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COORDINATED POSITIONING AND DESIGN OF PRODUCT LINES FOR 

MARKETS WITH HETEROGENEOUS PREFERENCES 

ABSTRACT 

 
Successful design and development of a line of products requires balanced consideration 

of technical and market tradeoffs. Quantitative methods for selecting desirable product attributes 

based on conjoint survey data are useful, taken on their own, for many product types. However, 

products with substantial engineering content involve critical tradeoffs in the ability to actually 

achieve those desired attributes. These technical tradeoffs must be made with an eye toward their 

market consequences, particularly when heterogeneous market preferences make differentiation 

and strategic positioning critical to capturing a range of market segments and avoiding 

cannibalization. 

We present a methodology for product line optimization that efficiently coordinates 

positioning and design models to achieve realizable firm-level optima. The approach leverages 

prior methods where possible, overcoming several shortcomings of current positioning models by 

incorporating a general (Bayesian) account of consumer preference heterogeneity, alleviating 

known issues of combinatorial complexity, facilitating efficient parallel computing, and avoiding 

infeasible solutions. The method is demonstrated for a line of dial-readout scales, using physical 

models and web-collected consumer choice data from the literature. Results show that the optimal 

number of products is not necessarily equal to the number of market segments, and the 

representational form for consumer heterogeneity has a substantial impact on the design and 

profitability of the resulting optimal product line – even for the design of a single product.  The 

method is of great comparative managerial value, as it yields product line solutions efficiently, 

accounting for the distribution of preferences in the marketplace as well as technical constraints 

on the range of achievable product solutions.  

KEYWORDS: Product Line Design; Analytical Target Cascading; Hierarchical Bayes; Conjoint 
Analysis; Discrete Choice Analysis; Constrained Optimization; Design Optimization; Preference 
Coordination. 
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1. Introduction 

Marketplace globalization, the proliferation of niche markets driven by heterogeneity of 

preferences, increased competitive pressures, and demand for differentiated and customized 

products have rendered the practice of isolated design and production of individual products 

essentially obsolete. Across industries, it is now common practice to design lines or families of 

product variants that reduce cost by taking advantage of economies of scale and scope, while 

reaching multiple market segments and achieving strategic market coverage to deter competitors. 

Planning for these lines of products requires care, since each product competes for market share 

not only with competitor products, but also with other products in the line. Current methods for 

quantifying the degree of expected cannibalization and the additional revenue and cost associated 

with differentiation offer support for planning product lines; however the scope and applicability 

of current methods in product line optimization is limited: Engineering approaches to product line 

optimization focus on the tradeoff between increased commonality among products and the 

resulting decreased ability to meet (usually hypothetical) exogenous performance targets for each 

product variant. These approaches generally lack data-driven models of market preferences for 

product performance attributes and, consequently, focus on reducing cost by increasing part 

commonality, designing platforms, or increasing modularity for mass customization. 

In contrast, approaches to product line optimization in the management science and marketing 

literatures do not, by-and-large, address product design details that are not directly observable by 

consumers. These approaches typically presume that any combination of product attributes in a 

conjoint study can somehow be attained by engineering designers post hoc. While such an 

assumption may be well-suited for many simple or well-established products, applicability is 

limited for products that include even moderately complex engineering tradeoffs. Furthermore, 

existing approaches have not taken advantage of the many advances in econometric modeling of 

consumer preference heterogeneity, in particular hierarchical Bayes methods, and generally 

require exogenous individual-level or homogeneous segment-level preference data. A few cross-

disciplinary approaches have recently emerged that design engineering products under business 
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and marketing objectives; however, most focus on the design of a single product. In this article, 

we develop a novel method that bridges existing gaps in the product line literature for designing 

products with engineering complexity and preference heterogeneity.  

We proceed by reviewing relevant literature on product line optimization from engineering, 

management and marketing, as well as conjoint choice modeling, before proceeding to describe 

the proposed approach. Because the scopes, perspectives, modeling methods, and objectives 

differ substantially among product development disciplines (Krishnan and Ulrich provide a 

detailed overview [1]), it is inevitable that some conflicts of terminology will exist: In this article, 

we take product positioning to be the process of choosing values for physical (as opposed to 

perceptual) product attributes that are observed directly by the consumer, whereas product design 

involves decisions made by the engineer that are not observed directly but that have influence on 

the product attributes observed by the customer. 

1.1. Product Line Optimization in Engineering 

The bulk of the engineering literature relevant to product line design focuses on studying 

product commonality and product platforms [2, 3]. These efforts generally focus on the tradeoff 

between increased commonality among products in a line and the resulting decreases in the 

ability to meet distinct performance targets for each product variant. Authors use the terms 

“product family” and “product platform” rather than “product line” to emphasize the focus on 

commonality among the set of products. These approaches tend to be engineering-centric and do 

not model market preferences using data. Instead, most focus on hypothetical targets set 

exogenously for each product in the family. Those that do reference marketing pose hypothetical 

market segments [4] or define an intuitive market segment grid by enumerating levels of product 

performance [5]. None of these product family methods invoke econometric models of consumer 

choice built on market data. 

Recent efforts have attempted to link engineering optimization models to conjoint preference 

models; however, these approaches generally focus on a single-product [6-9]. A notable 

exception is Li and Azarm [10], who pose an approach that addresses design of a product line by 

first generating a set of designs that are Pareto-optimal in engineering performance and then 
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selecting a product line from that set based on a conjoint model of demand using genetic 

algorithms. This sequential approach can be effective for product line design cases where 

preferences for product attributes are strictly monotonic across the consumer population (e.g., 

fuel economy, reliability, price, etc.) and individual consumers vary only in their preferred 

tradeoffs among desirable attributes. However, it is not clear how this method might be extended 

for non-monotonic cases, such as the dial-readout scale examined in Section 4, where individuals 

have different ideal points and a single Pareto set cannot be defined common to all consumers. 

