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Abstract

The finite normal mixture model has emerged as a dominant methodology for assess-
ing heterogeneity in choice models. Although it extends the classic mixture models by
allowing within component variablility, it requires that a relatively large number of mod-
els be separately estimated and fairly difficult test procedures to determine the “correct”
number of mixing components. We present a very general formulation, based on Dirichlet
Process Piror, which yields the number and composition of mixing components a posteri-
ori, obviating the need for post hoc test procedures and is capable of approximating any
target heterogeneity distribution. Adapting Stephens’ (2000) algorithm allows the deter-
mination of ‘substantively’ different clusters, as well as a way to sidestep problems arising
from label-switching and overlapping mixtures. These methods are illustrated both on
simulated data and A.C. Nielsen scanner panel data for liquid detergents. We find that
the large number of mixing components required to adequately represent the heterogeneity
distribution can be reduced in practice to a far smaller number of segments of managerial
relevance.
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1 Introduction

One of the basic assumptions of marketing theory is that consumers may differ in their choice
behavior as well as in their response to marketing-mix activities. Many studies in the choice modeling
literature have demonstrated that adequate control of heterogeneity is a pre-requisite to obtain
consistent estimates of the effect of independent variables on choice decisions (cf., Chamberlain
1980; Chintagunta et al. 1991; Gönül and Srinivasan 1993).
In the marketing literature, various approaches have been proposed to incorporate heterogeneity;

Chintagunta et al. (1991), Wedel et al. (1999) and Allenby and Rossi (1999) provide reviews
of previous work in the area. A number of studies have shown that household-specific regression
coefficient vectors can be estimated through a random-effect specification (Rossi and Allenby 1993).
These studies typically introduced a unimodal distribution for the random-effect term, usually a
normal distribution. In many situations, however, the heterogeneity in the population might be
multi-modal, so a normal distribution would not be an appropriate choice.
Early approaches to capture multi-modality introduced discrete point masses (e.g., Chintagunta

et al. 1991; Kamakura and Russell 1989), the well-known latent class approach. Whereas mod-
els without heterogeneity presume that all households share a single coefficient vector, latent class
models allow for separate subgroups or classes, each with its own set of coefficients. Accordingly,
this approach fails to capture possible variation in regression coefficient vectors within a latent class.
Households are not assigned deterministically to classes, but are considered probabilistic mixtures
across them. Although ‘real’ heterogeneity distributions are surely not discrete, a major simplifying
assumption of the latent class methodology is that one can make use of a discrete approximation.
Several recent studies (Wedel and Kamakura 2001; Andrews, Ainslie and Currim 2002) have ques-
tioned whether there are any practical differences among various heterogeneity specifications, and
presented empirical evidence suggesting that such differences are at best minor.
Allenby et al. (1998) introduced a finite normal mixture model which captures the possibility

of several mixing components and variability within each (note that the latent class approach is a
special case of a discrete mixture model such that parameters associated with mixing components
are point masses). Although the finite normal mixture model is quite successful in recovering hetero-
geneity distributions of arbitrary complexity, it requires tedious and often difficult test procedures
to determine the ‘correct’ number of mixing components (see Andrews and Currim (2001) for an
in-depth discussion of this issue).
In the marketing literature, there has thus far been no systematic study concerning two major

issues in mixture modeling: (1) label switching and (2) overlapping mixtures. We view these as
different aspects of a single, overarching issue: determining the appropriate number and composition
of ‘managerially relevant’ segments. The label switching problem arises because the latent indicators
for mixing components are not identifiable with the likelihoods. That is, any re-labeling of mixing
components yields an identical likelihood value and, when the number of such components is large,
the combinatorial possibilities can be daunting. A standard response to the label switching problem
is imposing an identification constraint on the latent indicators so that larger indicator values are
assigned to components with larger mixing proportions. Several studies, however, have demonstrated
that this standard identification restriction frequently fails to correct the label switching problem
(e.g., Celeux et al. 2000). In addition, the overlapping mixture problem arises because there is no
guarantee that parameters associated with mixing components are meaningfully separated from one
another (e.g., Roeder 1994). Failing to control these two important problems, in a marketing context,
entails risks of making misleading inferences regarding (1) the regression coefficients associated with
mixing components, (2) the mixing proportions, and (3) the households belonging to each mixing
component. Stephens (2000) provides a general framework for addressing both issues, one which
can be adapted to the needs of discrete choice models as they are typically applied in marketing and
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economics.
In this paper, we present a nonparametric Bayesian approach to model heterogeneity with the

Dirichlet process prior (cf., Antoniak 1974). This approach offers one main advantage over existing
approaches — bypassing the need to determine the correct number of mixing components post hoc —
while retaining the ability to recover a variety of heterogeneity distributions, in a unified modeling
framework. In addition, we discuss how to overcome both the label-switching and overlapping
mixture problems, thus estimate the cluster membership for each household, valuable input for
market segmentation and targeting.
The paper is organized as follows. First, we discuss the Dirichlet Process prior, its role in

heterogeneity modeling and some general issues concerning finite mixture models. Next, we consider
the logit choice model in particular, devise an MCMC sampling scheme for assessing its parameters
and discuss how label switching problems tend to arise. We then chart the model’s performance on
four simulated data sets, varying the degree of skew in the parameter heterogeneity distribution as
well as the number of households; we also show how one might uncover the ‘true’ number of clusters,
as opposed to a much larger number indicated by the posterior mode. Finally, we apply the model
to A. C. Nielsen liquid detergent scanner data, and discuss its performance and implications.

2 A Heterogeneous Choice Model

In this section we describe a heterogeneous choice model where the heterogeneity across households
is of rather general form. To this end, we use a Dirichlet Process prior (Antoniak 1974; Escobar
and West 1998; Ferguson 1973, 1983; Neal 1998) for the regression parameters of the marketing-mix
variables. Throughout, we use three generic subscripts: h denotes a household (h = 1, ...,H), j
denotes a brand (j = 1, ..., J), and th denotes purchase occasion (th = 1, ..., Th). Let

• yhth = j denote the event that household h chooses brand j on purchase occasion th,

• yh = (yh1, ...yhTh) denote the choices for household h at purchase occasions 1, ..., Th, and
y = (y1, ..., yH) denote all the choice data,

• xhjth denote the k-dimensional vector of predictor variables for brand j and household h on
purchase occasion th,

• xhth = (xh1th , . . . , xhJth)
0
denote the (J × k) matrix of predictor variable values for household

h on purchase occasion th,

• βh denote the k-dimensional vector of regression parameters for household h, and

• p(yhth = j|βh) denote the probability that household h chooses brand j on purchase occasion
th, where the notation ignores the dependence on the known predictor variables.

There is a variety of models for linking the choice probability to the regression parameters. One
such model is the multinomial logit:

p(yhth = j|βh) =
exp(x

0
hjth

βh)PJ
i=1 exp(x

0
hith

βh)
. (1)

This model arises from a particular latent utility structure: Letting uhth = (uh1th , ..., uhJth)
0 denote

the J-dimensional vector of utilities for the J brands with

uhth = xhthβh + εhth , (2)
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the logit model assumes that the errors εhth have a Type I extreme value distribution. Assuming
that households maximize their expected utilities, the choice probabilities in (1) result.
Other choice models assume different distributions for the error vector εhth . For instance, the

probit model arises when the distribution of εhth is multivariate normal, that is, εhth ∼ N(0,Σ).
Letting argmax{uh1th , ..., uhJth} denote the brand with the highest utility, the choice probabilities
for the probit model are

p(yhth = j|βh,Σ) = Pr {argmax{uh1th , ..., uhJth} = j|βh,Σ} . (3)

There is no closed-form solution for the choice probabilities in the probit model, unlike the situa-
tion in the logit model, (1), and we must use multi-dimensional integration to compute the choice
probabilities in the probit model. With more than a few choice alternatives, this problem is com-
putationally difficult, and a great deal of effort has gone into fashioning efficient approximation
methods (Hajivassiliou, McFadden and Ruud 1996; McCulloch, Polson and Rossi 2000).
In general, we denote that the choice probabilities depend on the vector of regression parameters

βh and an additional parameter θ, where θ = ∅ in the case of the logit model, and θ = Σ in the case
of the probit model. Thus, the likelihood for household h’s choices at purchase occasions 1, ..., Th is

p(yh|βh, θ) =
ThY
th=1

JY
i=1

p(yhth = i|βh, θ)qhith , (4)

where qhith = 1, if, in the data, yhth = j, and qhith = 0, otherwise, and where yh is the Th-dimensional
vector of brand choices for household h.

