determining whether differences in treatment means are large enough to be 

unlikely to have occurred just by chance alone. 

 

Some Notation and Definitions 

Let Yij be the score of the ith test unit on the jth treatment. For example, in Table 10A.1, 

 

Y11 = 20; Y42 = 8, and so on. 

 

We define any individual test unit’s scores as equal to 

 

Yij =
 
grand mean + treatment effect + error 

 

or 

 

Yij = µ + τj + Єij 

 

This is a simple linear, additive model with values specified in terms of population parameters. 

Because we are going to be using sample results to make inferences, we can translate this model 

into the language of observable, sample quantities as 

 

Yij =
 
M + Tj + Eij 

 

where M = the grand mean 

 

Tj = the effect of the jth treatment 

Eij = the statistical error of the ith test unit in the jth treatment 

 

(Note that Eij plays the same role as eij in ordinary regression models. It is customary to 

capitalize the “E” in ANOVA models, so we hew to that convention, but there is no conceptual 

difference between Eij in ANOVA and eij in regression.) 

In this model, the treatment effect is defined as the difference between the treatment mean 

and the grand mean: 

 

Tj = M..j – M 

 

The reason we use M as the base from which to compare the various M.j’s is that even if we did 

not know from which treatment a test unit came, we could still “guess” the grand mean as their 

score on the dependent variable. Knowledge of treatment group memberships improves our 

ability to predict scores, relative to simply using the overall mean, M. 
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The error for an individual unit, Eij, is estimated by the difference between an individual 

score and the treatment group mean to which the score belongs. 

 

Eij = Yij – M.j 

 

It is a measure of the difference in scores that are not explained by treatments. This is the 

measure of sampling error in the experiment, and is also referred to as experimental error. For 

example, if all scores within a treatment are close together, the individual scores will be close to 

the treatment mean, and the error will be small. So, this deviation is a measure of the random 

variation within each treatment in an experiment. 

We can rewrite this equation as 

 

 Yij = M + (M..j – M) + (Yij – M..j)
 

 ↓ ↓   ↓ ↓ 

Individual score = grand mean + treatment effect + error 

 

Note that this rewritten form is an identity: we have just added and subtracted the same 

quantities—the treatment mean (M.j) and the grand mean (M)—on the right side, so the equation 

is in effect saying that Yij is equal to itself; it is just helpful as a way of decomposing various 

effects. Alternatively, we can write any observation as a deviation from the grand mean. We do 

this by moving M to the left side of this, creating yet another identity: 

 

 (Yij – M) = (M..j – M) + (Yij – M..j) 

 ↓  ↓  ↓ 

 Individual score deviation of individual score 

 deviation from = group mean + deviation from 

 grand mean  from mean  group mean 

  (i.e., treatment effect)  (i.e., error) 

 

Partitioning the Sum-of-Squares 

The idea of ANOVA is built around the concept of partitioning, which means decomposing 

some quantity into other quantities; these quantities will always be sums-of-squares. Specifically, 

ANOVA relates the sum of squared deviations from the grand mean to that from group means, in 

the following way. Begin by squaring the deviation from the grand mean, M, for each score in 

the sample, and then sum these squared deviations across all test units, i, in all groups, j. Do this 

by squaring the previous equation for all individuals in all groups; this becomes 

 

( ) ( ) ( )[ ]∑
=
∑
=

−+−=∑
=
∑
=

−
n

i

t

j
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i
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..

1 1

2
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All the ∑ =∑ =
n
j

n
i 11

 means is that we are doing this for all individuals in all treatments. This 

equation can be expanded as follows (this is simply squaring an equation of the form “A = B + 

C” to obtain “A
2 

= B
2 

+ C
2 

+ 2BC”): 
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The sum of deviations (not squared deviations!) about any mean always equals zero
*
. Therefore, 

it is not difficult to see (and demonstrate algebraically) that the ).)(.(
11

2 jMijYMjMn
j

n
i

−−∑ =∑ =  

portion of this equation must also be zero. 

 

Also note that 

 

∑ −
=

=∑

=
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=
−

t

j
jj MMn
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t

j

M
j

M
1

2

. )(
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2
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(  

 

where nj is the number of subjects in group j. This is so because M.j - M is a constant (as we are 

dealing with means only) for each individual i in a particular group j. Our equation then becomes 

 

 ( )∑
=

∑
=

−
n

i

t

j
MijY

1 1

2
 = ( )∑

=
−

t

j
MMn jj

1

2
.  +  ( )∑

=
∑
=

−
n

i

t

j
MijY j

1 1

2
.  

 ↓  ↓ ↓ 

  weighted sum of   

 Total sum of squared deviations sum of squared 

 squared deviations = of group means + deviations within 

 from the grand mean from grand mean groups 

 

 Total sum of  sum of squares  sum of squares 

 squares (SST) = between groups + within groups 

   treatment effect  error sum 

   sum of squares + of squares 

   (SSTR)
 

 (SSE)
 

 

What we have done is divide (“partition”) the total sum-of-squares into two components. 

These components are the sum-of-squares within groups and the sum-of-squares between groups. 