Engineering approaches are generally designed around gradient-based constrained nonlinear 

programming techniques to handle continuous or mixed formulations with continuous and 

discrete variables. The focus on continuous variables increases applicability for practical 

engineering problems and avoids combinatorial complexity found in many positioning 

approaches. One difficulty with integrating models from various product development disciplines 

is that the combined model can be quite large and complex, causing optimization difficulties. Gu 

et al. [11] proposed a method for maintaining separate models for marketing and engineering 

decisions, coordinating them using the collaborative optimization (CO) technique for 

multidisciplinary design optimization, although they do not propose details for modeling and data 

collection for the marketing component. Michalek et al. [9] proposed a similar decomposition 

approach using analytical target cascading (ATC) to coordinate marketing and engineering 

models for a single product, assuming consumer preferences to be homogeneous. They point out 

a preference for the ATC approach over CO because ATC is defined for an arbitrary hierarchy of 

subsystems, and convergence proofs ensure coordination will lead to a solution that is optimal for 

the firm [12-17]. Most of the research on ATC has been applied to the design of a single product; 

however, Kokkolaras et al. [18] proposed a method using the ATC formulation to coordinate the 

design of a family of products. This approach is desirable, as the design of each product is 

handled in a separate subsystem, and the subsystems are coordinated. However, as is common in 

engineering approaches, Kokkolaras et al. use a dummy objective function for positioning and do 

not explicitly model market preferences for the variants. 
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Engineering methods for product line design are powerful, but their main drawback is that the 

vast majority fail to incorporate consumer demand. Those that do are exceptionally simple in 

comparison to prevalent approaches in marketing; for example, they ignore preference 

heterogeneity entirely. Hence, a product deemed ‘optimal’ may be so with respect to 

performance, cost or efficiency, but not in terms of profitability. 

1.2. Product Line Optimization in Management Science and Marketing 

Table 1 summarizes major contributions to the product line optimization literature, focusing on 

those in marketing and management science, but including two aforementioned engineering 

approaches that address product lines. Among the earliest conceptualizations for product line 

optimization was that of Green and Krieger [19], who posed the product line selection problem as 

a binary programming problem involving selection of products from a candidate set to be 

included in the line in order to maximize the seller’s (or buyers’) welfare. Here the set of 

candidate products with their associated utility values is determined exogenously, and product 

demand is predicted using a first choice model, where each individual is assumed to choose 

deterministically the alternative with the highest associated utility. Variants of the original model 

were later proposed by Dobson and Kalish [20] and by McBride and Zufryden [21], who offer 

alternative integer programming techniques and heuristics for solving the problem. Dobson and 

Kalish [22] also introduce fixed and variable costs for each candidate product and show 

equivalence of their formulation to the uncapacitated plant location problem, an NP-complete 

formulation which they solve using greedy interchange heuristics. 

While these initial methods assumed utility for each product alternative has been determined 

exogenously, Kohli and Sukumar [23] departed from this approach, using conjoint part-worths 

and introducing a single stage binary programming formulation that selects product lines directly 

from their product attribute levels. Chen and Hausman [24] extended prior approaches by 

introducing choice-based conjoint analysis and the multinomial logit model for predicting choice. 

Since the choice task is arguably most similar to that which consumers perform in practice, 

researchers have found it to be the best approach for extracting individual-level consumer 

preferences [25]. Chen and Hausman propose a binary programming formulation with properties 
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that allow the problem to be solved efficiently using nonlinear programming techniques. Because 

these properties do not hold when consumer preferences cannot be presumed homogeneous, their 

approach cannot be directly used for designing product lines to meet the disparate needs of most 

real consumer populations. Among the most recent contributions is that of Steiner and Hruschka 

[26], who use genetic algorithms to efficiently locate near-optimal product line designs. Other, 

approaches have also been proposed to model products qualitatively in terms of abstract “quality 

levels”, although these models are primarily used to analyze structural properties, rather than 

offer computational decision support tools (Krishnan and Zhu provide a recent review [27]). 

Despite these advances, a number of key problems remain.  Specifically, current approaches to 

the product line problem: lack coordination with engineering terms of product feasibility; do not 

easily accommodate a sophisticated account of preference heterogeneity; entail substantial 

computational problems; and require changes from the ground up to deal with new structures and 

phenomena (e.g. channel structure, models of competition). Our proposed methodology resolves 

each of these issues, as we discuss in the following sections.  

1.3. Conjoint Choice Models 

As is typical in marketing and econometrics, we adopt a random utility framework [28] for 

estimating market demand for the product line, where the utility of each product to each 

consumer is assumed to depend on the product’s attributes, the consumer’s idiosyncratic 

preferences for those attributes and a random error component.  Most of the previous product line 

optimization formulations adopt a demand model where utility is written as a deterministic 

function of the product and consumer attributes, which offers computational benefits for rating or 

ranking conjoint data (e.g., [10, 19-23]). A random utility framework, however, can be expected 

to provide a more realistic representation of the consumer decision process, allowing as it does 

for uncertainties and factors unobservable to the analyst. Furthermore, a random utility model 

avoids the discontinuities intrinsic to a deterministic framework, allowing efficient gradient-based 

nonlinear programming optimization algorithms for optimal product line determination. 

Importantly, a random utility framework allows for explicit modeling of consumer taste 

distributions, or heterogeneity. As our results illustrate, the various representations available to 
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model taste differences can have a substantial, and substantive, impact on the final optimal 

product line and its profitability; this is especially so if one chooses an overly parsimonious 

representation. This is hardly unexpected, as accounting for differences in product preferences is 

of pivotal importance in product line optimization. Surprisingly, the impact of preference 

heterogeneity on line configuration has not received much attention in the product line literature.   

1.4. Proposed Methodology 

Prior approaches to product line optimization can work well for certain types of products and 

markets but have identifiable gaps for a wide range of real-world product lines. Engineering 

approaches have applied decomposition methods to efficiently coordinate the design of multiple 

products; however, few measure or even account for consumer preferences; indeed, the only prior 

method that coordinates conjoint and engineering design for product line optimization [10] 

requires monotonic preferences for attributes (which will, in fact, be rejected empirically in our 

forthcoming application). Management and marketing approaches require the assumption that all 

attribute combinations in the conjoint model can be achieved by some engineering design, and 

none take advantage of modern techniques (Bayesian and mixture model formulations) to 

explicitly model preference heterogeneity. Moreover, for all these approaches, combinatorial 

explosion limits the number of the line’s products that can be studied practically.        

In this article, we propose a coordinated methodology to design and position product lines. 