2.1 Heterogeneity in the Regression Parameters

Our general model in (2) assumes that the regression parameter βh varies across households. We
now specify how we model the distribution of βh throughout the household population. We make
a very general choice, the Dirichlet Process model, introduced by Ferguson (1973) and Antoniak
(1974), a Bayesian nonparametric model. Our hierarchical structure for βh thus assumes that each
βh is independently drawn from a distribution G, where we do not assume G to have a parametric
form, but to have a Dirichlet Process prior, DP (α,G0), with positive concentration parameter α
and baseline distribution G0,

βh ∼ G, (5)

G ∼ DP (α,G0).

Escobar and West (1998) described such a Bayesian nonparametric hierarchical model in detail, and
Neal (1998) discussed various algorithms for its estimation, one of which we adapt for the purposes
of modeling brand choice. Let X denote a space of βh and A be a σ-field of subsets of X . Then, a
probability measure G, the heterogeneity distribution of βh, is a random variable from a Dirichlet
Process on (X ,A) with parameters α and G0. We assume the parameters for the Dirichlet Process,
α and G0, are not fixed but random variables. In this case, G becomes a mixture of the baseline
distribution with Dirichlet Process mixing, as Antoniak (1974) demonstrated.
In the Dirichlet Process model, the choice of the distribution for G0 is not critical. As Ferguson

(1973) showed, whatever the true distribution function, it’s Bayes estimate based on the Dirichlet
Process prior model converges to it. Note that the number of mixing components is an unknown
parameter determined by the data, and a sufficiently large number of mixing components ensures
that the Dirichlet Process prior model approximates the target distribution well.
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It is important to realize that the Dirichlet process prior for G is a probability distribution on
the space of all possible heterogeneity distributions; the baseline prior distribution G0 can be viewed
as the “location” parameter of the Dirichlet Process prior. The parameter α acts as a (positive
scalar) precision parameter: when α is very large, the Dirichlet Process prior G for βh is very close
to the baseline distribution G0; and when α is small, G is not necessarily close to G0. We note that
asymptotic properties, such as tail thickness, are related to the specification for G0, which we will
later take to be normal. In typical applications, because the prior is overwhelmed by the likelihood,
choice of α has little effect on substantive results.
Using the Dirichlet Process prior for βh and the likelihood for the choice data, and conditioning

on α, G0, and θ, one can obtain the posterior distribution for βh. After integrating out G, the
resulting conditional posterior distribution for βh is:

p(βh|β−h, α,G0, θ, y) ∼ q0hGb(βh|θ, y) +
HX

i=1,i6=h
qihδβi(βh),

where β−h = (β1, ..., βh−1, βh+1, ..., βH), that is, the set of H values of βi, (i = 1, ...,H), but
excluding βh, and where δβi(βh) = 1 if βh = βi, and δβi(βh) = 0 otherwise (Escobar and West
1998). Furthermore,

• Gb(βh|θ, y) ∝ p(yh|βh, θ)G0(βh), the baseline posterior distribution for βh,
• q0h ∝ α

R
p(yh|βh, θ)G0(βh)dβh is α times the marginal distribution of yh under the baseline

prior,

• qih ∝ p(yh|βi, θ) is the likelihood for yh conditional on βh = βi, and

• 1 = q0h +
PH

i=1 qih.

As Antoniak (1974) showed, the distinct βh’s typically reduce to fewer than H due to the clus-
tering of the βh inherent in the Dirichlet Process. Using the superscript * to denote distinct values,
the conditional posterior distribution for βh is

p(βh|β−h, α,G0, θ, y) ∼ q0hGb(βh|θ, y) +
LhX
i=1

n−h,iq∗ihδβ∗i (βh), (6)

where Lh denotes the number of distinct values of the regression parameter βi for the H − 1 house-
holds other than household h, n−h,i denotes the number of households other than h for whom the
regression parameter equals β∗i , and q∗ih ∝ p(yh|β∗i , θ), the likelihood for yh conditional on βh = β∗i .
If we denote the number of distinct values of the regression parameters among the H households

by L, it is clear that Lh equals either L − 1 or L, depending on whether βh is in a cluster of its
own or not. Conditional on α, the expected number of mixing components (Escobar 1994) under
the Dirichlet Process prior for βh is

E(L|α) =
HX
h=1

α

α+ h− 1 . (7)

2.2 Completion of the Model Specification

We assume that the baseline distribution for the Dirichlet Process prior for βh is a k-variate normal
distribution with unknown mean vector µ0 and unknown covariance matrix Σ0,

[G0|µ0,Σ0] = N(µ0,Σ0), (8)

4 Review of Marketing Science Vol. 2 [2004], Article 1

http://www.bepress.com/romsjournal/vol2/iss1/art1



and that the prior distribution for α is a gamma distribution with a shape parameter aα and a scale
parameter bα,

α ∼ Ga(aα, bα), (9)

that is, p(α) ∝ αaα−1e−bαα. Escobar (1994) presented a useful discussion on the choice of prior for
α.
Furthermore, the prior distributions for µ0 and Σ0 are assumed to be

p(µ0) ∼ N(m0, V0), and (10)

p(Σ0) ∼ IWk(vΣ0 , SΣ0),

where IWk(v, S) denotes a k-dimensional inverted Wishart distribution with parameters v and S,

where v > 0 and S is non-singular, that is, Σ0 ∼ IW (v, S) implies that p(Σ0) ∝ |Σ0|−(
1
2v+k) exp(−12tr

Σ−10 S). Note that E(Σ) = S/(v − 2).
In the above specification, the values of aα, bα,m0, V0, vΣ0 , and SΣ0 are known. The only para-

meter for which we have not yet specified a prior distribution is θ, the parameter characterizing the
choice probability. Recall that θ = ∅ in the case of the logit model (1), and θ = Σ in the case of the
probit model (3). Thus θ does not arise in the logit model. The prior distribution for θ = Σ in the
probit model is discussed in Section 7.1.
On account of the complexity of the model, it is not possible to give a closed form solution for the

posterior distribution on the parameters, that is, on
¡{βh}Hh=1, α, µ0,Σ0, θ¢. It is straightforward,

however, to devise a MCMC sampling scheme to sample from the posterior distribution. A useful
discussion of the convergence of the MCMC sampler in the Dirichlet Process prior models is given,
for example, in Escobar (1994) and Escobar and West (1995).
After obtaining MCMC samples for {βh}Hh=1, the heterogeneity distribution, G, is easily esti-

mated by using standard kernel density estimation techniques. In addition, the MCMC samples can
be used to shed light on other aspects of the proposed model; specifically:

1. We can estimate the number of distinct clusters, L, needed to estimate the unknown hetero-
geneity distribution.

2. Conditional on L, we can estimate the size, composition, and value of β∗i for each cluster i.

The second aspect is practically important for market segmentation. From a pragmatic per-
spective, examination of parameters associated with L clusters is useful if there exist meaningful
differences among the L clusters in terms of β∗i . If there is overlap among the L clusters, then we
may need a way to group redundant clusters, an issue discussed in detail in Section 4 and 5.