These are each measures of variation. If the treatments have had no effect, the scores in all 

treatment groups should be similar. If this were so, the variance of the sample calculated using 

all test unit scores, without regard to treatment groups, would equal the variance calculated 

within treatment groups. That is, the between-group variance would equal the within-group 

variance. If the treatments have had an effect, however, the scores within groups would be more 

similar than scores selected from the whole sample at random. That is, the variance taken within 

                                                 
*
 This basic statistical manipulation is easily illustrated: 10 + 5 + 15 = 30, and the mean is 30/3 = 10. The sum of 

deviations is (10 – 10) + (5 – 10) + (15 – 10) = 0 + (–5) + 5 = 0. 
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groups would be smaller than the variance between groups, and we could compare the variance 

between groups with the variance within groups as a way of measuring for the presence of an 

effect. This is precisely what the statistical procedure does, and the reader should verify this 

when reviewing the partitioning equations presented earlier. 

But how do we get variance from the sum-of-squares terms we have in the current version of 

our equation? Because variance equals SS/df, all we need to do is divide each component of the 

equation by its appropriate df, and we will have the necessary variance terms. To obtain the 

required degrees-of-freedom we apply the standard rule, as follows. For the sample as a whole, 

we “used up” one degree of freedom to calculate the grand mean; therefore, the relevant number 

of degrees of freedom for the SST is the total number of test units minus one. For the SSTR, the 

number of degrees of freedom is always one less than the number of treatments, because once we 

have determined t – 1 group means and the grand mean, the last group mean can take on only 

one value. The degrees-of-freedom for the error term equals the number of test units minus the 

number of treatment groups, because we only use the t within-group means to calculate the error 

sum-of-squares. In summary: 

 

  General formula Our example 

df for SST = tn – 1 (3 × 4) – 1 = 11 

df for SSTR = t – 1 3 – 1 = 2 

df for SSE = tn – t (3 × 4) – 3 = 9 

 
Note: (df for SSTR) + (df for SSE) = (df for SST). 

 

Knowledge of the SSTR and SSE, plus their relevant degrees-of-freedom, allows us to calculate 

an estimate of the associated treatment and error variances. These estimates of population 

variances are always called mean squares (MS) in experimental situations, in recognition of the 

fact that they are estimates of population variances. 

One more piece of information is needed before we can determine the significance of any 

effect. Because our test involves taking the ratio of MSTR to MSE, we need to know the sampling 

distribution of this ratio under the null hypothesis (which always says “There is no effect”). It 

can be shown that this ratio is distributed as the F statistic with t – 1 df for the numerator and tn – 

t df for the denominator, in accordance with the df listed in the previous table. (The critical 

values of the F distribution are given in Table A.4 in the Appendix at the end of the book, also 

available in Excel format at ModernMarketingResearch.com.) If the treatments have had no 

effect, the scores in all treatments should be similar, and so the treatment and error mean squares 

should be almost identical. The calculated F would then equal 1, or nearly so. The larger the 

treatment effect, the larger the ratio MSTR to MSE will be, and the calculated F value will then be 

greater. F distribution values obtained via printed tables or computer correspond to various Type 

I error (α) levels given the null hypothesis of “no effect.” What we do is compare the calculated 

F with the tabled value for F at a designated α. If the calculated F exceeds the table F, we reject 

the null hypothesis. Table 10A.2 presents the various components of the calculation of the 

experimental F value. 
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Table 10A.2 ANOVA Table for Completely Randomized Design 

 

Source of variation Sum of squares 

(SS) 

Degrees of 

freedom 

(df) 

Mean square 

(MS) 

F ratio 

Treatments between 

groups 

SSTR t – 1 

1t

SS
MS

TR
TR

−
=  

E

TR

MS

MS
 

Error (within groups) SSE tn – t 

ttn

SS
MS

E
E

−
=   

Total SST tn – 1   

 

A Calculated Example 

We can now apply the developed methodology to see whether there is a significant treatment 

effect for the data presented in Table 10A.1. 

 

Total Sum-of-Squares
*
 

 

( )
( ) ( )
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2
)7.1220(

1 1
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∑
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n
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j
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Treatment Sum-of-Squares 

 

( )

( ) ( )

7.98

2
7.129

2
7.12132)7.1216(4

1

2
.

=

−+⋅⋅⋅+−+−=

∑
=

−=







t

j
MMnTRSS jj

 

 

Error Sum-of-Squares 

 

( )

( ) ( )
134

2
95

2
1317

2
)1620(

1 1

2
.

=

−+⋅⋅⋅+−+−=

∑
=

∑
=

−=
n

i

t

j
MijYESS j

 

 

Note that once we have obtained SST and SSTR, we can calculate SSE by subtracting SSTR from 

SST. However, we can double-check our calculations by using the formula for SSE directly. By 

applying the appropriate df to these SS values, we can obtain the mean squares necessary to  

 

                                                 
*
 We could, of course, use the computational formula for SS that was presented in Chapters 7 and 8. 
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calculate F. Table 10A.3 presents the calculations of F for these data, which turns out to be 

 

3.3
9.14

4.49
==F  

 

with 2 (numerator) and 9 (denominator) df. Now look up the critical value of F in Table A.4 (in 

the end-of-book Appendix) or using any statistical program. If using this table, degrees-of-

freedom for the numerator are the column headings, and degrees-of-freedom for the denominator 

are the row headings. The table gives critical values at different levels of confidence (1 – α). The 

intersection of a given row and column at a given 1 – α yields the critical values at the level of 

significance. In our example, the critical F value at α = 0.1 (so that 1 – α = 0.9) for 2 and 9 df is 

3.01. Our calculated F was 3.3, so our F value would occur by chance less than 10 percent of the 

time. If 90 percent confidence is sufficient for our purposes, we can reject the null hypothesis of 

no treatment effect. 

