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The Relative Effects of State Dependence and Habit Persistence on
Mean Convergence in First-Order Models of Brand Choice

ABSTRACT

The present paper examines two methods for encoding first-order dependence into models of
brand choice: Habit Persistence, based on temporal autocorrelation in the probability vector pre-
dicted by a baseline model; and State Dependence, based on correlation between such predicted
choices and the vector of previously chosen brands. As a measure of convergence rate, the variance
of the mean estimator in the binary choice case is calculated in closed form, demonstrating that the
convergence rate-dampening effects of state dependence are greater than those of habit persistence;
further, the two first-order carry-over methods operate synergistically, though differently, in various

regions of their joint parameter space.



1 Introduction

In a recent paper, Roy, Chintagunta and Haldar (1996) put forth a framework for the analysis of
scanner panel data that relies on three separate constructs, Habit Persistence, State Dependence
and household-level Heterogeneity, demonstrating that the specifications advocated are in fact those
of utility-maximization. Methods to account for heterogeneity have been a major research topic in
Marketing over the past decade, beginning with Guadagni and Little’s (1983) account of ‘loyalty’
variables and culminating in a number of sophisticated statistical techniques of varying degrees of
parameterization; full treatments of this literature can be found in Chintagunta, Jain and Vilcassim
(1991), Fader and Lattin (1993), Gonul and Srinivasan (1993), and Allenby and Lenk (1994). How-
ever, a good deal less attention has been focused on the remaining constructs, habit persistence and
state dependence.

The present paper addresses the mean vector of household-level purchase indicator variables, a
measure important not only as a zero-order estimate of disaggregate choice shares, but in the calcula-
tion of heterogeneity corrections descending from Guadagni and Little’s original loyalty specification.
For example, Feinberg and Russell (1997) have formulated a model which takes such uncorrected (by
marketing mix activity) choice shares as a proxy for models of the latent class type (e.g., Kamakura
and Russell 1989; Lenk and DeSarbo 1996), which largely dispense with direct household-level mea~
sures based on past purchases. Among the concerns in utilizing such variables are their degree of bias
and rate of convergence, given the small number of per-household observations typical in consumer
panels. Positing a choice model formulation based on that explored by Jeuland (1979), Roy et. al.
(1996) and Feinberg and Russell (1997), explicit measures of mean bias and variance, as functions

of the degree of habit persistence and level of state dependence, can be obtained.

2 Modeling Framework

Recall that, in the standard framework under which methods such as Logit or Probit are applied
to scanner panel choice data, the underlying choice process is taken to be multinomial. That is,
each household is presumed, on a particular choice occasion, to choose from the available brands

in a manner which maximizes (stochastic) utility; the deterministic component is typically a func-



tion, linear-in-coefficients, of observable marketing mix activity variables, a set of brand intercepts
measuring intrinsic market-level preferences and, depending on the particular utility specification,
a method of encoding household-level heterogeneity, for instance a set of possible ‘purchase indi-
cator’ variables calculated from the household’s past choices. Standard one-period (or greater) lag
formulations and loyalty variables are examples of this last set of utility components. Apart from
such a utility specification, choice between models amounts to the various methods of encoding error
which, for example, can be taken as double exponential or multinormal. The brand choice process
can then be taken as multinomial with parameter 0~t, where the time (¢) subscript is suppressed
where understood.

We consider, for purposes of exposition, choice between two relevant brands; extension to multiple
brands can be considered as a nested set of choices between a focal brand and all others, consistent
with, for example, Luce-type scaling or the ITA property. As developed in Resnick and Roy (1991),
an ‘inertial’ component in the choice process, representing state dependence, can be accommodated
peripherally, with household-level choice probabilities expressed as a linear function of that given

by, for example, the standard Logit and a one-period lagged purchase indicator variable, Y;_;.

2.1 Specification of Habit Persistence and State Dependence

It is important to differentiate between two fundamentally different types of carry-over arising in
household-level purchase modeling, that of habit persistence intrinsic to the underlying multinomial
choice process generated by the utility specification (e.g., normed attractions), and that arising
from a state-dependent component that is, in some sense, overlaid upon the multinomial process.
Habit persistence, which can arise from temporal correlations in predictor variables and thus enter
into the utility specification directly (although this need not be the case), can be thought of as
endogenous. By contrast, state dependence, as formulated as ‘inertia’ by Jeuland (1979), in a more
general setting by Heckman (1981), and extended to a generalized (logistic) brand choice framework
by Roy, Chintagunta and Haldar (1996), is a temporal property of the household-level multinomial
choice vector itself, in terms of its correlation with the previous choice (for additional detail in the
context of variety-seeking and inertial models, see Hutchinson 1986, or Bawa 1990). Here, we explore

the theory without reference to a particular error specification, and so consider habit persistence in



a form that dispenses with the particularities of the predictor variables themselves, specifically in
how they are related functionally to the multinomial process generating 6.
With the degree of state dependence in the process represented by J and that of habit persistence

by p, choice on a particular occasion between two relevant brands, Y;, is binomial:
Y;~BI[1,(1—-J)0;+ JY; 1]