2.3 Further Discussion of Mixture Models

Estimation of mixture models typically involves determining (1) the number of mixing components
and (2) the distribution in each mixing component. Many authors, including West (1992), Diebolt
and Robert (1994), and Richardson and Green (1997), have shown that mixtures of normals provide
a simple and effective basis for Bayesian density estimation. Therefore, it may be convenient in
many mixture contexts to choose normal mixtures.
To illustrate this approximation, consider first a unimodal context. In Fig. 1, both the thick-

tailed distribution on the left and the positively-skewed distribution on the right can be approximated
by a mixture of several normal distributions. The goodness of the approximation depends on the
number of normal mixing components that is used. In Fig. 1, the unimodal positively skewed distri-
bution is approximated by a mixture of six normal distributions. This approximation may suggest

5Kim et al.: Heterogeneity in Discrete Choice Models Using a Dirichlet Prior

Produced by The Berkeley Electronic Press, 2004



Figure 1: Approximation with the Dirichlet Process prior

that the distribution has six modes, but they are, of course, just a by-product of approximating a
skewed distribution using a mixture of symmetric ones. This observation should make clear that
a mixture of L normal distributions does not necessarily mean that there are L underlying mixing
components each having a substantive interpretation in an applied context.
Consider now a multi-modal context with M modes where each of the modes is indicative of a

cluster of observations that does have a ‘substantive’ interpretation. This distribution can also be
approximated by a mixture of normal distributions. But since each of the underlyingM distributions
may be non-normal, L, the number of normal distributions required in the approximating mixture,
could well be quite a bit larger than M , the actual number of ‘substantive’ clusters. It would thus
be wrong to infer that there are L true clusters, and the approximation itself does not suggest
their actual number. We denote this the “overlapping mixtures problem”. Though estimation of
the number of mixing components L is a by-product of the Markov chain Monte Carlo estimation
method we use for the Dirichlet Process prior model, this model also runs into the overlapping
mixtures problem so that L can be larger than the genuine number of mixing components. We
return to this discussion in the application section.
The problem alluded to in the last paragraph is common in estimation settings featuring normal

mixtures. This problem can, of course, be circumvented if the distributions of the M substantive
clusters are known, since the estimation technique can then formally incorporate the form of these
distributions. We suspect, though, that it is the rare application when the mixing distributions are
known (while their number is not), and using normal distributions for the mixing components is a
pragmatic choice. It would in any case require judicious insight into the application to determine
the appropriate number of substantive clusters; see Escobar and West (1995) for one approach to
determining the “genuine” number of modes.
In addition to determining the number of mixtures and the mixing distributions, another im-

portant issue when estimating mixtures is label switching, which arises because the likelihood
for a mixture model is invariant to relabeling the mixing components. That is, the value ofQH

h=1{π1N(βh|β∗1 ,Σ1) + . . .+ πLN(βh|β∗L,ΣL)} remains the same for all permutations of the labels
for the L mixing components (Redner and Walker 1984). In mixture models, this label switching
problem is critical when inferences are needed for parameters associated with mixing components,
component sizes, component memberships, or clustering of data since these inferences depend on
the labels for the mixing components. Inferences on other parameters, for example, the estimate of
the household-specific regression coefficient, βh, are not affected by relabeling.
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3 Estimation

In this section, we address estimation for the logit model, which we will use in our applications.
Treatment of the probit is largely analogous — we have found little substantive difference between
their inferences in the forthcoming application — and appears in the Appendix. We also discuss how
to approach the label switching problem.

3.1 Estimation for the Logit Choice Model

Let β = (β1, ..., βH). Then the joint posterior distribution for the parameters (β, α, µ0,Σ0) is

p(β, α, µ0,Σ0|y) ∝
Ã

HY
h=1

p(yh|βh, θ = ∅)
!
×
Ã

HY
h=1

p(βh|G)
!

(11)

×p(G|G0, α)× p(α)× p(µ0)× p(Σ0),

where p(yh|βh, θ = ∅) is given in (4).
We implement our MCMC approach by using the following conditional distributions of the full

joint posterior distribution for p(β, α, µ0,Σ0|y)

1. p(βh|β−h, α, µ0,Σ0; y) for each h = 1, ...,H.

2. p(β∗i |S,L, µ0,Σ0; y) for each i = 1, ..., L. Here S denotes the cluster structure, that is, S =
(S1, ..., SH), with Sh = i if βh = β∗i (h = 1, ...,H).

3. p(µ0,Σ0|β, α; y), and
4. p(α|β, µ0,Σ0; y).

Let us discuss these distributions in turn, in line with the detailed discussion in Escobar and
West (1998).

3.1.1 Sampling From the Conditional Distribution of βh

To sample from the conditional distribution of βh, we use algorithm 5 in Neal (1998). Let ch,c be
the cluster to which household h belongs at the beginning of the current iteration, and let βh,c be
the current value of βh.

1. Draw a proposed cluster, cp, from the integers {0, 1, ..., L}, with probabilities { α
H−1+α ,

n−h,1
H−1+α ,. . . ,

n−h,L
H−1+α}.

2. If cp ∈ {1, ..., L}, let the proposed value for βh be βh,p = β∗cp . If cp = 0, draw the proposed
value, βh,p, for βh from N(µ0,Σ0).

3. Accept the proposed value with probability

π(ch,c, cp) = min

Ã
1,

p(yh|β∗cp)
p(yh|β∗ch,c)

!
.
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3.1.2 Sampling From the Conditional Distribution of β∗i

Let Hi denote the set of households for which βh = β∗i (i = 1, ..., L). Then the posterior distribution
for β∗i is

p(β∗i |S,L, µ0,Σ0; y) ∝
Ã Y
h∈Hi

p(yh|β∗i , θ = ∅)
!
n(β∗i |µ0,Σ0).

We can use the Metropolis-Hastings algorithm to sample from this posterior distribution, but
it may converge slowly. Since (1) is log-concave with respect to βh, there are several efficient
algorithms for sampling from this posterior. One of them is the adaptive rejection method (Gilks
and Wild 1992), another is the slice sampler (Neal 1997) which we use here. We update the k
elements of β∗i = (β

∗
i1, ..., β

∗
ik)

0
in sequence by completing the following four steps for each element

β∗ij (j = 1, ..., k):

1. Compute r = w(β∗ij) =
¡Q

h∈Hi
p(yh|β∗i , θ = ∅)

¢
n(β∗i |µ0,Σ0).

2. Define a vertical slice v by randomly sampling from (0, r).

3. Find a horizontal slice I = (D,E) so that w(D) < r and w(E) < r.

4. Replace the current value of β∗ij by a new value β̃∗ij that is sampled uniformly from I, if

w(β̃∗ij) > r.

3.1.3 Sampling From the Conditional Distribution of µ0 and Σ0

The conditional distribution for µ0 and Σ0 reduces to

p(µ0,Σ0|β, α; y) = p(µ0,Σ0|β) = p(µ0|Σ0, β)p(Σ0|β),

where β = (β1, ..., βH).

Sample µ0 from N(m∗, V ∗), where m∗ = V ∗(V −10 m0 +
PL

l=1Σ
−1
0 β∗l ), V

∗ = (V −10 + LΣ−10 )
−1.

Sample Σ0 from IW (v∗Σ, S
∗
Σ), where v

∗
Σ = vΣ + L and S∗Σ = SΣ +

PL
l=1(β

∗
l − µ0)(β

∗
l − µ0)

0
.

3.1.4 Sampling From the Conditional Distribution of α

Escobar and West (1998) showed that the conditional posterior distribution for p(α|β, µ0,Σ0; y)
reduces to p(α|L, y), and they proposed the following two-step sampling approach:

1. Sample an auxiliary variable ζ from B(α+ 1,H), a beta distribution with mean (α+ 1)/(α+
H + 1).

2. Sample α from a mixture of two gamma densities,

φGa(aα + L, bα − log(ζ)) + (1− φ)Ga(aα + L− 1, bα − log(ζ)),

where

φ =
aα + L− 1

H(bα − log(ζ)) + (aα + L− 1) .
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3.2 Label Switching

A standard response to the label switching problem is imposing an identifiability constraint on some
of the parameters, for example, (π1, . . . , πL) or (β

∗
1 , . . . , β

∗
L). The permutation for the labels in c

could be determined so that π1 > . . . > πL (e.g., Allenby et al. 1998). Since there often exist several
choices for identifiability constraints, it is unclear how to determine an appropriate one to remove the
label switching problem. Indeed, Celeux et al. (1998), Stephens (2000), and Frühwirth-Schnatter
(2001) all demonstrated that a standard identifiability constraint may fail to rectify label switching
problems.
Despite its importance, few studies have addressed the label switching problem. Recently,

Stephens (2000) proposed two relatively simple algorithms to find the best labeling scheme based
on post-simulation examination. One of the algorithms is designed to find the best labeling scheme
in order to cluster observations into L groups. However, his approach is not directly applicable
to the Dirichlet process prior normal mixture since the number of mixing components varies over
iterations. However, the relabeling algorithm can be used for clustering inference to post-process
the MCMC output conditional on the estimated number of mixing components, once that number
has been determined by examining the posterior distribution for L.
In order to apply Stephens’ relabeling algorithm, we invoke an assumption not dictated by the

theory developed thus far, that the distribution of the regression coefficients in (5) is a mixture of
L normal distributions; that is,

f(βh|ξ) = π1n(βh|β∗1 ,Σ1) + π2n(βh|β∗2 ,Σ2) + ...+ πLn(βh|β∗L,ΣL), (12)

for h = 1, ...,H, where ξ = (π1, . . . , πL, β
∗
1 , . . . , β

∗
L,Σ1, . . . ,ΣL), the πl denote the mixing probabili-

ties and n(βh|β∗,Σ) denotes a multivariate normal distribution with mean β∗ and covariance matrix
Σ.
To apply Stephens’ relabeling algorithm, define the H × L matrix R = {rhl}, where rhl denotes

the estimated probability to assign household h to mixing component l. Furthermore, define the
H×L matrix of classification probabilities B = {bhl(ξ)}, where bhl(ξ) denotes the probability based
on (12) that household h belongs to mixing component l, that is,

bhl(ξ) =
πln(βh|β∗l ,Σl)PL
i=1 πin(βh|β∗i ,Σi)

.