 

Table 10A.3 ANOVA for Coupon Experiment with Completely Randomized Design 
 

Source of 

variation 

Sum-of-squares 

(SS) 

Degrees of 

freedom (df) 

Mean square (MS) F ratio 

Treatments 98.7 2 49.4 3.3 

Error 134.0 9 14.9  

Total 232.7 11   

 

Our result would not be significant if we had set α = 0.05, as the critical value of F is 4.26. 

Given α = 0.1, however, we conclude that the choice of coupon plan does make a difference in 

sales, albeit at a fairly weak confidence level. We would then examine the data to see which plan 

was best; in this case, it is obviously Plan 1. Note that all an F-test does is tell us that there has 

been a significant effect of some sort. To gain a deeper understanding, we must dig back into the 

data to see which treatment is causing the effect. ANOVA will not pinpoint this for us, just as a 

significant F-test in multiple regression will not tell us which variable (or variables) is driving 

the overall result. 

We have now established the procedure for determining the significance of an effect in a 

completely randomized design. The procedures for other designs apply exactly the same 

principles; the only difference relates to some extra computations. 

 

Randomized Block Design 

ANOVA for a randomized block design (RBD) involves only one more step than that for a CRD. 

Table 10A.4 presents the data for our CRD coupon experiment as if the experiment had been 

blocked. Note that the table is the same as Table 10A-1, except that the i’s now represent blocks 

instead of test units, and we have calculated row totals and means in addition to column totals 

and means. Let us assume that the blocks represent different store sizes. In essence, we are 

saying that we expect some variation in cola sales just due to the differences in the size of the 

test unit stores. Block 1 represents the largest stores, block 2 the next largest, and so on. We must 

also assume that treatments were randomly assigned to test units within blocks to apply the RBD. 
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Table 10A.4 Randomized Block Design with Three Treatments and Four Blocks 

 

 Treatments (j)   

Blocks (i) 

Store 

sizes 

Coupon 

plan 1 

Coupon 

plan 2 

Coupon 

plan 3 

Bloc

k 

totals 

Block means 

1 20 17 14 ∑Y1.=

51 
173/51.1.1 === MY  

2 18 14 10 ∑Y2.=

42
 

143/42.2.2 === MY  

3 15 13 7 ∑Y3.=

35
 

7.113/35.3.3 === MY  

4 11 8 5 ∑Y4.=

24 
83/24.4.4 === MY  

Treatment 

totals 
∑ =64Y.1  ∑ =52Y.2  ∑ =36Y.3    

Treatment 

means 

16

64/4

/nY

MY

1.1

.1.1

=

=

∑=

=

 

13

52/4

/nY

MY

2.2

.2.2

=

=

∑=

=

 

9

36/4

/nY

MY

3.3

.3.3

=

=

∑=

=

 

  

   Grand total 152365264Y.1 +++=∑  

   Grand mean ( )
12.7152/12

3
n

2
n

1
n/YMY ....

==

∑ ++==
 

 

Partitioning the Sum-of-Squares 

In the RBD, we define an individual observation as 

 

Yij = grand mean + treatment effect + block effect + error 

 

or, in population parameter terms, 

 

Yij = µ + τj + βi + Єij 

 

As always, we will be estimating this model using sample data, so we state the model as 
 

Yij = M + Tj + Bi + Eij 

 

where Bi is the effect of the ith block, and the other terms are defined as in the CRD. We have 

previously defined the M and Tj items in this model, but we must define the blocking effect and 

also re-define the error term. We define blocking effect in a parallel manner to the treatment  
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.iM

effect, the only difference being that the blocking effect is stated in terms of row means instead 

of column means. 

 

Bi = (Mi. – M) 

 

Here, knowledge of blocking group membership improves our ability to predict scores as an 

improvement over the grand mean. We assume that ;01 =∑ = i
n
i B  that is, the net block effect is 

zero. We can rewrite our equation for the individual score (Yij) as 

 

 Yij = M + (M.j – M) + (M.i – M) + Eij 

 ↓ ↓   ↓   ↓  ↓ 

Individual score = grand mean + treatment effect + blocking effect + error 

 

We can then solve this equation for Eij to obtain the measurement of error effect. 

 

( ) ( )

( )....

..

..

or ijijijij

ijij

ijijij

MMMYMMMY

MMMMMY

MMMMMYE

−+++−−=

+−+−−=

−−−−−=

 

 

The error terms thus represent the difference between an individual score, Yij, and the net 

difference between the grand mean and the sum of the treatment and block means. If the 

blocking effect is significant, this error will be smaller than an error defined without blocking. 