The method uses ATC to coordinate attribute selection for each of the products desired by a 

heterogeneous market, while ensuring they can actually be achieved by a set of realizable designs.  

In demonstrating the methodology, we compare explicitly throughout to a prior, single-product 

design example under homogeneous demand [9], adopting its product topology model. We can 

therefore not only demonstrate the superiority of the derived product line results, but also show 

that even for the single product case, assumption of preference heterogeneity can be problematic. 

The proposed approach avoids the combinatorial complexity of binary/integer formulations in the 

marketing literature while extending applicability to continuous or mixed formulations and 

avoiding the need to assume monotonic preferences. The decomposition-based ATC approach 

offers the organizational and computational benefits of maintaining separate subsystems for 
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positioning and design of each project, reducing the dimensionality of each subspace and 

allowing each subsystem to be efficiently solved in parallel [16, 17]. ATC also facilitates scaling 

up to large problems with many products. 

Like Chen and Hausman [24], we invoke a number of assumptions to focus on product line 

optimization issues: (1) total market size is exogenously determined; (2) each customer purchases 

zero or one product; (3) customers do not directly influence one another; and (4) production can 

be scaled up or down to suit demand. As such, our formulation is well-suited to stable durables 

and is less appropriate for rapidly-developing product classes. Unlike prior research in the area, 

we invoke only mild parametric assumptions about how to represent consumer preferences. 

The proposed product line design methodology entails three stages: First, consumers choose 

among products in a conjoint setting; second, heterogeneous demand models are estimated, with 

preference coefficients interpolated using splines; and third, ATC coordinates optimization over 

the space of feasible product designs to yield optimal product attributes. The first two stages are 

viewed as preprocessing for the ATC model, as shown schematically in Figure 1, with symbols 

rigorously defined later in the text. We proceed by defining the ATC methodology in Section 2, 

conditional on a model to predict demand; next we describe alternative discrete choice model 

specifications for demand prediction in Section 3; and finally, we demonstrate the methodology 

with an application to dial-readout scales using models and data from the literature in Section 4 

and discuss results in Section 5.  

2. ATC Coordination of Product Positioning and Design 

The ATC-based methodology presented here calls on established modeling traditions in 

engineering design and marketing. It is innovative in terms of formally coordinating them, and 

does not seek to “reinvent the wheel” in either case. Indeed, this modularity is among its chief 

strengths. ATC was conceived as a broad platform for large-scale engineering systems 

optimization. By viewing a system as a decomposable hierarchy of interrelated subsystems, ATC 

allows each subsystem to be modeled and optimized separately, coordinated, and then iteratively 

re-optimized to reach a system solution [29]. 
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ATC requires a mathematical or computational model of each subsystem, and in practice these 

can be numerous. The modeler’s task is to organize the various subsystem models into a 

hierarchy, where each element in the hierarchy represents a (sub)system that is optimized to 

match targets passed from the parent (super)system while setting targets that are attainable by 

subsystem child elements. For example, a vehicle design could be decomposed into systems such 

as body, chassis, and powertrain; the powertrain system could be decomposed into subsystems 

such as the transmission and engine; and the engine could be further decomposed into 

components such as the piston, crankshaft, etc. In our application of ATC, the joint product line 

positioning and design problem is (formally) decomposed into interrelated subsystems, which can 

then intercommunicate and algorithmically iterate. It is known that the iterative solution of 

decomposed ATC subsystems under specific coordination strategies will converge to the solution 

of the joint non-decomposed problem [13-17]. In the present case, market positioning and the 

engineering design of each product in the line can be solved separately and in parallel, producing 

a solution that is optimal for the joint problem [16, 17, 30]. In practice, the joint problem can be 

far more difficult to solve, sometimes impossibly so, owing to high dimensionality, scaling 

difficulties and the need for modeler expertise in all areas. 

In general, ATC can accommodate an arbitrarily large hierarchy, where parent elements set 

targets for child elements. For example, the methodology has been demonstrated for large 

hierarchical systems such as vehicle design [31] and architectural design [32]. In the product line 

case, each design in the line could be decomposed into a set of subsystems and components, or 

additional marketing models could be included, say, for promotion and distribution. In this 

article, we address product line optimization by introducing a set of engineering design 

subsystems, one for each product in the line, along with a positioning formulation that sets targets 

for all products in the line using a heterogeneous model of demand. A schematic depiction of the 

process appears in Figure 2: The positioning subsystem involves determining price and (target) 

product attributes for the full product line to maximize a known objective function, which can be 

profit or some other measure of interest to the firm, while each design subsystem requires 

determining a feasible design – one conforming to known constraints – that exhibits product 
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attributes as close as possible to the targets set in the positioning subsystem. Decomposition into 

the ATC structure can be even more important in the product line case than in the single product 

case because including engineering models for the design of multiple products in a single 

optimization statement creates a high-dimensional, highly constrained space; by contrast, with 

ATC decomposition of the line, the space of each individual product design remains unchanged 

as new products are added to the line. The chief organizational benefit of ATC is that it 

segregates models by discipline: Marketers can build positioning models based on, say, conjoint 

analysis and new product demand forecasting; engineers can formulate models for product design 

and production; and other functional groups can focus on what they know how to do well. No 

functional area need become an expert in modeling the others, since ATC coordinates models 

with well-defined interfaces. The following sections lay out the design and positioning 

subsystems explicitly.  