Note that each row of both R and B sums to 1.
Let ν be a permutation, that is, a re-labeling, of 1, 2, ..., L, and define the corresponding permu-

tation of the parameter vector ξ by

ν(ξ) = (πν(1), . . . , πν(L), β
∗
ν(1), . . . , β

∗
ν(L),Σν(1), . . . ,Σν(L)).

Furthermore, let ξ(i) denote the simulated value of ξ at the i-th MCMC iteration, i = 1, . . . , N, and
let ν(i) denote the permutation of 1, 2, ..., L at the i-th MCMC iteration.
Using a Kullback-Leibler loss function, Stephens’ algorithm proceeds as follows to post-process

the MCMC output in order to find a good permutation, that is, labeling, scheme. Let ν1, ..., νN be
any set of permutations of 1, ..., L (for example, the identity permutations), and iterate the following
two steps:

• Step 1: Let r̂hl = 1
N

PN
i=1 bhl

¡
ν(i)(ξ(i))

¢
.

• Step 2: For i = 1, . . . , N , choose ν(i) to minimizePH
h=1

PL
l=1 bhl{ν(i)(ξ(i))} log

³
bhl{ν(i)(ξ(i))}

r̂hl

´
.
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4 Simulation with Synthetically Created Data

4.1 Simulation Purpose

We conducted a simulation study to investigate the following issues related to the proposed model:

1. If the target density is a normal distribution, does the Dirichlet Process normal mixture model
recover it well? If the target density is not normal, does the proposed model approximate it
well?

2. Does an increase in number of households lead to an increase in L? Because the expected
number of mixing components under the prior depends on the sample size as shown in (7), L
may increase as the number of households becomes larger.

3. Does the proposed model recover the true number of clusters well for both the normal and the
non-normal cases?

4.2 Synthetically Created Data

We generated synthetic data for our simulations based on the logit model

p(yhth = j|βh) =
exp(x

0
hjth

βh)PJ
i=1 exp(x

0
hith

βh)
, (13)

where the household-specific vector of regression coefficients comes from the distribution p(βh), to
be discussed below. To gauge the effect of sample size, we created data sets with two values for
the number of households, H = 150 or 400. The number of purchase occasions was fixed to 21 for
all households in all data sets, in line with the forthcoming empirical application. The number of
brands was J = 3 and there were k = 3 predictor variables, so that the dimension of βh was 3. The
three predictor variables were

xhjth =

 dummy variable for feature advertising
dummy variable for display
price

 ,
where feature advertising and display were generated from Bernoulli distributions with parameters
0.6 and 0.4, respectively, and price was generated from a normal distribution with mean 2 and
variance 2, truncated to be between 1 and 3.
The distribution of feature ad, display, and price was the same for all brands, and there is no

brand-specific information in xhjt, that is, there are no brand dummy variables. Thus all brands
can be taken to have equal baseline preference. In addition to the predictor variable values, xhjth ,
we also had to generate values for the regression coefficients, βh. In all data sets, their values were
generated from a mixture of two distributions with equal mixing proportions, the distributions being
normal in data sets I and II and quite skewed with heavy tails in data sets III and IV. The following
table describes the mixture distributions in detail:

Data Set Sample Size True Density

I, II I: 150; II: 400

½
N(m1, 0.5I) with probability 0.5
N(m2, 0.5I) with probability 0.5

III, IV III: 150; IV:400

½
m1 −Ψ+ b with probability 0.5
m2 +Ψ− b with probability 0.5
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(d) Data IV

Figure 2: Scatter plots of βh in synthetic data

In this table, m1 = (−3,−2, 2.5)0 and m2 = (2, 3,−2.5)0 . In addition, N(m,Σ) denotes a normal
distribution with meanm and covariance matrix Σ, Ψ denotes a 3-dimensional vector of independent
gamma variates from Ga(a,w), with shape parameter a = 1.5 and scale parameter w = 0.5, that
is, p(θ|a,w) ∝ θa−1e−w/θ, and b = (1, 1, 1)

0
, where 1 equals the mode of Ga(1.5, 0.5). Both mixture

distributions imply that the three elements of the vector βh are independent within each mixture
component; but they are clearly not independent overall.
We first generated data sets II and IV, with data sets I and III random samples from them. Fig.

2 displays the scatter plots for two components of βh for each data set. The sample variance of
each component of βh is (6.8, 6.5, 6.6)

0
in data set II and (24.2, 24.6, 26.15)

0
in data set IV. Having

generated values for the predictor variables, xhjth , and the regression coefficients, βh, we then used
equation (1) to generate 21 purchases for each household, seven purchases for each of the three
brands.
Note that the two mixing components of the distribution of βh have nothing to do with the

J = 3 brands: we have two sub-populations of households that are quite distinct with respect to
their regression coefficients βh. In all data sets, both sub-populations have the same market shares
for the J = 3 brands since we generated seven purchase observations per brand in each household.
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Data Set I Data Set II Data Set III Data Set IV
0.9608 1.5668 1.0606 2.0569

(0.4127∗; 0.0076∗∗) (0.5085; 0.0068) (0.4315; 0.0081) (0.5839; 0.0077)
[0.3944, 1.7221]∗∗∗ [0.8450, 2.4939] [0.4557, 1.8614] [1.2008, 3.1007]
Note: ∗: standard deviation; ∗∗: MC error; ∗∗∗ : [5 percentile, 95 percentile]

Table 1: Estimated α with synthetic data

4.3 Simulation Results

We fitted the proposed model for the logit case with these four synthetic data sets. The chosen prior
values, needed in (9) and (10), are aα = 0.5, bα = 4,m0 = 0k, vΣ0 = 2, V0 = SΣ0 = 20Ik (for data
sets I and II) and V0 = SΣ0 = 100Ik (for data sets III and IV). Note that data sets III and IV have
larger variance for βh than data sets I and II, and we therefore chose a larger value for the prior
parameter SΣ0 .
The prior distribution for α has mean aα/bα = 0.125, standard deviation 0.18, and Pr(α < 1) =

0.995. For given value of α, the a priori expected value for L, the number of mixing components,
can be obtained from (7). When α = 0.125, E(L|α = 0.125) = 1.67 for data sets I and III. When
α = 1, E(L|α = 1) = 5.6 for data sets I and III. The corresponding values for data sets II and IV are
very slightly higher. Thus, we believe a priori that there is at most a moderate number of mixing
components.
For all data sets, we ran 40,000 iterations with burn-in period 20,000. After 20,000, all MCMC

chains seem to reach stable states. We used the Geweke convergence diagnostic for µ0,Σ0, and α.
All of these parameters passed the convergence diagnostic in all data sets.

4.3.1 Estimated Number of Mixing Components

Estimate of α First, we examined α, the positive concentration parameter — see Eq. (5). Table
1 gives the estimates of α across these four data sets. A larger sample size tended to increase α,
which affects the number of mixing components. Between data sets I and II and between data
sets III and IV, the 90% posterior intervals overlap, suggesting that the difference in α may not
be significant. For example, the difference in posterior means of α between data sets III and IV is

0.99, and the standard error for this difference is

q
(.43)

2
+ (.58)

2
= 0.73. Thus the value 0.99 is

at best marginally significant. In our simulations, we observed that a larger sample size led to a
somewhat larger posterior mean for α. We also saw that a larger sample size had a somewhat more
pronounced effect on the posterior mean for α when the true distribution is a mixture of non-normal
distributions than when it is a mixture of normal distributions.