0, =1 —=p)Pi+pb_1 fort=1,...,n (1)
P, ~ fp(p) ii.d. 6y=Py=E[P|=py Var|P]=o0,

There is an underlying generating process, given by the {P,}, each with time-invariant density
fp(p); the {6} are merely geometrically-weighted sums of independent draws from fp(p), and are
thus autocorrelated. Analogous to the process put forth by Jeuland (1979), the parameter J allows
the generating multinomial model to be nested (i.e., J = 0), as well as for incorporating ‘perfect’ state
dependence (i.e., J = 1, whence the Y; are identically zero or one). Toward the end of establishing
the degree of bias and rate of convergence of the household-level mean estimator, Y, it is necessary
to calculate its expected value and standard error. Considering the recursion relationships (1), it is

easily verified that the following hold:

i=t
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i=1
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Note that, in the event that there is no explicit habit persistence, p = 0, and the {6;} are identical
to the {P;} series and inherit their independence properties. This simpler case is treated first. Before
doing so, it is useful to state the following fact about conditional expectations for recursion relations
arising from the process given by (1) above. The conditional mean vector of the purchase indicator

variable [Y; | Y;—1] can be expressed in matrix notation as follows:
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Referring to the transition matrix in (3) as Ay, a higher-order conditional relationship can be

written:
1-Y; }

1-Yix
FE Y| = [AirnAiirq ... A
[ Yirn | t] (At Arrr—1 t+1}|: Y,

(4)
The problem is substantially simplified by noticing the following special form, easily verified by

induction, where the off-diagonal elements are chosen so that the columns sum to one:

(At kAt k-1 - Arga] (5)
[T = I [0 = Oea) + T = pemt) + oo+ T = O] }
* Jk+(1—J) [0t+k+¢]9t+k,1 +...+Jk_10t+1]

3 Special Case: State Dependence Alone

When p = 0, the {6;} are independent draws from fp(p), so that the expected value of a product
of the matrices expressed in (5) is merely the product of their expected values, each of which is a
constant Markov matrix with pg in place of any ;. Thus, the covariance of any particular pair of

purchase indicator variables can be shown to be given by:
Cov [Yy, Yen] = J*po(1 — po)(1 — J*) — J*po(1 — po) (6)

To compute the asymptotic variance (w.r.t. t) of the mean estimator, it is useful to appeal to a

sum of covariances:

1 po(1 —po) imj
Var [Y] = o Z CovlY;,Y;] = — Z JIi=il (7)
t<i,j<t+n t<i,j<t+n

The values of the summand in the double summation (7) form a symmetric Toeplitz matrix
generated by the row vector [1,J, ..., J, 1] (holding aside ¢, which can be taken to be arbitrarily
large), where the (i, ) entry is given by JI*=Jl; for example, for n = 4:

T g Jr g3
J 1 J J?

22 g 1 J (8)
J3J2 T 1

Computing the summation in (7) results in an expression for the standard error:

1- n(l—J?) —2J(1 - J»
Var W] _ pO( — pO) ( (i — J)z( ) (9)




The expression (9), curiously enough, varies with n to an order that is dependent on the relative

values of J and of n itself. For small values of J or large values of n, (9) is locally approximated by:

Var [?] = po(ln—po) <1 + J) (10)

1-J

For values of J close to 1 and small values of n, (9) is, to first order:
Var [Y] =po(1 = po) [1 = (1= J)(2n - 1)] (11)

An intriguing property of (10 - 11) concerns the rate of convergence of the mean estimator (as
measured by its standard error) with respect to the sample size n which, while on the order of n—1/2
for small quantities of the state dependence parameter and large sample sizes, is essentially invariant
with n when state dependence is pronounced and sample sizes are relatively small. Thus, empirical
estimates of the degree of state dependence typical in panel data studies becomes an important
determinant of the ‘quality’ of the household-level mean estimator. Although we do not discuss
methods of estimating the degree of state dependence or habit persistence here, these issues are

addressed by both Roy, Chintagunta and Haldar (1996) and Feinberg and Russell (1997).