As an illustration, consider score Y21 in Table 10A.4. This score is 18, and the error without 

blocking is
 

 

Yij – M.j = 18 – 16 =2 

 

With blocking, the error is 

 

Yij + M – M.j – Mi. = 18 + 12.7 –16 –14 = 0.7 

 

A similar pattern would be evident were this analysis performed on the other scores. The main 

point is this: blocking serves to reduce the size of experimental error, on average. 

Note that we may rewrite the equation for Yij as 
 

 
Yij = M + (M.j – M) + ( – M) + (Yij – M.j – Mi. + M) 

 

If we move M to the left side of the equation, sum the resultant deviations across all blocks and 

all treatments, and square both sides, we obtain 

 

( ) ( ) ( ) ( )∑∑∑ ∑∑∑
= == ===

−−++−+−=−
n

i

t

j

ijij

n

i

n
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i
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You may recognize this result as 

 

SST = SSTR + SSB + SSE 

 

It follows from the fact that all the cross-products again become zero, because each involves a 

sum of individual deviations about a mean. Also, we may write 

 

( ) ( )∑∑∑
= ==

−−
n

i

t

j

i

n

i

i MMMMt
1 1

2

.

1

2

. ofinstead  

 

because we are again adding constant means over the t treatments. That is, multiplying by t is 

exactly the same as adding the same thing t times, and is precisely what was used in CRD. 

The relevant df for the block is n – 1, because once any (n – 1) block means are specified, the 

remaining one is automatically determined, given the grand mean value. If we subtract the 

treatment and block degrees-of-freedom from the total degrees-of-freedom, we obtain the error 

degrees-of-freedom as 

 

Error df = total df – treatment df – block df 

 = (tn – 1) – (t – 1) – (n – 1) 

 = tn + 1 – t – n 

 

In our example, the error df = (3 × 4) + 1 – 3 – 4 = 6. More generally, the same result may be 

obtained by applying the formula 

 

Error df = (t – 1) (n – 1) 

 

Table 10A.5 presents the ANOVA table for an RBD. 

 

Table 10A.5 ANOVA Table for Randomized Block Design 

 

Source of variation Sum of 

squares (SS) 

Degrees of 

freedom (df) 

Mean square (MS) F ratio 

Treatments (between 

columns) 

SSTR t – 1 

1t

SS
MS

TR
TR

−
=  

E

TR

MS

MS
 

Blocks (between 

rows) 

SSB n – 1 

1n

SS
MS

B
B

−
=  

E

B

MS

MS
 

Error SSE (t – 1) (n – 1) 

( )( )1n1t

SS
MS

E
E

−−
=  

 

Total SST tn – 1   

 

A Calculated Example 

We shall now apply the RBD ANOVA procedure to the data in Table 10A.4. 
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Total Sum-of-Squares 

( )

( ) ( ) ( )
7.232

7.1257.12177.1220
222

1 1

2

=

−+⋅⋅⋅+−+−=

−=∑∑
= =

n

i

t

j

ijT MYSS

 

 

Thus, SST is exactly the same here as with the CRD, as we would expect. 
 

Treatment Sum-of-Squares 

( )

( ) ( ) ( )[ ]
7.98

7.1297.12137.12164
222

1

2

.

=

−+−+−=

−= ∑
=

t

j

jTR MMnSS

 

 

Note that the SSTR is exactly the same as with the CRD. 

 

Block Sum-of-Squares 

( )

( ) ( ) ( ) ( )[ ]
8.129

7.1287.12117.12147.12173
2222

1

2

.

=

−+−+−+−=

−= ∑
=

n

i

iB MMtSS

 

 

Error Sum-of-Squares 

SSE = SST – SSTR – SSB 

 = 232.7 –98.7 –129.8 

 = 4.2 

 

Table 10A.6 presents the calculated F values for the treatment and block effects. 

 

Table 10A.6 ANOVA Table for Coupon Experiment with Blocking for Store Size 

 

Source of variation Sum-of-squares 

(SS) 

Degrees-of-

freedom (df) 

Mean square 

(MS) 

F ratio 

Treatment  98.7  2  49.4  70.6 

Block  129.8  3  43.3  61.9 

Error  4.2  6  0.7  

Total  232.7  11   

 

For the treatment effect, the critical value of F for α = 0.1 at 2 and 6 df is 3.46. For the 

blocking factor, the critical value of F for α = 0.1 at 3 and 6 df is 3.29. Both the treatment and the 

block effects are statistically significant, but in this case even at a = 0.01 the treatment effect is 

now significant (critical F = 10.9). The important point is this: by blocking, we have obtained a 

smaller measure of error, and thus achieved greater statistical significance for the treatment 
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effect. Note that this does not mean the treatment effect has itself gotten larger; rather, we are 

just more certain that it is not merely a stroke of random (misleading) luck. Finally, note that SSB 

comes out of the SSE for the CRD; that is, 

 

SSE(with blocking) = SSE(without blocking) – SSB 

 

In our example, 

 

SSE (with blocking) = 134.0 – 129.8 = 4.2 

 

Latin Square Design 

If we wanted to block out and measure the effects of two extraneous variables, we could use the 