Estimate of L Fig. 3 depicts histograms of L for these four data sets. The modes of L were
8, 14, 9, and 18 for data sets I, II, III, and IV, respectively. Other descriptive summary measures
are given in Table 2. Again, we observed that larger sample size led to larger L. Furthermore, with
posterior estimates and posterior standard deviations, there was a statistically meaningful difference
in L both between data sets I and II and between data sets III and IV.
Escobar and West (1995) discussed the effects of sample size, H, with a fixed α, on the expected

value of L. When the number of mixing components is likely to be relatively smaller than the sample
size, the prior probabilities for L do not vary dramatically with H and tend to decay rapidly as L
increases. However, our simulations suggest that the posterior distribution for L can vary quite a lot
with H. Furthermore, the simulations clearly show that the posterior modes of L are not the same
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Figure 3: Histogram of simulated L in synthetic data

as the true number of clusters, 2, for any of the data sets. Considering the posterior means and
the standard deviations, the true number of mixing components is very far away from the posterior
modes of L.
As discussed in Section 2.3, the number of mixing components, L, obtained from our Dirich-

let process model is not guaranteed, nor even anticipated, to equal the “true” number of mixing
components; even a unimodal distribution can be approximated well by a mixture consisting of
several components. As such, the discrepancy between the “correct” number of mixing components
(here, 2) and those in Table 2 should be treated as an issue of proper interpretation. For example,
clustering can depend on managerial ability to divide up markets and use second-degree price dis-
crimination to optimize relative to that division. For first-degree price-discrimination, by contrast,
explicit household allocation to clusters is necessary. We turn our attention to these issues more
fully in Section 4.3.4.

Mode Mean StdDev [Min,Max]
Data Set I 8 8.73 1.73 [5, 17]
Data Set II 14 14.97 2.26 [10, 24]
Data Set III 9 9.51 1.79 [6, 17]
Data Set IV 18 19.11 2.50 [13, 31]

Table 2: Summaries for L with synthetic data
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Figure 4: Comparison between estimate and corresponding true value

4.3.2 Estimated Heterogeneity Distribution

Though our Dirichlet process model does not well estimate the number of mixing components for
the distribution of βh, let us examine how well it estimates the distribution of βh. For each of our
four data sets, this distribution is described in Section 4.2, and a graph is given in Fig. 2. Each
MCMC iteration generates a value for the tri-variate vector βh (h = 1, ...,H) for all H (= 150 or 400)
households. We can thus estimate the posterior density for each tri-variate vector βh (h = 1, ...,H),
and obtain the posterior mean of each βh as an estimate of the “true” βh that was used to generate
the synthetic data.
Consider the third component of βh. For data sets II and IV, Fig. 4 gives a plot of the H

posterior means of βh (h = 1, ...,H) for this third component vs. the corresponding true value, and
it suggests that the true values are reasonably well recovered by the posterior means in data set II.
For data set IV, there are many cases for which the posterior means do not seem to be close to the
corresponding true values.
Fig. 5 contrasts the distribution of the H posterior means for the third component of βh with

its true distribution. Not surprisingly, a larger sample size tends to produce better recovery of the
true distribution. Note that a larger sample size also tends to produce larger L, so that a sufficiently
large number of mixing components, L, may produce better recovery of the true distribution.
For data sets I and II, which were based on a mixture of normal distributions, recovery of the

true distribution of the third component of βh is quite good. This is not the case for data sets III
and IV, which were based on a mixture of very skewed distributions. Though, broadly speaking,
the fact that the mixture consists of two components is well recovered and the estimated location
of the two major modes is generally good, the shape of the skewed distributions making up each of
the two mixture components is poorly recovered, especially in data set III. However, in data IV,
both mixture components are reasonably well recovered. These observations are also supported by
a comparison of both the bivariate contour plots in Fig. 6 and the surface plots in Fig. 7 with the
plots in Fig. 2.
We now see that the results in Section 4.3.1 regarding poor estimation of the number of mixing

components are not as worrisome as they might at first have appeared. Some of these estimated
components are very close and virtually indistinguishable — they are, in short, overlapping — so that
the effective number of recovered components is in fact equal to the true number.
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Figure 5: Densities for the price coefficient in the synthetic data sets (Estimate: solid line, True:
dashed line)
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Figure 6: Countour plots of estimated densities in the synthetic data sets
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Figure 7: Surface plots of estimated densities in the synthetic data sets
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Figure 8: Estimated price coefficient, by mixing component, conditional on the mode of L

4.3.3 Parameters Associated with Mixing Components

As discussed in Section 2.3, a mixture model can suffer from the label switching problem. To
investigate this possibility, we examine parameters associated with the mixing components, that
is, the mixing proportions and β∗l . We condition our analysis on the mode of L, denoted L̂. In
particular, we describe and estimate the following quantities based on only the MCMC iterations
when L = L̂,

1. the proportion of the H households in mixing component l (l = 1, ..., L̂),

2. the regression coefficient for each mixing component, β∗l (l = 1, ..., L̂), and

3. the probability that household h belongs to mixing component l (l = 1, ..., L̂), based on each
household’s component membership, ch.

As shown in Fig. 3, the mode of L, L̂, is 14 and 18 in data sets II and IV, respectively. Fig. 8
plots estimates of the price coefficients for each mixing component in data sets II and IV, that is,
β∗l,3, l = 1, ..., L̂. The 90% posterior intervals for all mixing components strongly overlap, suggesting

that the posterior means for all mixing components given L̂ appear to be the same. The posterior
means of all mixing components essentially equal 0 — the mean of the mixture distribution used to
generate βh (see Section 4.2) — and this suggests the existence of the label switching problem. Note
that the middle point between two true clusters is zero.
In order to correct the label switching problem, we post-processed the MCMC output by Stephens’

(2000) relabeling algorithm. Fig. 9 plots estimates of β∗l,3, l = 1, ..., L̂ after post-processing. The
estimates for some mixing components concentrate around 2.5, for others around -2.5. Recall from
Section 3.2 that these were the values of the means of the two mixing components used to generate
βh. Thus, our adaptation of Stephens’ algorithm rectified the label switching problem quite well.
However, there are strong overlaps: clearly, some mixing components are redundant, in the sense
that the 90% posterior intervals overlap. Note that our Dirichlet process model does not well esti-
mate the number of mixing components for the distribution of βh but it estimates the distribution of
βh reasonably well in data sets II and IV. In other words, the Dirichlet process model approximated
the true distribution, with several redundant mixing components, as suggested by Fig. 5.
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Figure 9: Estimated price coefficient associated with mixing components conditional on the mode
of L after post-processing the MCMC output

For selected households (h = 1, 2, 3, 398, 399, 400), Fig. 10 plots estimates of the probability
that the household belongs to mixing component l (l = 1, ..., L̂). These estimates were based on each
household’s component membership, ch, which is generated at each MCMC iteration. Households
1, 2, and 3 were from one cluster, and households 398, 399, and 400 were from another. Notice,
however, that the estimated probabilities in Fig. 10 do not show similar patterns for households in
the same true cluster. This may be due to a label switching problem, as depicted in Fig. 8.
Fig. 11 is a plot of R̂, the estimated classification probability matrix obtained through the

relabeling scheme. A comparison between Figures 10 and 11 shows that the algorithm effectively
removed the label switching problem. Fig. 11 further suggests that households coming from the
same ‘true’ cluster tend to exhibit similar patterns in terms of probabilities of households belonging
to mixing component l (l = 1, ..., L̂). Note as well that the overlapping mixtures problem is also in
evidence, as per Fig. 11, and that households from the same true cluster have high probabilities for
some mixing components.
It is well-known that the finite normal mixture model (e.g., Allenby et al. 1998) also suffers from

overlapping mixture problems. Even after estimating the finite mixture model with fixed L after
correcting the label switching problem, there is no guarantee that all estimated parameters associated
with mixing components are meaningfully separated from one another (e.g., Roeder 1994). Many
previous studies using latent class and finite mixture models appear to rely on the presumption that
the estimated parameters associated with mixing components (or latent classes) are distinct, in the
sense that there exists a finite number of distinct clusters of households in the data set. However,
as implied by previous studies in density estimation with mixture models in the statistics literature,
this presumption may not always be supported (e.g., Celeux et al. 2000).