4 Full Model: State Dependence and Habit Persistence

Notice that, when p # 0, the ; are no longer independent draws from fp(p), but follow the recursion
relationships given by (1); thus, the expected value of the product of the transition matrices can no
longer be expanded to a product of expected values, so that another route must be taken toward
computing the covariance terms in the following sum:
Var [Y] = % > Covlv,Y;) (12)
t<i,j<t+n

It is helpful to calculate covariance from its definition:

Cov[Y,Yips] = E [ViYius] = EYV E[Yiss] = E[YiYerr] —

PY; = Yir = 1] - 53 (13)



For this last probability to be computed, it is possible to condition on the joint distribution of the
{0;) series (let 0 = (Ag, ..., 0, ..., Opic)):

P[Y, = Yips = 1]

- Eé[P[n+k:1|Yt:1;é]P[Yt:1\éH

TP A=) (O + JOrgmr + oo+ T 10,44) ] -
= B { [Tt (1= J) (0 + JOpr + oo+ J16))] (14)
JHE L T = DEg [0k + o+ T 0] + T = D) EG [0+ .. 4+ T 101] + ...
+(1 = I)?E; [(Oeak + oo+ T 0041) (B + .. + J71601)]
All but the last of the four summed expressions above are readily evaluated using (2) as:
JHF (1) Jtl_Jk+J’f1_Jt — gk (15)
1—J 1—J Po Po

All that remains is the calculation of the fourth component term in (14), the expectation of the

product of the p-weighted future and past choice probabilities:

Ej [(Beqn + o+ T 0041) (0 + . + T7161))]

= Cov [(Opak+ . + T 01), (0 + ... + T 161)]

+Ej [0k + oo+ T 0 By [0 4 ..+ T4 (16)
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= > > JEICov By i 0 5]+ po'| | D pot
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This double summation can be calculated by well-known formulas; upon letting ¢ increase without

bound, the resulting value for (16) is:

p(1—p) k kY .2 (1_Jk) 2
Y (1 - SR e 17
=D A= Arp) " )T )
Thus, from (13) and (17), the required covariances are then given by:
Jim Cov[Yy,Yix] = lim P[Y; =Yy, =1] —pi= (18)
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Note that, when p = 0 or p = 1, (18) agrees with the corresponding expression given in (6). It
is now possible to calculate the standard error of the mean estimator for positive values of p, in the
same manner as when p = 0, by referring to the Toeplitz matrix (8) and the associated summation,

(9). It therefore follows directly from (9) that:

: n(l—J?) —2J(1 — J" 1
lim Vav*[?] = [( (j)l—J)2( )| po(1 —po)

t— o0

n2
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Thus, the variance of the mean estimator is a weighted sum of variances, one representing the
binomial process with P set at its expected value, pp(1 — pp), the other representing the distribution
from which the P’s are drawn, 012). The greatest deviation from the actual variance, by taking p = 0,
will come about when the latter variance is as large as possible compared with the former one;
this occurs when the (assumed-continuous) P distribution approaches degeneracy (in the form of a
binomial, for instance, if it were Beta distributed), with variance bounded from above by po(1 — po).
For purposes of illustration, therefore, we will consider this extreme case where 0127 = po(1 — po),
so that the degree to which the variance is underestimated by setting p = 0 can be assessed by
computing the ratio of the weighting factors in (19). Define f, the proportional underestimation of

the variance by taking p to be zero, as follows':

p(L=p) (1= [ n(l—p*)—2p(1—p") (1-.J)
eI <n<1 ) 2l (P 1) 20)

f(J,p,?’L) =

Note that f is non-negative®. Values of f near 0 indicate that f is well-approximated by f(J,0,n),
while “large” values of f indicate the opposite. The following can be established algebraically: (1)
fr<0;(2) fn >0, 3) f, >0for p~0and <0 for p~1; (4) f < 1. Because f, > 0, we

have f(J,p,2) < f(J,p,n) < lim, .o f(J,p,n), so the following relations essentially “frame” f by

1Because f(J,1,n) = f(J,0,n) = 0, assuming a baseline case of p = 1 is identical to that of p = 0.
2When J and p are nearly equal, f is, to first order

2J(1=J) (. . . nJ(A=-JH+(1-J")
(1+J)? (1 1=J) n(l—J2)—2J(1—J")>

2J(1—-J

CFE for large n.

which approaches



providing bounds for it:

e
e = arna—pna) 2
2p(1—J)°

1+ )1 =pJ)(1+p)

f(J,p,00) =

These functions are depicted, along with a representative plot of f (for n = 10), in Figure [1].

rho

Figure 1: Ratio of variance weighting factors, f(.J, p,n), for n = 2,10, 0o

Several properties of the variance estimator are discernible from Figure [1]. Most obviously,
because f < 1 for p € [0,1] and all n, taking p to be 0 has a modest effect on the value of
the variance, an effect most pronounced for moderate values of p (i.e., close to neither 0 nor 1),
small values of J (i.e., near 0) and large values of n. Given that f was defined predicated on the

assumption of a nearly-degenerate distribution for P, Figure [1] in fact depicts the most extreme
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variance inflation possible, so that unimodal P distributions would produce substantially muted
effects.