Latin square (LS) design. In an LS design, the number of categories of each blocking variable 

must equal the number of treatment categories, and each treatment must appear once—and only 

once—in each row and column of the design. Table 10A.7 shows selected LS designs of 

different sizes. The letters A, B, C, and so on, represent treatments. To generate the treatment 

assignment pattern for a particular study, pick the appropriately sized layout from Table 10A.7 

and randomize the column order. For example, a 3 × 3 LS might yield the following treatment 

pattern when the columns are randomized with the (randomly-chosen) numbers 3, 1, 2: 

 

C A B 

A B C 

B C A 

 

Now randomize the row assignments within columns, subject to the constraint that each 

treatment may appear only once in each row. Among the results of this process could be the 

following LS: 

 

B C A 

C A B 

A B C 

 

Table 10A.7 Illustrative Latin Square Layout 

 

3 × 3 4 × 4 

A B C A B C D 

B C A B C D A 

C A B C D A B 

 D A B C 

  
5 × 5 6 × 6 

A B C D E A B C D E F 

B C D E A B C D E F A 

C D E A B C D E F A B 

D E A B C D E F A B C 

E A B C D E F A B C D 

 F A B C D E 
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We can now illustrate the LS design with a numerical example. Suppose we ran our coupon 

experiment again to see whether the results could be replicated in other areas. The only 

difference is that this time we want to block out and measure the effect on sales of both store size 

and day of the week. In doing so, we must anticipate substantial variation in cola sales simply 

because of these factors. For one reason or another, we have been unable to measure sales on the 

same day of the week for each test unit. Because there are three treatments (coupon plans), we 

must have three categories of store size and three categories of days of the week to use the LS 

design. Table 10A.8 presents the data generated from this LS design experiment. The pattern of 

treatment assignments is the one generated previously by randomization with these three plans, 

as follows: 

 

A Coupon plan 1 

B Coupon plan 2 

C Coupon plan 3 

 

The treatment designation is noted next to the cola sales on Table 10A.8. 

 

Table 10A.8 Latin Square Design with Three Treatments 

 

 Columns(j)   

 1 2 3   

Rows (i) Mon.–

Tues. 

Wed.–

Thurs. 

Fri.–Sun. Row 

totals 

Row means 

1 Large stores 25 (B) 15 (C) 50 (A) ∑ = 90..1Y  M1.. = 90/3 = 30.0 

2 Medium 

stores 

5 (C) 25 (A) 25 (B) ∑ = 55Y2..  M2.. = 55/3 = 18.3 

3 Small stores 15 (A) 15 (B) 14 (C) ∑ = 44Y3..  M3.. = 44/3 = 14.7 

Column totals ∑ = 45Y.1.  ∑ = 55Y.2.  ∑ = 89Y.3.  ∑ =⋅⋅⋅ 189Y   

Column means M.1. = 45/3 M.2. = 55/3 M.3. = 89/3  M = 189/9 

 = 15.0 = 18.3 = 29.7  = 21.0 
 

 Treatments (k) A* B C 

 Treatment totals ∑Y..1 = 90 ∑Y..2 = 65 ∑Y..3 = 34 

 Treatment 

means 

M..1 = 90/3 M..2 = 65/3 M.1. = 34/3 

  = 30.0 = 21.7 = 11.3 
*For example ∑Y–1 =

 
15 + 25 + 50 = 90; i.e., we add the scores at all the places where A appears. 

 

Partitioning the Sum-of-Squares 

In the LS design, individual observations require three separate subscripts, and are defined as 

 

Yijk = grand mean + row effect (i) + column effect (j) + treatment effect (k) + error 

 

where Yijk = the measured result when the kth treatment is applied to the ith row and the jth 

column. Although we will never know population parameter values with certainty, the model can 
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 be expressed (using Greek symbols) in those terms as well as 

 

Yijk = µ + αi + βj + τk + Єijk 

 

Because, as always, we will be estimating this model with sample data, we state the model (using 

Roman symbols) as 
 

 
Yijk = M + Ri + Cj + Tk + Eijk 

 where Ri =
 
the effect of the ith row block (i.e., store size) 

  Cj =
 
the effect of the jth column block (i.e., day of the week) 

  
Tk =

 
the effect of the kth treatment (i.e., coupon plan) 

  
Eijk =

 
the experimental error of the ijk observation 

  i, j, k = 1,2, …, t where t = the number of treatments 

 

The three effects of interest are: 

 

1. Row effect (i.e., effect of store size) = (Mi.. – M), the difference between the row mean and 

the grand mean, adding across all j’s and k’s. 

2. Column effect (i.e., effect of the day of the week) = (M.j. – M), the difference between the 

column mean and the grand mean, adding across all i’s and k’s. 

3. Treatment effect (i.e., effect of coupon plan) = (M..k – M), the difference between the 

treatment mean and the grand mean, adding across all i’s and j’s. 

 

We assume that the net effect of each effect is zero (this is taken care of automatically by the 

statistical program). That is, 

 

∑∑∑
===

===
t

k

k

t

j

i

t

i

i TCR

111

0and00  

 

We can then rewrite the equation for our model as 

 

( ) ( ) ( )

error
effect

treatment

effect

column

effect

row

mean

grand

score

Individual

......