4.3.4 Clustering Inference

Conditioning on the estimated number of mixing components, L̂, we saw that some of the L̂ mixing
components are strongly overlapping, so that the effective number of mixing components is substan-
tially less than L̂. The relabeling algorithm of the last section can be used to identify the effective
number of mixing components, to which we next turn our attention.
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Stephens’ (2000) relabeling algorithm for synthetic data
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Feature Ad Display Price

Data II

cluster I -3.0822(0.8726) -2.1829(0.7631) 2.5278(0.7635)

[-4.76,-2.09]{-3} [-3.41,-0.84]{-2} [1.47,4.08]{2.5}
cluster II 2.1858(0.7754) 3.2651(1.0864) -2.6636(0.9334)

[1.09,3.60]{2} [1.87,4.88]{3} [-4.43,-1.55]{-2.5}
Data IV

cluster I -3.2519(1.7465) -2.4951(2.0436) 3.1399(1.8741)

[-6.06,-1.32]{-5} [-6.96,-0.79]{-4} [1.84,7.08]{4.5}
cluster II 2.5591(1.8768) 3.3754(2.447) -3.2170(2.1152)

[1.06,6.72]{4} [1.44,9.01]{5} [-8.17,-1.58]{-4.5}
Note: *: estimate; (): std. dev; ;[]: 90% posterior interval;{}: true mean

Table 3: Estimated regression paramters for two clusters using synthetic data

Recall from Section 3.2 that the (H × L̂) matrix R = {rhl} yields the estimated probability that
household h belongs to mixing component l, so that the rows of R sum to 1. We first obtained
c̃h, the mixing component corresponding to the largest value of rhl for household h, that is, c̃h =
argmax{rh1, ...rhL̂}. We then defined the effective number of mixing components to equal L̃, the
distinct number of values in c̃ = {c̃h, h = 1, ...,H}. The value of L̃ was 2 for data sets II and IV,
that is, it equaled the true number of clusters for these synthetically generated data sets. Then,
we checked the hit ratios of c̃ against the true cluster classification. This approach recovered the
true cluster composition perfectly for both data sets II and IV. Cluster membership given c̃h was
identical to true cluster membership. Therefore, the algorithm seemed to be successful in correcting
uncertainty about cluster membership that resulted from both the overlapping mixtures and label
switching.
Then, given the classification scheme c̃, we obtained the posterior distribution of parameters

associated with these two clusters, β̃∗l (l = 1, 2), for data sets II and IV by randomly sampling βh
from β̃l = {βh : c̃h = l, h = 1, . . . ,H} at each MCMC iteration. Table 3 presents the summary of the
posterior mean of β̃∗l (l = 1, 2). Broadly speaking, the true means of both clusters were reasonably
well recovered for data sets II and IV.
To further check whether the above clustering scheme did work, we plotted the posterior mean of

βh for each household in the synthetic data. In Fig. 12, the number w (= 1, 2) indicates a household
assigned to cluster w. As shown in Fig. 12, the clustering scheme appears to work very well indeed.

5 Empirical Application

5.1 Description of the Data and the Prior Distributions

The proposed model is estimated with A. C. Nielsen liquid detergent scanner data. The number of
households is H = 429, the number of purchase observations is 6682, and the number of brands is
J = 4. There are three marketing-mix variables: a dummy variable for feature advertising, a dummy
variable for display, and net paid price. We also introduce three dummy variables for brands A, B,
and C. The market shares of brands A, B, C, and D are 29.7%, 28.3%, 18.8%, and 23.1%, respectively.
Further summaries of the marketing-mix variables are given in Tables 4 and 5.
The chosen prior values, needed in (9) and (10), are aα = 0.5, bα = 4,m0 = 0k, V0 = SΣ0 = 50Ik

and vΣ0 = 2.
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Figure 12: Scatter plot of estimates for household regression parameters in synthetic data sets

Marketing-Mix Variable Mean (Std. Dev.)
Feature advertising 0.16(0.37)
Display 0.11(0.31)
Net paid price 5.60(0.71)

Table 4: Marketing activities in the liquid detergent data

Brand A Brand B Brand C Brand D

Market share 29.7% 28.3% 18.8% 23.1%

Proportion of observations with feature advertising 23.3% 22.2% 6.3% 12.2%

Proportion of observations with display 14.6% 14.1% 6.6% 9.9%

Average and standard deviation of net paid price $5.09 $5.95 $5.93 $5.42

(0.58) (0.64) (0.51) (0.68)

Table 5: Marketing activities of brands in the liquid detergent data
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Figure 13: Trace plot of µ0,3

The prior distribution for alpha has mean aα/bα = 0.125, standard deviation 0.18, and Pr(α <
1) = 0.995. For given value of α, the a priori expected value for L, the number of mixing components,
can be obtained from (7). For various values of α, Table 6 lists the corresponding prior expected value
for L. In particular, when α = 0.125, E(L|α = 0.125) = 1.81, and when α = 1, E(L|α = 1) = 6.64.
Escobar and West (1995) examined the sensitivity of the number of mixing components to varying
values of α. As α increased, the posterior mean for L became somewhat larger, but its distribution
was only slightly altered.
To demonstrate the present methodology, owing to its greater transparency, we focus on the

logit model. Estimation of the probit model is straightforward, and the present discussion applies
to it as well largely unchanged (results are available from the authors). The burn-in period was
20,000 iterations, and convergence of the MCMC sampler was assessed by using Geweke’s (1992)
convergence diagnostics. Among the parameters α, µ0, and Σ0, only a single element in µ0, µ0,3,
failed to pass the diagnostics. Fig. 13 is the trace plot of µ0,3: even though there was a slight
increase around iteration 28,000, the sampled values for µ0,3 seem to have converged after 6000
iterations. Since µ0 is the hyperparameter for G0, we expect the small degree of fluctuation around
iteration 28,000 to have a minimal effect on the estimation results. The results in the remainder of
this section were based on the last 20,000 MCMC iterations.

5.2 Estimation Results for the Logit Model

5.2.1 Estimation of α and L

The trace plot in Fig. 14 suggests that α converged well before iteration 20,000. Fig. 15 shows that
the posterior distribution of α is quite different from its prior distribution. The posterior mean and
standard deviation of α are 4.91 and 0.95, respectively, and the posterior interval for α that extends
from the 5th to the 95th percentiles (for short, the “90% posterior interval” for α) is [3.42, 6.55].
Based on Table 6 and Eq. (7), such prior values for α would have implied a far larger a priori
expected value for L. For example, for α = 4.91, E(L|α = 4.91) = 23. Let us now examine the
posterior distribution for L which incorporates both this prior information and the data.
The trace plot for L, the number of mixing components, in Fig. 16 suggests that L converges

quickly. The posterior distribution for L (as usual, a histogram of L across all MCMC iterations) in
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Figure 14: Trace plot of α

Fig. 17 shows that the posterior mode of L is 42 and that the 90% posterior interval for L is [35, 48].
The number of mixing components is clearly quite large. As discussed in Section 4 with synthetic
data sets, this, however, does not imply that there is a large number of distinct substantive clusters,
because mixing components may overlap with one another.

5.2.2 Distribution of the Regression Parameters

Fig. 18 presents plots for the posterior distributions of the six components of β. These plots were
produced by a standard kernel density estimation techniques, for which we used Sheather and Jones’
(1991) derivative-based method to determine window width. In Fig. 18, the simulated β values are
indicated by ticks. All plots, except that for feature advertising, suggest at least partial departures
from unimodality.
Figures 19 and 20 give contour plots and surface plots based on the posterior distribution for β,

and also indicate several modes.
Tables 7 and 8 give estimates for µ0 and Σ0, the hyper-parameters for G0. The coefficients of

the dummy variable of brand B, display, and price are meaningfully different from zero since their
90% posterior intervals do not contain zero. The other three coefficients seem to be essentially zero.
All diagonal elements of Σ0 seem to be different from 0 since the posterior means are at least twice
as large as the posterior standard deviations. Among the off-diagonal elements of Σ0, only the
covariance between price and Brand B, and possibly that between price and Brand C, are different
from 0.