2.1. Engineering Design Subsystems 

The objective of each engineering subsystem is to find a feasible design that exhibits product 

attributes matching the targets set during market positioning as closely as possible. Here the 

vector of product attributes zj for product j represents a set of objective, measurable aspects of the 

product, observable by the customer, resulting from engineering design decisions. In each 

engineering design subsystem j, search is conducted with respect to a vector of design variables 

xj, which represents decisions made by the designer that are not directly observable by consumers 

but that affect the attributes that consumers do observe zj. An engineering analysis simulation 

response function r(xj) is used to calculate attributes zE
j as a function of xj. The design variable 

vector xj is restricted to feasible values by a set of constraint functions g(xj) < 0 and h(xj) = 0, and 

so values for product attributes zE
j = r(xj) are implicitly restricted to values that can be achieved 

by a feasible design. While construction of x, r(x), g(x) and h(x) to represent a particular 

engineering design system is necessarily case-specific, general principals and guidelines are well 

established in the literature [33, 34]. The objective of each engineering design subsystem is to 

minimize deviation between the attributes achieved by engineering zE
j and the positioning targets 

zM
j set by the positioning subsystem, which are held constant in each engineering design 
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subsystem. This deviation objective originates from a relaxation of the consistency condition (zM
j 

– zE
j = 0) by instead introducing a consistency constraint relaxation function π(zM

j – zE
j). This 

relaxation can be handled in a variety of ways including penalty functions [12, 14, 29], 

Lagrangian relaxation [15] and augmented Lagrangian relaxation [13, 16, 17]. In particular, the 

diagonal quadratic approximation approach applied by Li et al. [16] produces separable 

subsystems and allows each design in the product line to be optimized in parallel, dramatically 

improving computational efficiency.  The engineering optimization problem for product j can 

then be written as 

( )
( ) ( )
( )

M E

E

minimize  

subject to ,

where 

j
j j

j j

j j

π −

≤ =

=

x
z z

g x 0 h x 0

z r x

, 
(1)  

2.2. Market Positioning Subsystem 

The market positioning objective is to maximize profit Π with respect to the price pj and the 

vector of product attribute targets zM
j for each product j in the product line j = {1,2,...,J}.  

Although firms can specify arbitrarily sophisticated profit functions based on their experience, 

internal accounting and historical demand, we use a simple profit (Π) formulation here – revenue 

minus cost – so that 

( )( )V I
1

J
j j j jj

p c q c
=

Π = − −∑ , (2)   

where pj is the (retail) price of product j, cV
j is the unit variable cost of product j, cI

j is the 

investment cost for product j, which represents all costs of setting up a manufacturing line for 

product j, and qj is quantity of product j sold (demand), which is a function of the product 

attributes zM
j′ and price pj′ of all products j′ = {1,2,...,J}. We presume that product commonalities 

enabling investment cost sharing and improving economies of scale do not exist, so each new 

product design requires new manufacturing investment. In general, cV
j and cI

j can be considered 

functions of market conditions or engineering decisions, although in the example they are taken 

as constants. Given a demand model to calculate qj for each product j as a function of zM
j′ and pj′ 
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for all products j′, which will be developed in the Section 3, the profit function is fully defined. 

The objective function also involves the consistency constraint relaxation function π(zM
j – zE

j) for 

minimizing deviation from attributes achievable by engineering zE
j, which are held constant in the 

positioning subsystem. Finally, the positioning subsystem for a single-producer scenario, 

conditional on a model for demand, is written as: 

{ }
( ) ( )( )
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j j j j j jjp j J
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=∀ ∈
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− − − −
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∑
z

z z

z

K . (3)   

In Section 3, we address how conjoint analysis, discrete choice modeling and Bayesian (MCMC) 

methods can be used to represent the functional relationship between demand q and the variables 

zM and p for positioning a product line. 

2.3. Complete ATC Formulation 

Figure 2 conveys both a mathematical and verbal description of the complete formulation, showing 

the flow of the ATC-based product line optimization model for a single producer, where the 

number of products in the line J is determined through a parametric study: i.e., J is held fixed 

during optimization, separate optimization solutions are found for each value of J = {1,2,...}, and 

the value of J that produces the solution with the highest profit is selected. Coordination of the 

subsystems can be handled in a variety of ways. The most efficient method according to a recent 

study [16, 17] is the truncated diagonal quadratic approximation augmented Lagrangian 

approach. This method uses π(zM
j – zE

j) = λT(zM
j – zE

j) + ||w • (zM
j – zE

j)||22, where λ is the 

Lagrange multiplier vector, w is a weighting coefficient vector, and • is the Hadamard product 

(i.e.: (A•B)i = AiBi). The coordination procedure is: 

1. Initialize all variables 

2. Solve the positioning subsystem and each design subsystem in parallel 

3. Update linearization of the cross component of the augmented term at the new point 

4. Update λ and w using the method of multipliers 

5. If converged, stop, else return to step 2 

A review of alternative coordination methods for ATC is provided in [16, 17]. 
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3. Models of Product Demand 

Green and Krieger’s comparative study of alternative conjoint methods for eliciting consumer 

preferences concluded that choice-based conjoint offers the best method for the extraction of 

individual-level consumer preferences [25]. We use it as follows: Respondents are presented with 

a series of questions or “choice sets” t = {1,2,...,T}. In each choice set t, the respondent is 

presented a set of product alternatives j∈Jt, with attributes set at discrete levels and systematically 

varied [35, 36]. The resulting data are each respondent’s observed choices in each choice set: Φijt, 

where Φijt = 1 if respondent i chooses alternative j in choice set t, and Φijt = 0 otherwise. These 

data {Φijt} are then used to estimate the parameters of the choice model for the positioning 

subsystem, as illustrated in Figure 1.  

In the random utility choice model, individuals i = {1, 2, ..., I} derive from each product j = 

{1, 2, ..., J} some utility value uij that is composed of an observable, deterministic component vij 

and an unobservable random error component εij, so that uij = vij + εij. Each individual will choose 

the alternative that gives rise to the highest utility (i.e., alternative j is chosen by individual i if uij 

> uij′ for all j′≠ j). The deterministic utility νij derived by individual i from product j is written as 

0 1ij i jv ζ

ζω ζωζ ω
β δΖ Ω

= =
=∑ ∑ , (4)   

where the binary dummy δjζω  = 1 indicates alternative j possesses attribute ζ at level ω, and βiζω 

is the part-worth coefficient of attribute ζ at level ω for individual i, which is estimated from the 

conjoint choice data Φ. In δjζω the elements of the product attribute vector zM
j are enumerated ζ = 

{1, 2, ... Z}, and price p is included in δjζω and labeled as element ζ = 0. Note that each product 

attribute ζ is either intrinsically discrete or is discretized into Ωζ  levels, ω = {1, 2, ... Ωζ }; this is 

crucial, as it does not presume linearity with respect to the underlying continuous variables. The 

probability Pij that alternative j is chosen by individual i depends on the assumed error 

distribution. The most common distributions for εij are the normal and double exponential, 

resulting in the standard probit and logit models, respectively [28]. It is well-known that very 

large samples are required to distinguish results produced by the logit and probit specifications 
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[37]. Finally, we index the “no choice option” (the outside good) as alternative 0, with error εi0 

and attraction value vi0 for individual i, where vi0 = 0; ∀i for identification purposes. 