++++=

↓↓↓↓↓↓

+−+−+−+= ijkkji EMMMMMMM
ijk

Y

 

 

We can solve this equation for Eijk to obtain the measurement of error: 

 

Eijk = Yijk – M – (Mi.. – M) – (M.j. – M) – (M..k – M) 

 = Yijk + 2M – Mi..– M.j. – M..k 

 

This is a complicated procedure, and the student may wonder whether and why it’s 

necessary. The key point is this: if both blocking factors are correlated with the dependent 

variable, this error measure will be smaller than that obtained with a CRD or RBD that uses only 
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one blocking factor. Reducing error allows for greater ability to detect the “signal” of the 

treatment effect, as represented by its significance level. 

 

If we moved M to the left side, added all these deviations across all rows and columns, and 

squared the equation, we would obtain the required SS. The model would then be 

 

SST = SSR + SSC + SSTR + SSE 

 

as yet again all the cross products turn out to be zero. Table 10A.9 shows the ANOVA layout for 

an LS design. SSR, SSC, and SSTR each have t – 1 df. With (t)(t) – 1 or t
2 

– 1 df in the entire 

sample, this leaves (t – 1)(t – 2) df for the error term. 

 

Table 10A.9 ANOVA Table for Latin Square Design 

 

Source of 

variation 

Sum of squares 

(SS) 

Degrees of 

freedom (df) 

Mean square (MS) F ratio 

Between rows SSR t – 1 

1−
=

t

SS
MS R

R  
E

R

MS

MS
 

Between 

columns 

SSC t – 1 

1−
=

t

SS
MS C

C  
E

C

MS

MS
 

Between 

treatments 

SSTR t – 1 

1−
=

t

SS
MS TR

TR  
E

TR

MS

MS
 

Error SSE (t – 1) (t – 2) 

( )( )21 −−
=

tt

SSE
MS E  

 

Total SST t
2
 – 1   

 

A Calculated Example 

We shall now apply the LS design ANOVA to the data in Table 10A.8. 

 

Total Sum-of-Squares 

 

( )

( ) ( ) ( )
1302

211421152125
222

1 1

2

=

−+⋅⋅⋅+−+−=

−=∑∑
= =

t

i

t

j

ijkT MYSS

 

 

Row Sum-of-Squares 

 

( )

( ) ( ) ( )[ ]
9.383

217.14213.1821303
222

1

2
..

=

−+⋅⋅⋅+−+−=

−= ∑
=

t

i

iR MMtSS
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Column Sum-of-Squares 

 

( )

( ) ( ) ( )[ ]
9.356

217.29213.1821153
222

1

2
..

=

−+⋅⋅⋅+−+−=

−= ∑
=

t

j

jC MMtSS

 

 

Treatment Sum-of-Squares 

( )

( ) ( ) ( )[ ]
7.526

213.11217.2121303
222

1

2
..

=

−+−+−=

−= ∑
=

t

i

kTR MMtSS

 

 

Error Sum-of-Squares 

SSE = SST – SSR – SSC – SSTR 

 = 1302 – 383.9 – 356.9 – 526.7 

 = 34.5 

 

Table 10A.10 presents the calculated F values for the treatment and the two blocks. For the 

treatment and blocking factors, the critical value of F for α = 0.1 at 2 and 2 df is 9.0. Therefore, 

both blocking factors and the treatment are significant. Note that none of these effects would 

have been significant at α = 0.05, as the critical F is 19.0. If we had used a CRD or blocked with 

just one of our two blocking factors in an RBD, the treatment effect would not have been 

significant, even at a = 0.1. This is so because the SSR and SSC would be added back into the LS 

design SSE to give the SSE for the CRD. As for the RBD, either SSR or SSC would be added back 

to the LS design SSE to give the SSE for the RBD. In either instance, the SSR or SSC is large 

enough to render the calculated F ratio nonsignificant at α = 0.1. Here, we needed two blocking 

factors to find in favor of a significant treatment effect. The value of blocking in marketing 

experiments should be clear. Again, note that we must look closely at the data to see that 

treatment A is the best coupon plan; the ANOVA results alone will not make this determination 

for us. 

 

Table 10A.10 ANOVA Table for Coupon Experiment with 3 x 3 Latin Square Design 

 

Source of 

variation 

Sum-of-

squares (SS) 

Degrees–of-

freedom (df) 

Mean square 

(MS) 

F ratio 

Row effect 

(store size) 

383.9 2 192.0 11.1 

Column effect 

(days of week) 

356.9 2 178.5 10.3 

Treatment 526.7 2 263.4 15.2 

Error 34.5 2 17.3  

Total 1302.0 8   
Note: nij = 2 for all i’s and j’s. 
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Factorial Design 

In a factorial design (FD), we measure the effects of two or more independent variables and their 

interactions. Suppose that in our coupon experiment we are interested not only in the effect of 

coupon plans, but also in the effect of the media plans that support the coupon plans. Table 

10A.11 presents data stemming from such an experiment. You should recognize these as the data 

we used in Table 10A.1 for our CRD. All we have done here is regroup the data and present 

them as if they came from an FD. 