5.2.3 Analysis on Mixing Components

In Section 5.2.1 we examined the posterior distribution for L, the number of mixing components, and
we found the mode for L to be 42, rather a large number. As discussed in Section 2.3, a large number
of mixing components is not necessarily indicative of a large number of distinct clusters of households,
and the number of “genuine” clusters can be quite a bit less than L. A casual investigation of the
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Figure 15: Density of α

Expected No. of Mixing Component α
1 2.0e− 3
2 0.2
3 0.4
4 0.5
5 0.7
6 0.9
7 1.1
8 1.3
9 1.5
10 1.7
15 2.8
20 4.1
25 5.5
30 6.9
35 8.5
40 10.2
45 11.9
50 13.8
100 38.1
200 125.1
300 326.1
491 1.21e5

Table 6: A priori expected number of mixing components given α (H=429)
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Mean StdDev [5 percentile, 95 percentile]

Brand A -0.701 0.568 [-1.656, 0.224]

Brand B 1.079 0.626 [0.060, 2.124]

Brand C 0.693 0.699 [-0.401, 1.887]

Feature 0.312 0.307 [-0.196, 0.815]

Display 0.595 0.309 [0.095, 1.102]

Price -2.175 0.603 [-3.208, -1.239]

Table 7: Posterior mean and standard deviation for µ0

Brand A Brand B Brand C Feature Display Price

Brand A 8.2886 0.0347 0.1451 −0.0327 −0.0257 0.0316
(2.8195)

Brand B 0.3051 9.3487 0.1834 −0.0212 −0.0196 −0.5268
(1.8682) (2.9199)

Brand C 1.4324 1.9230 11.7652 0.0508 −0.1054 −0.3700
(2.3483) (2.2710) (3.8531)

Feature −0.1492 −0.1025 0.2763 2.5110 0.0046 0.0337
(0.9343) (0.9917) (1.1161) (0.7379)

Display −0.1172 −0.0950 −0.5725 0.0115 2.5053 0.0846
(0.9977) (1.0163) (1.1868) (0.4884) (0.7254)

Price 0.2776 −4.9130 −3.8708 0.1631 0.4083 9.3026
(1.7105) (2.3707) (2.2624) (1.0031) (1.0012) (3.3095)

Note: 1) lower triangular matrix: estimated covariance matrix

2) posterior standard deviations are in parentheses

3) upper triangular matrix: correlation matrix

Table 8: Estimated Σ0
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Figure 18: Densities for the components of βh

27Kim et al.: Heterogeneity in Discrete Choice Models Using a Dirichlet Prior

Produced by The Berkeley Electronic Press, 2004



0.02

0.02

0.02

0.02

0.02

0.02

0.04

0.04

0.04

0.04

0.06

0.06

0.08

0.08
0.08

0.10
0.10

0.120.140.16

-10

-8

-6

-4

-2

0

2

-6 -4 -2 0 2 4 6

brand A dummy

pr
ic

e

0.1

0.1

0.1

0.2

0.20.2

0.30.40.50.60.7

-10

-8

-6

-4

-2

0

2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

feature ad

pr
ic

e

0.02

0.02

0.02

0.020.04

0.04

0.04

0.06

0.06

0.06

0.06
0.080.100.12

-10

-8

-6

-4

-2

0

2

-4 -2 0 2 4 6 8

brand B dummy

pr
ic

e

0.05

0.05

0.05

0.10

0.10

0.15

0.15

0.15
0.150.20

0.20

0.20

0.200.25

0.25

0.250.30

0.30
0.35

-10

-8

-6

-4

-2

0

2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

display

pr
ic

e

0.02

0.02

0.02

0.020.04
0.04

0.040.060.080.10

-10

-8

-6

-4

-2

0

2

-6 -4 -2 0 2 4 6 8

brand C dummy

pr
ic

e

Figure 19: Contour plots based on the posterior density for βh
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Figure 20: Surface plots based on the posterior density for βh
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Figure 21: Estimates of the price component of β∗i (i = 1, . . . , 42) conditional on L = 42

plots discussed in Section 5.2.2 suggests that there may be fewer than 42 clusters and that we may
have strongly overlapping mixing components.
We first corrected the label switching problem using the algorithm in Stephens (2000), as dis-

cussed in Section 3.2. For the regression coefficients associated with the resulting mixing components,
we then obtained the posterior distributions which were based on the values of β∗i (i = 1, ..., L) for
those MCMC iterates for which L was 42.
Let us now concentrate on the element of these vectors that corresponds to net paid price, which

we denote the “price coefficient”. Fig. 21 presents the posterior means and 90% posterior intervals
for the 42 price coefficients after post-processing the MCMC output by Stephens’ algorithm; that
there do not seem to be pronounced differences among the 42 mixing distributions for the price
coefficient, even after controlling for the label switching problem, suggests a pronounced problem
with overlapping mixing components.
We next take up the pragmatic issue of determining whether, and how, these overlapping mixtures

cluster into meaningfully distinct segments.

5.2.4 Clustering and Segmentation Inference

As illustrated in Sections 4.3.3 and 4.3.4, we use the classification probability matrix, R, pro-
duced by Stephens’ (2000) algorithm. Given an estimate of R, we find c̃h so that c̃h = l if
rhl = max(rhl, . . . , rhL), l = 1, . . . , L. The number of distinct values in c̃ = {c̃1, . . . , c̃H}, L̃, was
3. The sizes of these three clusters, I, II, and III were 278 (56.5%), 201 (40.9%), and 13 (2.6%),
respectively.
Fig. 22 graphs the estimated value of rhl for the households belonging to each cluster. Households

belonging to the same cluster tend to show a similar pattern in terms of estimated classification
probabilities across mixing components. This suggests that the three cluster scheme based on c̃h
may succeed in grouping households that are close in terms of βh.
As suggested in Section 4.3.3, if the new cluster scheme c̃h corrected the overlapping mixing

problem, there might be significant differences among the three clusters with respect to the regression
coefficients. Fig. 23 offers a graphical representation of this with respect to three components of
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Figure 23: Plot of posterior means of the 429 regression coefficient pairs for price and the Brand B
dummy

βh. Note that the cluster index i (i = 1, . . . , 3) represents the posterior mean of βh for each of the
H = 429 households. Cluster separation is discernible, and households belonging to the same cluster
are concentrated largely in the same part of the graph.
Given this new classification scheme of three clusters, c̃, we obtained the posterior distribution

of parameters associated with each, β̃∗l (l =I, II, III) by randomly sampling one value from β̃l =
{βh : c̃h = l, h = 1, . . . ,H}, l =I, II, III at each MCMC iteration. Table 9 gives the posterior means
and standard deviations for the regression coefficients across these three clusters. We find that all
three clusters highly overlap, as suggested by Fig. 21.
This comparison is, of course, based on the marginal posterior distributions for the regression

coefficients in each cluster, and it assumes that these regression coefficients are not highly correlated.
This is partially supported by the posterior correlations listed in Fig. 19. To get a visual feel for
the correlation between regression coefficients in the set of households, Fig. 23 plots the H = 429
pairs of posterior means for the regression coefficients of the Brand C dummy and net paid price.
Cluster membership is again indicated by digits i = 1, 2, 3.
The correlation here appears to be moderate, and we in fact suspect the correlation may lead to

overlapped clusters. To see this point, let us consider Fig. 24, which depicts a hypothetical contour
plot of two such clusters. Given the axes x and y, two clusters highly overlap. However, relative to
the rotated coordinate system of x0 and y0, the overlapping clusters essentially disappear, and are
seen as quite distinct. In this way, correlation may lead to the type overlapping mixtures evident in
Fig. 21, even after correcting for any label switching problems.
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Cluster I Cluster II Cluster III

Brand A dummy -1.0813*(2.3171)** -0.2493(2.3728) -1.5215(1.5600)

[-5.18,2.18]*** [-3.22,4.74] [-3.96,1.10]

Brand B dummy 0.9196(2.6729) 2.5920(2.6446) 5.2199(2.0360)

[-2.88,5.92] [-1.08,6.94] [1.51,8.53]

Brand C dummy 0.1134(3.2353) 1.3219(2.2836) -0.1754(2.6020)

[-4.42,6.32] [-1.79,5.50] [-4.95,3.63]

Feature ad 0.2485(0.8146) 0.1745(0.8978) 0.1831(0.8942)

[-1.06,1.56] [-1.19,1.77] [-1.15,1.73]

Display 0.6126(0.9046) 0.2797(0.8663) 0.5413(1.1098)

[-0.84,2.18] [-0.98,1.84] [-0.10,2.46]

Price -1.3424(1.3872) -4.9521(3.3352) -4.8219(3.3325)