The representation of differences in consumer tastes, as given by βi, where βi contains the 

elements βiζω, can be expected to be important in product line optimization, as heterogeneity in 

preferences should give rise to differentiated product offerings. Failure to correctly model this 

heterogeneity can lead to biased parameter estimates, inaccurate predictions [38, 39] and, 

consequently, suboptimal product line designs. Furthermore, when heterogeneity is not 

adequately accounted for it is well-known that the independence from irrelevant alternatives (IIA) 

problem is exacerbated [40]. We therefore specify a very general continuous distributional form 

for βi by using a mixture of normal distributions [41, 42]. The approach assumes that there are a 

finite number of groups or segments, in which individuals are similar – though, importantly, not 

identical – with respect to their preferences and tastes. To be more specific, we have   

( )1
~ ,B

i b b bb
s N

=∑β θ Λ , (5)  

where sb is the fraction of the market in “segment” (or mixing component) b; b = 1,...,B. Here θb 

is the vector of means for βi and Λb is a full variance-covariance matrix. This model provides a 

very general specification that combines both discrete and continuous heterogeneity and includes 

several well known heterogeneity models as special cases: (i) when B=1 the well-known standard 

random-effects model arises, which, in combination with Bayesian estimation, enables 

individual-level estimates by pooling information among individuals via “shrinkage” [42]; (ii) 

when Λb = 0 for all b = 1,...,B the standard latent class or finite mixture model arises [43], and 

individuals within a segment b are assumed to have identical preferences θb; and (iii) when Λb = 0 

and B = 1 it is assumed that all individuals have the same preference θ1. The last, homogeneous 

case (iii) is overly simplistic, and demand models that assume homogenous tastes can be expected 

to perform poorly in terms individual specific part-worth recovery and market predictions. 

Andrews et al. [44] suggest that models with continuous (case i) and discrete (case ii) 

representations of heterogeneity recover parameter estimates and predict choices about equally 

well, except when the number of choices J is small, in which case the discrete heterogeneity 
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model (ii) outperforms the continuous model (i). One objective of the proposed research is to 

examine whether optimization results conditional on each of these models will also produce 

similar results. 

For the general case, model parameters are estimated via standard Markov chain Monte Carlo 

(MCMC) techniques [45, 46]1. We generally specify conjugate priors, and the full conditional 

distributions for the MCMC sampler can be derived straightforwardly (e.g. [41, 42]). In order to 

choose the number of mixture components B in the mixture representation for βi, we use the 

Deviance Information Criterion (DIC) statistic proposed by Spiegelhalter et al. [47]. DIC is 

particularly suited to complex hierarchical (Bayesian) models in which the number of parameters 

is “not clearly defined” [48], because the DIC statistic determines the “effective number of 

parameters” entailed by the model specification itself, unlike measures such as AIC.  

Once the model parameters are estimated, we compute market demand for the positioning 

subsystem (Figure 2) in three steps: First, we generate a large set of βi (say i = 1,...,ID) from the 

hierarchical model {sb, θb, Λb}, which describes the mixture distribution2. Secondly, we use 

natural cubic splines [9, 49] to interpolate βi for intermediate values of product attributes and 

price. Specifically, natural cubic spline functions Ψiζ are fit through the discrete part-worth 

coefficients βiζω for each i and ζ, where ω = {1,2,...,Ωζ} to interpolate the deterministic 

component of utility. Indexing attributes as ζ = 1,…, Ζ and price as ζ = 0, the interpolated value 

of the observable component of utility is  

( ) ( )M
0 0 1

ˆ , ,ij i i j i i jv pω ζ ζω ζζ
β βΖ

=
= Ψ + Ψ∑ z , (6)   

where zM
jζ indicates the ζth element of the vector zM

j. These interpolated îjv  give rise, through the 

random utility specification, to expected individual choice probabilities Pij, which are computed 

using either a logit or a probit distribution for the errors. Finally, the individual choice 

probabilities are used to compute total market demand (Figure 2). The logit formulation increases 

                                                      
1 We are indebted to Peter Lenk for sharing both his GAUSS code and expertise. 
2 After estimating the model, we have a set of draws from the posterior distribution of βiζω for each survey respondent. One could 

then use this information to estimate market demand using this specific set of individuals. We take a Bayesian perspective and use the 
hyperparameters that describe the mixture distribution after the MCMC chain has converged, as these parameters can be viewed as 
giving rise to the individual-level βi values. Hence, an arbitrarily large sample of new βi values from this distribution can be drawn to 
describe the market. 



  - 16 - 

optimization speed considerably, since choice probabilities can be calculated exactly and 

efficiently in each step of the ATC optimization, as opposed to the probit case, where choice 

probabilities must be approximated using numerical methods [37]. Calculating market demand 

for product j involves multiplying the probability Pij, by the market potential S for each individual 

i=1,..., ID, and averaging the resulting quantities across the individuals. Market potential is 

assumed to be exogenously determined through pre-market forecasting techniques [50].  

4. Empirical Application 

We apply the proposed methodology to design a line of dial-readout bathroom scales using 

engineering models and conjoint choice data from [9] for comparison. This example was 

originally posed for optimization of a single product using a homogeneous logit-based demand 

model. As we will show, even when a firm seeks to enter the market with a single product (a 

rarity in durable product categories) the presumption of homogeneity is troublesome. 

The inherent modularity of the proposed methodology for product line design circumvents the 

need to build a joint model of the full product line for each case J = {1,2,...}. Instead, a model of 

only a single product need be developed, and a duplicate can be created for each product j 

constituting the line3, as illustrated in Figure 2. It is important to note that the design space x for 

this product does not map one-to-one with the attributes z communicated to consumers. This 

comes about because the engineering design model specifies some product attributes as functions 

of interactions among design variables; that is, different designs may exhibit identical product 

attributes, as observed by the customer. A manager could enact any number of criteria post hoc to 

choose from among such a continuum, or detailed cost data and preferences for commonality 

could drive selection of a single engineering design among the set of possibilities, although we do 

not pursue such strategies here.  