 

Table 10A.11 A 2× 3 Factorial Design with Media Plans and Coupon Plans as Independent 

Variables 

 

  Coupon plans (j )   
  

B1 B2 B3 Media 

totals 

Media means 

Media 

plans (i)  
A1 20 17 14 ∑ = 93Y ..1  M1.. =

 
93/6 = 15.5 

  18 14 10   

 A2 15 13 7 ∑ = 59Y2..  M2.. =
 
59/6 = 9.8 

  11 8 5   

Coupon 

totals 

 ∑ = 64Y.1.  ∑ = 52Y.2.  ∑ = 36Y.3.  ∑ = 152...Y   

Coupon 

means 

 M.1. = 64/4 

= 16 

M.2. = 52/4 = 

13 

M.3. =
 
36/4 

= 9 

 M = 12.7 

Treatment 

cell (ij) 

A1B1 A1B2 A1B3 A2B1 A2B2 A2B3 

Cell total ∑ = 38Y11.  ∑ = 31Y12.  ∑ = 24Y13.  ∑ = 26Y21.  ∑ = 21Y22.  ∑ = 12Y23.  

Cell mean M11. = 38/2 M12. = 31/2 M13. = 24/2 M21. = 26/2 M22. = 21/2 M23. = 12/2 

 = 19 =15.5 =12 = 13 = 10.5 = 6 

Note: nij = 2 for all i’s and j’s. 

 

Partitioning the Sum-of-Squares 

In the FD with two independent variables, we define an individual observation as 

 

Yijk =
 
grand mean + effect of treatment A + effect of treatment B + interaction effect AB + 

error  

 

where Yijk = the kth observation on the ith level of A and the jth level of B. 

 

For example, here 

 

Y111 =
 
20 and Y231 =

 
7 

 

In population parameter terms, the model is 

 

Yijk = µ + αi + βj + (αβ)ij + Єijk 
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Again, as always, we will be estimating this model with sample data, and we write 

 

Yijk = M + Ai + Bj + (AB)ij + E ijk 

 

where  Ai =
 

the effect of the ith level of A (media plan), i = 1; . ..; a, 

  where a is the number of levels in A 
 

Bj  = the effect of the ith level of B (coupon plan), j = 1; ... ; b, 

  where b is the number of levels in B 

 (AB)ij = the effect of the interaction of the ith level of A and the jth level of B 

 Eijk =    the error of the kth observation in the ith level of A and the jth level of 

B, that is, the ij cell 

 

In our example nij = 2 for all ij cells. The four effects of interest are: 

 

1. Ai effect (i.e., media plan) = (Mi.. – M), the difference between the row mean and the grand 

mean. 

2. Bj effect (i.e., coupon plan) = (M.j. – M), the difference between the column mean and the 

grand mean. 

3. Error = (Yijk – Mij.), the difference between an individual observation and the cell mean to 

which it belongs. That is, the only differences within a cell should be due to randomness 

(error). 

4. Interaction effect (AB)ij = any remaining variation in the data after main effects and error 

have been removed. 

 

We can now rewrite the equation for our model as 

 

Yijk = M + (Mi.. – M)+ (M.j. – M) + (AB)ij + (Yijk – Mij.) 

 

and solve for the interaction term, (AB)ij:
 

 

AB = Yijk – M – (Mi.. – M) – (M.j. – M) – (Yijk – Mij.) 

 = Yijk – M – Mi.. + M – M.j. + M – Yijk + Mij. 

 = M + Mij. – Mij. – M.j. 

 

In our example, 

 

(AB)11 = 12.7 + 19 – 15.5 – 16 = 0.2 

 

and 

 

(AB)23 = 12.7 + 6 – 9.8 – 9 = –0.1 
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Results like this suggest that there is little interaction in the data, although we have not yet 

performed any statistical tests to confirm this informal observation. We may now rewrite our 

equation as 

 

Yijk = M + (Mi.. – M) + (M.j. – M) + (M + Mij. – Mi.. – M.j.) + (Yijk – Mij.) 

 

If we moved M to the left side, added all the deviations across all scores k in all ij cells, and 

squared the equation, we would obtain the required SS. The model would then be 

 

SST = SSTRA + SSTRB + SSINT(AB) + SSE 

 

where SSTRA =
 
sum-of-squares of treatment A 

 
SSTRB = sum-of-squares of treatment B 

 
SSINT (AB) = sum-of-squares for interaction of A and B 

 

This result occurs because all the cross-products are, as in our other ANOVA examples, zero. 

Table 10A.12 shows the ANOVA layout for a two-factor FD. Each factor has one degree-of-

freedom less than its number of categories, and the interaction term has (a – 1) (b – 1) df. With 

abn – 1 df in the whole sample, this leaves ab(n – 1) for the error term. 