Based on Figure [1], the relative effects of the two types of first-order carry-over represented by
p and J can be compared. Perhaps most obvious is the relative order of the inflationary effects
allowed by p and J. Where carry-over in the 6 series (‘baseline’ choice probabilities), measured by
p, has in the most extreme case an effect that causes variance inflation by at most a factor of 2
(for n large, p extreme, J near 0 and P near degeneracy), the asymptotic relation to sample size
remains on the order of n~!; such effects can be reasonably termed moderate, and ignoring them
entirely, in application to actual data, would be unlikely to cause a great deal of overconfidence in
parametric convergence, as measured by the ‘tightness’ of the resulting distribution. By contrast,
‘exogenous’ (to the utility specification) first-order effects, represented by J, affect the asymptotic
rate of convergence itself, with ‘large’ values of J inflating the rate to an order of n, so that the
variance is essentially independent of n. Analogous to the treatment for p above, we can define
g(J, p,n) as the ratio of the variance expressions of the form (19), with the unrestricted expression

normed by that when J = 0:

lim;_, o Var W]
limy —o; J—0 Var [Y]

g(Jv Ps 7’L) = (22)

This function, g(J, p,n), is depicted in Figure [2] for n = 2,5, 10.
Figure [2] depicts the salient features of the effects of state dependence. For large values of J,
the variance inflation factor is quite large, approaching n for extreme values of p; in fact, it is not

difficult to show that, for J ~ 1, the limiting contour apparent in Figure [2] is given by

n —1
2p (1—p")

n(l-p) ’

which approaches n for p near 0 or 1, and reaches a unique minimum between these values.?

Jim g(J.p,n) =n(l+p) |(1+3p) — (23)

Thus, the effects of state dependence can be said to be not only far stronger, but of a different
nature, than those of habit persistence. Whereas the effects of habit persistence are at best modest,
bounded by a factor of 2, those of state dependence increase (nearly linearly, for large J) with the

sample size, causing the variance to fall off at a lesser asymptotic rate. Further, while the effects of

3No closed form solution exists as a function of n, although it is possible to show that n/2 < min, g(1, p,n) <

-1
n (4 -2 \/5) for all n.
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Figure 2: g(J, p,n) for n =2,5,10

habit persistence are maximized for intermediate values of the parameter p (and fall to insignificance
near its boundaries) and large values of J, state dependence effects are maximized for large values
of the relevant parameter (J) an effect that is partly mitigated for intermediate quantities of p. In
tandem, while the effects operate synergistically, they do not do so in a separable fashion, with the
greatest joint effect dependent on the particular degree of state dependence (generally large) and

habit persistence (generally intermediate) in the system.

5 Conclusions

From the earliest efforts in household-level brand choice modeling, it has been clear that some

type of feedback mechanism is desirable, if not required, for two reasons: as a brand-intercept
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heterogeneity correction (e.g., Guadagni and Little 1983; Krishnamurthi and Raj 1991), and to
account for preference non-stationarity (e.g., Fader and Lattin, 1993). Such ‘constructed’ variables
are appealing not only for the quality of disaggregate information that they convey, but for their ease
of calculation, interpretation and parsimony, an ease which must be traded-off against their possible
confounding effects (e.g., intrinsic preference, price sensitivity, carry-over, etc.) when compared
with Bayesian methods (e.g., Allenby and Lenk 1994; Lenk and DeSarbo 1996). However, the small-
sample statistical properties of such variables have gone largely unexplored, notably their effects
on convergence, for example, of baseline household preference measures of the type explored in the
present paper.

We have focused on two methods of accommodating carry-over, the first based on habit persis-
tence (temporal autocorrelation) in the choice model, the second in the form of correlations between
present choice probabilities and past choices, or state dependence. Their effects, with regard to
mean convergence rates, are rather different, not only in relative strength but where in the joint
(J, p) parameter space they are most pronounced. Compared with those of state dependence, the
effects of habit persistence are rather mild, and are at their strongest when there is little or no state
dependence present.

The basic methods presented here can be extended from the bivariate case to the multivariate,
as discussed previously, by considering the Bernoulli choice as between a focal brand and all other
brands, although this follows trivially only in the case of models that conform to the ITA assumption,
such as Logit or any model consistent with Luce (1959) type scaling. Further work might entail
the study of so-called ‘loyalty’ variables and their attendant properties; as these are merely linear
combinations of past-purchase indicator variables, the implicit 1/n weightings of the mean vector
would be replaced by an appropriately-normed inner product, so that first and higher moments
should in principle follow from the same type of conditioning methods developed here. As this entails,
in the Guadagni and Little (1983) treatment, an additional ‘smoothing’ parameter be estimated, such
a derivation has not been undertaken here, though in broad outline the qualitative implications would
doubtless be of a similar character with regard to the relative effect strength of state dependence

and habit persistence on convergence of the loyalty estimator.
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