The product attributes z seen by consumers are weight capacity z1, aspect ratio z2, platform 

area z3, tick mark gap z4, and number size z5, in addition to price p. For the conjoint study, the 

range of values for each attribute was captured by five (discrete) levels. Each respondent (n = 

                                                      
3 All models and results are available from the authors upon request. 
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184) made choices from 50 consecutive sets in a choice-based conjoint task, identical across 

respondents, each with three options (plus “no choice”), implemented through a web browser. 

With the ATC approach, it is not necessary, nor practical to pre-restrict choice sets to include 

only realizable products. The goal of the conjoint task is the effective and unbiased measurement 

of consumer preference drivers. Infeasible combinations of product attributes are implicitly 

avoided during optimization through coordination with the engineering design subsystem.  

The demand/profit function requires (exogenous) estimates of several quantities, which are 

based here on manufacturer and publicly-available figures: cV
j = $3 cost per unit, cI

j = $3 million 

for initial investment, and market size S = 5 million, the approximate yearly US dial-readout scale 

market. Being completely exogenous, these values are easily altered. The entire marketing 

subproblem is formulated as in Eq.(3), with the demand model specified in Eq.(4)-(6). The 

special cases of discrete mixture (Λ=0) and homogeneous (B=1, Λ=0) models are straightforward 

to estimate using maximum likelihood techniques [28]. For the mixture of normal distributions, 

estimates from a classical mixture of probits were used as starting values, and the Gibbs sampler 

was iterated until a stationary posterior was obtained. To mitigate autocorrelation, the data were 

thinned by retaining every 10th draw, after a burn-in of 50,000 iterations. Convergence was 

examined through iteration plots. Posterior marginals revealed no systematic convergence 

problems. In order to optimize over this posterior surface, Monte Carlo integration was applied, 

as follows: When the chain has stabilized, new values of βi are generated as the chain continues to 

run, allowing hyperparameters to vary across the generated values. These are thinned to reduce 

serial correlations; specifically, 10,000 values are generated, and every 10th is retained. The 

resulting set of 1000 βi draws, with splines fit through the part-worth attribute levels of each 

draw, is used to represent the population (the posterior surface) throughout the optimization. 

Accuracy can be enhanced, if need be, by generating additional βi values, although in the case 

study, tests of solution sensitivity to additional draws (up to 24,000) show that 1000 draws is 

sufficient to represent the surface.   
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5. Results 

There are two main components to the approach advocated here: 1) econometric, for the 

extraction of individual-level preferences and generation of the preference splines, and 2) 

optimization-based, for the determination of the best number of products, their positioning and 

design conditional on the preference splines. We look at these in turn. 

5.1. Demand Model Results 

Table 2 lists DIC results for the normal mixture model and BIC results for the discrete mixture 

and homogeneous cases as well as classical log-likelihood values for reference. The latent class 

model identified by BIC consists of seven segments, while the mixture model with a diagonally-

restricted covariance matrix identified by DIC has three mixing components, and the full-

covariance mixture model has two. It is apparent that: (1) continuous heterogeneity (normal 

mixture) alone is superior to discrete heterogeneity (latent class) alone, up through a fairly large 

number of segments [42]; (2) a correlated (random) coefficients specification for the normal 

mixture is superior to an uncorrelated one; and (3) more than one segment in the normal mixture 

model is supported. In short, the most general specification fares best, and each of its attributes – 

correlated coefficients, and both discrete and continuous heterogeneity – is useful in accurately 

representing consumer preferences. In the following sections, we will refer primarily to this full 

model, calling on others peripherally for comparison purposes.  

For illustration and a “reality check” we briefly examine the posterior means of part-worth 

coefficient vectors, βi. The resulting splines are shown graphically in Figure 3, along with 

analogous splines for the discrete mixture and homogeneous cases. Recall that for identification 

purposes these values are scaled so that the sum in each set of attributes is zero, making for easier 

visual comparison. In each of the six attribute spline graphs the heterogeneous model is most 

“arched” or highly sloped, suggesting the presence of some consumers with relatively strong 

preference differentials across attribute levels. Of course, part-worth values have a nonlinear 

mapping onto choice probabilities, so an “averaged part-worth” is only a rough guide to 

comparing across heterogeneity specifications. 
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Although it is not our main focus here, a number of trends are apparent across these mean 

estimated coefficient values. Unsurprisingly, price appears to exert the strongest influence, and is 

decisively downward-sloping (this is true of the posterior means for each of the n = 184 original 

participants). One might have expected similarly monotonic preferences for number size and 

weight capacity, but this is only true for the former; apparently, too high a capacity was viewed as 

“suboptimal” by the respondents, on average. Note that these βi values reflect pure consumer 

preference, and not any sort of constraint resulting from infeasible designs, which can only arise 

from the engineering design subsystem. Preferences for the other three variables (platform area, 

aspect ratio (i.e., shape) and interval mark gap) all have interior maxima. 

5.2. Product Line Optimization Results 

Conditional on the generated splines arising from the HB conjoint estimates (using the full 

normal mixture model), the design and positioning subsystems are solved iteratively until 

convergence. Optimization was carried out with each subsystem solved using sequential quadratic 

programming. The ATC hierarchy is solved for a fixed product line size J, and a parametric study 

is performed to determine the value of J that produces the most profitable overall product line. As 

is typical, local optima are generated, and global optima are sought using multi-start. Figure 4 

shows the best resulting profit across several local minima found using ten runs with random 

starting points for each case J = {1,2,...,7}. It is clear that a product line with four products is 

most profitable. Table 3 shows the resulting product attributes for each heterogeneity 

specification. Several of the resulting scale designs are bounded by active engineering design 

constraints; this is necessary to ensure that the scale is physically tenable, e.g., that the dial, 

spring plate and levers fit in the case. Note as well that all the scales in the line lie well within the 

range available through online retailers, although resulting prices migrate to the upper bound due 

to the single-producer scenario. Looking across the table, and considering primarily marketing 

attributes, we might term the resulting products “large high-capacity, small-numbered square 

scale” (27.4% of the market), “large-number portrait scale” (21.0%), “small, low-capacity 

landscape scale” (18.6%) and “high-priced, middle-of-the-road” scale (11.3%). Note that these do 
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not add to 100%, given the presence of the “no choice” option, which allows some portion of the 

potential market to prefer no scale at all to any of the four in the final line configuration. 