[-3.53,0.83] [-10.63,-0.93] [-10.51,-1.05]

Note: ∗:posterior mean; ∗∗: posterior std. dev.;∗∗∗: [5 percentile, 95 percentile]

Table 9: Posterior means and standard deviations for the regression coefficients in the three clusters

Figure 24: Illustration of the occurence of overlapping clusters by correlation
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6 Discussion

In this paper, we proposed a joint methodology that links observed brand choice to marketing and
other variables via a logit, probit or other suitable link, and that uses a Dirichlet process prior
to capture heterogeneity in regression coefficients across households. We developed an MCMC
algorithm for the model with a logit and a probit link, and we applied the logit model to some liquid
detergent scanner data.
The resulting distribution of regression coefficients across households is a mixture, capable of

capturing two important features: (1) there can be several distinct modes representing meaningfully
separated clusters of households, and (2) the distribution of regression coefficients in each cluster is
flexible and need not be normal. The overall number of mixing components, however, is typically
greater than the number of distinct clusters of households, an artifact of the need to approximate
each of the possibly non-normal distributions in the clusters by separate mixtures of several mixing
components each.
One of the strengths of the model is that it determines the overall number of mixing components

in a straightforward way. In order to determine the meaningfully separate clusters of households,
however, we had to add a separate post hoc step to combine several mixing components into a cluster.
Having identified an appropriate number of mixing components, this step consists of (1) overcoming
the labeling problem inherent in mixture models by using the algorithm proposed by Stephens (2000),
and (2) using the matrix of estimated classification probabilities to find a small number of household
clusters that are intended to meaningfully separate the households into ‘substantive’ segments.
Our overall modeling approach thus consisted of two consecutive stages, first using the Dirichlet

process prior model to estimate the distribution of regression coefficients to capture heterogeneity
among households, then parceling households into meaningful clusters. It would be desirable to
design an approach that formally combines these two stages, and we hope to report on such a
modeling framework in the future.
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7.1 Appendix: Estimation of the Probit Model

Whereas the choice probabilities for the logit model in (1) are available in closed form, that is not
the case for the probit model in (3), where multi-dimensional integration is required. To avoid
explicit multi-dimensional integration, it is convenient to incorporate the unobservable utilities into
the MCMC sampling scheme. In the probit model, these utilities are uhth = xhthβh + εhth , where
εhth ∼ N(0,Σ).
This utility formulation for the probit model suffers from location and scale identification prob-

lems. Several approaches have been proposed to overcome the identification problem (e.g., McCul-
loch and Rossi 1994). Here, we follow Albert and Chib’s (1993) approach, which restricts Σ to be
a correlation matrix. Since all diagonal elements in Σ are 1, the number of unknown quantities in
Σ becomes J × (J − 1)/2. The location identification problem can be avoided by letting one of the
brands, say brand J , be the reference brand and setting its latent Gaussian utilities equal to 0, or
by setting the intercept of J to be 0 if all brands have their own intercepts.
Letting u = (u1, ..., uH), with uh = (u

0
h1, ..., u

0
hTh
)
0
, we thus must incorporate the additional

variables u and Σ into the MCMC sampler by using the following conditional distributions of the
full joint posterior distribution for p(u,Σ, β, α, µ0,Σ0|y) :
1. p(u|Σ, β, α, µ0,Σ0; y)
2. p(Σ|u, β, α, µ0,Σ0; y)
3. p(βh|u,Σ, β−h, α, µ0,Σ0; y) for each h = 1, ...,H.

4. p(β∗i |u,Σ, L, µ0,Σ0; y) for each i = 1, ..., L. Here S denotes the cluster structure, that is,
S = (S1, ..., SH), with Sh = i if βh = β∗i (h = 1, ...,H).

5. p(µ0,Σ0|u,Σ, β, α; y), and
6. p(α|u,Σ, β, µ0,Σ0; y).
Let us discuss these distributions in turn.

7.1.1 Sampling From the Conditional Distribution of u

The conditional distribution for each uhth is

p(uhth |Σ, β, α, µ0,Σ0; y) = p(uhth |Σ, βh; y) ∝ NJ(xhthβh,Σ)
JY

i=1,i6=j
Iuhith<uhjt ,

where the chosen brand is yht = j. Each element of uhth can be efficiently sampled by the inversion
method, which is an efficient method for sampling from a truncated distribution. Let us suppose
that we want to sample from a doubly truncated distribution, F (w|•)Ia<w<b, where F (•) is a target
probability density function. Let Φ(•) denote the cumulative distribution of F (•). Then, sample w
so that w = Φ−1(o), where o is a value uniformly selected from an interval (Φ(a),Φ(b)).

7.1.2 Sampling From the Conditional Distribution of Σ

Recall that the (J ×J) covariance matrix for the utilities, Σ, is restricted to be a correlation matrix
for identification purposes. Let Ω = {σij}, i < j, denote all unknown quantities in Σ. Then, we
assume the prior distribution for Ω to be

p(Ω) ∝
Y
i<j

n(σij |a, s2)IAIB ,
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where n(σij |a, s2) denotes a univariate normal distribution with mean a and variance s2, A denotes
the event that Σ is a positive definite matrix, and B denotes the event that all elements of Σ are in
[-1,1].
The conditional posterior distribution for Σ thus is

p(Σ|u, β, α, µ0,Σ0; y) = p(Σ|u, β) ∝
Ã

HY
h=1

ThY
th=1

NJ(uhth |xhthβh,Σ)
!
p(Ω),

where NJ(·|xhthβh,Σ) denotes the J-dimensional normal density with mean xhthβh and correlation
matrix Σ.
This conditional posterior distribution can be easily sampled by a slice sampler (Neal 1997).

Slice sampling is a form of the auxiliary variable technique for facilitating the design of an improved
MCMC sampling algorithm. Define a function

f({σij}|{σij}−) =
Ã

HY
h=1

ThY
th=1

NJ(uhth |xhthβh,Σ)
!
n(σij |a, s2)I−1≤σij≤1IA, i 6= j,

where {σij}− denotes a set of all elements in Ω except σij . Then, sample σij by using the slice
sampler.

7.1.3 Sampling From the Conditional Distribution of βh

As given in (6), we need the following quantities for household h = 1, ...,H.

• q0h ∝ α
R ³QTh

th=1
nJ(uhth |xhthβh,Σ)

´
n(βh|µ0,Σ0)dβh = αnJTh(uh|Xhµ0,XhΣ0X

t
h+ITh⊗Σ),

where uh is a JTh-dimensional vector, Xh = (x
0
h1, ..., x

0
hTh
)
0
is an (JTh × k) matrix, ITh is a

(Th × Th) identity matrix, and ⊗ denotes the Kronecker product,
• q∗ih ∝

QTh
th=1

NJ(uhth |xhthβ∗i ,Σ) is the likelihood for uh conditional on βh = β∗i ,

• q0h and q∗ih, i = 1, ..., L, are such that 1 = q0h +
PL

i=1 nihq
∗
ih,

• Gb(βh|µ0,Σ0; y) = N(µ∗,Σ∗), where µ∗ = Σ∗
³PTh

th=1
Σ−1uhth +Σ

−1
0 µ0

´
and

Σ∗ =
³PTh

t=1 x
0
hth
Σ−1xhth +Σ

−1
0

´−1
,

A new value of βh can now be readily sampled in two steps:

1. Draw a cluster label at random from the integers {0, 1, ..., L} with distribution {q0h, q∗1h, ...,
q∗Lh}. Denote this label cp.

2. If cp ∈ {1, ..., L}, let βh = β∗cp . If cp = 0, draw the new value for βh from N(µ∗,Σ∗).

7.1.4 Sampling From the Conditional Distribution of β∗i

Let Hi denote the set of households for which βh = β∗i (i = 1, ..., L). Then the conditional posterior
distribution for β∗i is N(µ

∗
i ,Σ

∗
i ), where µ

∗
i = Σ

∗
i (Σ
−1
0 µ0 +

P
h∈Hi

PTh
th=1

x
0
hth
Σ−1xhth) and Σ

∗
i =

(Σ−10 +
P

h∈Hi

PTh
th=1

x
0
hth
Σ−1xhth)

−1.

7.1.5 Sampling From the Conditional Distribution of µ0,Σ0, and α

Sampling from the conditional distributions for µ0, Σ0, and α is identical to the case of the logit
model.
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