 

Table 10A.12 ANOVA Table for a Two-Factor Factorial Design 

 

Source of variation Sum of 

squares (SS) 

Degrees of 

freedom (df) 

Mean square (MS) F ratio 

Treatment A SSTRA a – 1 

1−
=

a

SS
MS TRA

TRA  
E

TRA

MS

MS
 

Treatment B SSTRB b – 1 

1−
=

b

SS
MS TRB

TRB  
E

TRB

MS

MS
 

Interaction AB SSINT(AB) (a – 1)(b – 1) 

1)1)( −−
=

(ba

SS
MS

INT(AB)

INT(AB)  
E

INT(AB)

MS

MS
 

Error SSE ab(n – 1) 

1)( −
=

nab

SS
MS E

E  
 

Total SST abn – 1   

 

A Calculated Example 

Now let us apply the FD to the data in Table 10A.11. 

 

Total Sum-of-Squares 

( )

( ) ( ) ( )
7.232

7.1257.12177.1220
222

1 1 1

2

=

−+⋅⋅⋅+−+−=

−=∑∑∑
= = =

a

i

b

j

n

k

jkT MYiSS
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Again note that the SST is the same as in the CRD and RBD, as it must be. 

 

Treatment A Sum-of-Squares 

 

( )

( )( ) ( ) ( )[ ]
5.97

7.128.97.125.1533
22

1

2
..

=

−+−=

−= ∑
=

a

i

iTRA MMbnSS

 

 

Treatment B Sum-of-Squares 

 

( )

( )( ) ( ) ( ) ( )[ ]
7.98

7.1297.12137.121622
222

1

2
..

=

−+−+−=

−= ∑
=

b

i

jTRB MManSS

 

 

Note that this is the SSTR we found for the CRD. In other words, the main effect of the coupon 

plan is identical under both analysis procedures, as we would expect. 

 

Interaction Sum-of-Squares 

 

( )

( )[ ]
( ) ( )
( ) ( )
( )
7.0

98.968.12

138.95.107.12168.9137.12

95.15127.12135.155.157.12

165.15197.122

2

22

22

2

1 1

2
.....)(

=

−−++

−−++−−++

−−++−+++

−−+=

−−+= ∑∑
= =

a

i

b

j

jiijABINT MMMMnSS

 

 

Error Sum-of-Squares 

 

( )

8.35

7.07.985.977.232

)(

1 1 1

2

.)(

=

−−−=

−−−=

−=∑∑∑
= = =

ABINTTRBTRAT

a

i

b

j

n

k

ijijkABINT

SSSSSSSS

MYSS

 

 

Table 10A.13 presents the calculated F values for the two treatments and the interaction. For 

treatment A, the critical F for α = 0.05 at 1 and 6 df is 5.99. Therefore, the media effect is 

significant. For treatment B, for α = 0.05 at 2 and 6 df the critical F is 5.14. Thus, the coupon 

effect is also significant. Because the calculated interaction F is less than 1, we know it is not 

significant without even consulting the F table. We can now go back to the data to verify that it 

is media plan A, and coupon plan B, that yield the best results. 
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Table 10A.13 ANOVA Table for Media and Coupon Experiment Using a Two-Factor  

2 × 3 Factorial Design 

 

Source of 

variation 

Sum-of-

squares (SS) 

Degrees-of-

freedom (df) 

Mean square 

(MS) 

F ratio 

Treatment A 

(media) 

97.5 1 97.5 16.3 

Treatment B 

(coupon) 

98.7 2 49.4 8.2 

Interaction 

(AB) 

0.7 2 0.4 0.1 

Error 35.8 6 6.0  

Total 232.7 11   

 

This two-factor ANOVA is usually referred to as “two-way” ANOVA. The factorial 

procedure can be extended to any number (N) of independent variables, and is often called “N-

way” ANOVA. The calculations for an ANOVA greater than two-way are too complex to 

present here, although they are analogous to those carried out for the two-way ANOVA design. 

The analysis of such an experiment is, however, easily handled by statistical programs. In any 

event, the principles underlying all complex ANOVA designs are the same as those developed 

here. 

 

Summary of Appendix 

1. ANOVA involves the calculation and comparison of different variance estimates, SS/df. 

2. The fixed-effects model allows inferences only about the different treatments actually used. 

It is, among the various ANOVA designs, the one most directly relevant in marketing. 

3. In ANOVA, an effect is defined as a difference in treatment mean from the grand mean. 

4. Experimental error is the difference between an individual score and the treatment group 

mean to which the score belongs. 

5. ANOVA is carried out by partitioning the SST into SSTR and SSE and dividing each of these 

by their relevant degrees-of-freedom to yield an estimate of treatment and error variances, 

called the mean squares (MSTR and MSE). That is, the one-way ANOVA model is partitioned 

as follows: SST = SSTR + SSE. 

6. The relevant statistic for a significance test is the F statistic, where F = MSTR/MSE. 

7. The CRD (completely randomized design) measures the effect of one independent variable 

without statistical control of extraneous variation. Its basic composition is SST = SSTR + SSE. 

8. The RBD (randomized block design) measures the effect of one independent variable with 

statistical control of one extraneous factor. Its basic composition is SST = SSTR + SSB + SSE. 

9. The LS (Latin square) design measures the effect of one independent variable with statistical 

control of two extraneous factors. Its basic composition is SST = SSR + SSC + SSTR + SSE. 

10. The FD (factorial design) measures the main and interaction effects of two or more 

independent variables. Its basic composition for a two-way ANOVA is SST = SSTRA + SSTRB + 

SSINT(AB) + SSE. 