5.2.1. Effectiveness of ATC Coordination 

A major contribution of the methodology presented here is to provide rigorous coordination 

between positioning and design models for a product line to find a joint solution that is optimal 

under consideration of both heterogeneous customer preferences and engineering feasibility. To 

demonstrate the importance of this coordination, the ATC solution was compared to the solution 

obtained through a disjoint sequential approach, which has been referred to as analytical target 

setting [9, 51]. In the disjoint scenario, price and product attribute positioning targets are set 

based on consumer preference data without engineering feasibility information (the positioning 

subsystem), and these are passed to engineering design teams. Each engineering team then 

designs a feasible product that meets its targets as closely as possible (the engineering subsystem) 

without further iteration. 

In this disjoint scenario, marketing produces a plan for a line of four scales with a predicted 

market share of 83.4% and resulting profit of $81.2 million. There is no reason to believe these 

products will be feasible, as they are based on consumer preferences alone. In the disjoint case, 

these (unachievable) targets are passed to engineering teams who each design a feasible product 

to achieve product attributes as close as possible to the targets requested by marketing without 

further iteration. The resulting products differ significantly from the initial plan and so have 

attributes less preferred by consumers, resulting in 70.5% market share and $67.9 million profit: 

16% less than marketing’s original (unachievable) prediction. If ATC is instead used to iteratively 

coordinate positioning and design, the resulting joint solution is a line of four different products, 

resulting in 78.2% market share and $72.4 million profit. In this case, coordination resulted in a 

feasible product line with a predicted 6% improvement in profitability relative to disjoint 

decision-making. In the disjoint scenario marketing “leads” by developing the original plan and 

engineering design “follows” by attempting to meet product attribute targets. The reverse 

situation, where engineering “leads”, is possible when all consumers have monotonic preferences 

for product attributes by first designing a set of products that are Pareto-optimal in performance 
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and then allowing marketing to pick a line from that set of products [10]. However, in this 

example, preferences for attributes are non-monotonic, so no such common Pareto set exists, and 

without preference information, engineering design has no single well-defined optimization 

objective. 

5.2.2. Heterogeneity Representation 

It is critical to assess what impact the heterogeneity specification has on the resulting optimal 

solution, and whether simpler forms of heterogeneity might have sufficed for optimal line design. 

The simple homogeneous demand model is ill-suited for generating product lines, as the IIA 

property leads to lines with duplicate products. So, we compare the discrete mixture (latent class) 

model with the normal mixture model. Because the discrete mixture model is natively supported 

in many statistical packages, it might prove convenient for line optimization. Though fit statistics 

(Table 2) alone argue that the discrete mixture model is dramatically inferior to the normal 

mixture specification, this does not necessarily mean that, conditional on the resulting estimates, 

the resulting optimal line will be similarly inferior. Table 3 lists a comparison between the 

resulting profitability (evaluated post hoc with the full normal mixture model) of the best locally-

optimal solutions found using the discrete and continuous mixture demand models over ten multi-

start runs with random starting points for each value of J. Not only do the different heterogeneity 

specifications result in different product line solutions (a line of six products under the discrete 

mixture model vs. four under the normal mixture model), but the former suffers a profit 

decrement of 18.4%4. Furthermore, because the discrete mixture specification models all 

individuals within a segment as having identical preferences, the remaining within-segment IIA 

property can result in solutions with duplicate products, such as the one reported in Table 3. It is 

important to note that such solutions are artifacts of the econometric model and may be difficult 

to interpret for managerial use. For example, simply taking the solution resulting from the model 

and eliminating product duplicates to create a line of four products will not, in general, produce a 

locally optimal solution in the reduced space. Furthermore, the within-segment homogeneity of 

                                                      
4 The profit of the line generated under the discrete mixture model was evaluated for profitability post hoc using the normal 

mixture model, which offers better fit and generalizes all other models considered here. 
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preferences results in a profit surface containing pronounced local minima, which impedes the 

optimization process and makes global search difficult. Thus, even a relatively sophisticated 

heterogeneity representation can offer very different, and potentially sub-optimal, product line 

results. 

While it may be unsurprising that simpler heterogeneity representations can lead to suboptimal 

product lines, it less obvious whether a homogeneous model is sufficient for the design of a single 

product (as assumed, for example, in [9]). Our analysis strongly suggests that it is not. Table 3 

lists single-product solutions under the three demand model scenarios. Although in this case the 

more restrictive models do a fairly good job predicting some of the optimal product attributes, 

this is not so for price, which is notably exaggerated (relative to the normal mixture model), 

resulting in a solution with a loss of 7% market share using the discrete mixture model and 14% 

using the homogeneous one. These results make sense because continuous heterogeneity allows 

for some consumers that are highly price sensitive, so that a single price need be lower to avoid 

losing them entirely. Simply put, even when making a ‘one size fits all’ product, a manufacturer 

should not presume that everyone is really the same. It had not initially been anticipated, based on 

any prior literature of which we are aware, that preference heterogeneity would be so important 

when only a single product is being produced. We believe that the issue of how heterogeneity 

specification affects contingent optimization results is worthy of further study on its own. 

6. Conclusions 

Firms work to position and design lines of products that best suit their market and profitability 

goals. Different functional entities within the firm can interpret this imperative idiosyncratically: 

measuring customer preferences and strategically positioning new products for marketers; 

maximizing performance under technological constraints for engineers. Considered 

independently, these goals often lead to conflict, both in practice and with respect to optimization 

models in each discipline, and disjoint sequential “throw it over the wall” approaches to resolving 

the conflict can lead to suboptimal decision-making. The proposed approach to product line 

design draws on previous research in product line optimization, analytical target cascading, 
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econometric discrete choice analysis, preference heterogeneity and hierarchical Bayesian 

techniques to offer a method for coordinating the profit-driven design and positioning of the line 

by modeling each separately in different subsystems and coordinating them via ATC. The 

resulting product line is a solution to the joint problem, which produces demonstrably better 

results than a simple sequential approach. The separation of the subsystems is advantageous both 

for organizational purposes, since each modeling group can focus on what it knows best and need 

not be an expert in all areas, and for computational purposes, since the individual subsystems can 

be solved in parallel within low dimensional spaces and with fewer constraints as compared to 

solving the full system without decomposition. This is a particularly important feature for product 

line design, since the coupling between products is relatively weak (primarily cannibalization 

calculations), while the coupling among variables within a product is strong. Iterative 

coordination of these decision-models then acts to reduce the need for more costly human 

iteration. Thus the product line problem is well suited for ATC decomposition, facilitating 

scalability of the problem to complex products, which can be represented as (sub)hierarchies 

themselves, or to large numbers of products, by simply adding more subsystems. The intrinsic 

modularity of the approach also readily accommodates additions, variations, and extensions. The 

combinatorial complexity associated with search over discrete levels in previous marketing 

approaches to product line design is reduced here because search occurs over a continuous 

domain, and efficient gradient-based algorithms can be called upon. The approach also does not 

require the set of attributes of interest to have monotonic preferences in the population, and so it 

can be useful for addressing products such as the dial-readout scale example.  

Comparing solutions achieved under different heterogeneity specifications (based on the same 

choice data) demonstrates that the form of heterogeneity chosen by the modeler can have non-

trivial impact on the optimal solution obtained. This suggests that a suitably general heterogeneity 

specification should be used, where possible, for product line optimization. In our case, the full-

covariance finite normal mixture model was superior to the homogeneous and discrete mixture 

representations at representing underlying preferences, and use of a more restrictive model can 

lead to different solutions with substantial reductions in profitability. Importantly, the form of 
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heterogeneity also affects the optimal solution for the single product solution. Contrary to 

presumptions that homogeneous models might suffice for designing a single product, our 

application plainly suggests that accounting for preference heterogeneity can be critical. 

In closing, several maxims are relevant for management, marketing and engineering design 

communities. First, although engineers are keenly aware, at every step of their work, of real, 

inviolable constraints, marketers tend to work to find desirable product attribute targets for 

exploring new markets. A tacit belief is that most, if not all, design constraints can be vanquished 

by ingenuity or sufficient capital. While this is sometimes true, often it is not. ATC encodes non-

negotiable technological infeasibilities directly into its conceptual foundations. As such, 

marketers using their own models within an overarching ATC formulation can gain a gut feel for 

what will work, and what will not, in terms of actual, deliverable products, to supplement their 

intuitive understanding of the consumer marketplace. The flip side is that engineers can come to 

terms with the “consumer space”, every bit as real as the geometry and physics underlying their 

own models, and resolve tradeoffs among competing performance goals through coordination 

with marketing. Second, while it may appear simple to specify directly which product attribute 

combinations cannot co-exist, in practice it is often impractical: This infeasible hull can snake 

through the product attribute space in ways difficult to visualize or translate into meaningful 

consumer terms. ATC frees marketers from considering such issues when collecting consumer 

preferences; iterative coordination readily avoids infeasible product line configurations implicitly. 

Third, heterogeneity matters: it must be accounted for in sufficient generality, even for the design 

of a single product. 

And finally, the question arises whether our proposed approach can be trusted alongside 

mainstays like conjoint analysis and discrete choice modeling to aid in product line design. The 

underlying ATC framework is proven, for a broad class of problems, to converge to joint 

optimality across its various subsystems. As such, it can literally guarantee better profitability, as 

in our application, than possible by sequentially optimizing the design and positioning 

subsystems. Given its scalability, efficiency, and ability to key into a wide variety of extant 
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modeling techniques, we hope to see this framework widely adopted as a cross-disciplinary 

platform for the design of complex product lines. 

FIGURES AND TABLES 

Figure 1  Diagram of the modeling process 
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Figure 2 ATC Formulation of the Product Planning and Engineering Design Product 
Development Problem 
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Figure 3  Plots of the average splines for each 
product attribute and price under the three demand 
models 
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Table 1: A Summary of the Product Line Optimization Literature 
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Table 2: Comparison of Heterogeneity Specifications: Discrete Latent Class vs. HB 
Random Parameters 

 
B Λ LL BIC B Λ LL* DIC

Homo 1 0 -10983 22194 1 Diag -3813 12432
2 0 -10239 20944 2 Diag -3713 12073
3 0 -9784 20271 3 Diag -3656 11961
4 0 -9537 20014 4 Diag -3638 12029
5 0 -9336 19850
6 0 -9187 19788 1 Full -4051 11742
7 0 -9059 19770 2 Full -4016 11674
8 0 -8948 19785 3 Full -4017 11745
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* Classical LL for the HB models was evaluated using posterior means as plug-in values and is included only for informal comparison 

to the Latent Class models. 
 

 
Table 3: Optimal Product Line Solutions under Each Demand Specification 

 

Homo- Discrete Normal
geneous Mixture Mixture 1 2 3 4 5 6 1 2 3 4

Π Profit (Millions)* $ $54.10 $58.30 $60.70
Market share* % 48.80% 57.80% 65.00% 25.10% 8.70% 8.70% 8.70% 6.90% 4.90% 27.40% 21.00% 18.60% 11.30%

z 1 Weight capacity lbs. 255 254 256 238 257 257 257 253 248 292 262 200 255
z 2 Aspect ratio - - 0.996 1.047 1.002 1.045 1.041 1.039 1.039 1.062 1.051 0.98 1.156 0.921 0.986
z 3 Platform area in2 134 127 130 100 131 131 131 123 114 140 122 105 135
z 4 Tick mark gap in. 0.116 0.117 0.115 0.106 0.116 0.116 0.116 0.114 0.111 0.103 0.116 0.121 0.116
z 5 Number size in. 1.334 1.339 1.315 1.193 1.341 1.337 1.337 1.316 1.268 1.221 1.351 1.293 1.331
p Price $ $26.41 $24.21 $22.61 $23.96 $30.00 $30.00 $30.00 $30.00 $29.37 $22.89 $24.53 $23.84 $30.00 

Single Product Solutions Product Line Solutions
Discrete Mixture (Latent Class) Normal Mixture

$59.10 $72.40

 
* as calculated post-hoc using the normal mixture demand model 
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