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1.1 Goals

1. Formulating Bayesian models,

2. Analyzing these models, and

3. Interpreting output from software programs.
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Participants need a working knowledge of:

• Basic statistics,

• Probability distributions,

• Matrix notation, and

• Computational programming languages, such as

FORTRAN, C, Pascal, Basic.
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1.2 Computer Programs

• GAUSS will be used to demonstrate Bayesian

computations.

Learning GAUSS is not a primary objective of

the workshop.

• WinBugs is a free, software program for Bayesian

analysis.

If is fairly powerful and flexible with a

sophisticated user interface.

It is not user–friendly but has a number of

examples.

Download WinBUGS from

http://www.mrc-bsu.cam.ac.uk/bugs.
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1.3 Outline

1. Foundations

• Subjective Probability

• Decision Theory

• Large Sample Theory

2. Bayesian Inference

• Basic concepts

• Multivariate normal, gamma, and inverted

gamma distributions

• Three easy models:

(a) Beta–Binomial

(b) Conjugate Normal

(c) Conjugate, Linear Regression
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3. Linear Regression

• Markov chain Monte Carlo (MCMC)

• Numerical Integration

• Slice sampling

• Autoregressive errors

4. Multivariate Regression

• Multiple, dependent variables

• Matrix algebra facts

• Matrix normal, Wishart, and Inverted

Wishart distributions
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5. HB Regression: Interaction Model

• Within–Subject Model:

Linear Regression

• Between–Subjects Model:

Multivariate Regression

6. HB Regression: Mixture Model

• Within–Subject Model: Linear Regression

• Between–Subjects Model: Mixture Model

• Uses “latent” variables.
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7. Revealed Preference Models

• Categorical dependent variable:

– Probit assumes normal errors.

– Logit assumes extreme value errors.

– Multivariate Probit: many 0/1 choices.

• Hastings–Metropolis algorithm, a general

purpose method of generating random

variables in MCMC.
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References

• Berger, James Statistical Decision Theory and Bayesian Analysis, Springer–Verlag,
New York, 1985. Good for mathematical statistics.

• Bernardo, Jose and Adrian Smith Bayesian Theory, Wiley, New York, 1994. Delves
into some advanced topics such as exchangeability, symmetry, and invariance. Only
attempt it after knowing the material in this workshop.

• Blackwell, D. and M. A. Girshick, Theory of Games and Statistical Decisions,
Dover, New York, 1954. A classic.

• Congdon, Peter, Bayesian Statistical Modelling, John Wiley & Sons, 2001. Very
nice treatment.

• DeGroot, Morris Optimal Statistical Decisions, McGraw–Hill, New York, 1970. One
of the best books on the subject ever. DeGroot elegant presentation illustrates
profound points while using only basic math skills.

• Gelman, A.; J. Carlin, H. Stern, and D. Rubin Bayesian Data Analysis, Chapman
& Hall/CRC, New York. 1995. A more modern approach. Lacks detail.

• Jeffreys, Harold, Theory of Probability, Oxford University Press, Oxford, 1961.
(Originally published in 1939) Jeffreys was a truly original thinker.

• von Neumann, John and Oskar Morgenstern, Theory of Games and Economic Be-
havior, Princeton University Press, New Jersey, 1947. A classic in economics

• Savage, Leonard J. The Foundations of Statistics, Dover, New York, 1972. (Origi-
nally published in 1954) A monumental work.

• Zellner, Arnold An Introduction to Bayesian Inference in Econometric, John Wiley
& Sons, New York, 1971. A fantastic resource.
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Outline

1. Objectives

2. Subjective Probability

3. Coherence

4. Decision Theory

5. Statistical Decision Problems

6. Large Sample Theory
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2.1 Objectives

1. Introduce subjective probability and its

foundations.

2. Describe decision theoretic approach to

statistical inference.

3. State large sample approximations for posterior

distributions.
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2.2 Subjective Probability

1. Probability distributions encode the observer’s

beliefs about uncertain events.

2. Subjective probability is more general than the

frequentist interpretation.

3. Frequentist interpretation is logically flawed. It

relies on long-term behavior or infinite sequences

and the strong law of large numbers. In turn, the

strong law of large numbers relies on having

probabilities, which leads to circular definitions.

4. Bayesians use frequentist information in

updating their subjective beliefs.

5. Long-term frequencies or repeated sampling is

not a valid concept in many situations.
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2.3 Coherence

Let’s Gamble:

1. You are the bookie. You quote betting odds

P (A), P (B), . . . , on events A, B, . . . .

2. I am the gambler. I bet a stake SA on event A.

SA can be positive or negative.

3. It costs me SAP (A) to play the game.

4. If A occurs, you pay me SA, and

I win W = SA(1− P (A)).

5. If A does not occur, you pay me 0, and

I win W = −SAP (A).
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Coherence ⇔ No Arbitrage

1. You do not want to assign P to events so that I

can make a series of wagers such that I will be a

sure winner, regardless of the outcomes. That is,

you should guard against presenting me with an

arbitrage opportunity.

2. P is coherent if it is assigned in such a way that

there is not arbitrage.

3. Coherence does not mean that your specification

of P is good or will make you a lot of money,

only that you cannot be a sure loser.
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DeFinetti’s Coherence Theorem

Suppose that the collection E of events is an algebra:

• The null event ∅ ∈ E.

• The certain event Ω ∈ E .

• A ∈ E and B ∈ E imply that

– A ∩B ∈ E,

– A ∪B ∈ E, and

– Ac ∈ E.

Then there does not exist an arbitrage opportunity

if and only if P is a probability function on E:

1. 0 ≤ P (A) ≤ 1.

2. If U is a certain event, then P (U) = 1.

3. A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B).
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Proof:

1. If A occurs, I win W1 = SA[1− P (A)]

If Ac occurs, I win W2 = −SAP (A)

Coherence requires

W1W2 ≤ 0

(1− P (A))P (A) ≥ 0

0 ≤ P (A) ≤ 1

2. If U is a certain event, my winnings are

W = SU [1− P (U)]. If P (U) < 1, I can make W

arbitrarily large.
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3. Consider three events: A, B, and C = A∪B where

A ∩B = ∅. I bet SA, SB, and SC.

• If A ∩Bc occurs, I win

W1 = SA[1− P (A)]− SBP (B) + SC [1− P (C)].

• If Ac ∩B occurs, I win

W2 = −SAP (A) + SB[1− P (B)] + SC [1− P (C)].

• If Cc occurs, I win

W3 = −SAP (A)− SBP (B)− SCP (C).
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These bets results in a system of linear equations:



1− P (A) −P (B) 1− P (C)

−P (A) 1− P (B) 1− P (C)

−P (A) −P (B) −P (C)







SA

SB

SC




=




W1

W2

W3




RS = W

The above equation tells me what my possible

winning will be.

You will be a sure loser if I can make W strictly

positive.

If R−1 exists, I can find S = R−1W for any W .

Thus, you do not want R−1 to exist. Or

det(R) = 0

P (A) + P (B)− P (C) = 0
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2.4 Decision Theory

Decision making under uncertainty.

Von Neumann and Morgenstern (1947) and

Savage (1954).

1. Elements of Decision Theory

• Actions

What the decision maker can choose to do.

• States

What the decision maker cannot control &

what is uncertain.

• Consequences

What the decision maker gets given an action

and a realized state.

2. Individual’s Preference Structure on Actions
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3. Savage showed that if the preferences satisfy a

set of axioms, then a mathematician can find:

• a utility function on the set of consequences

and

• a probability function on the states

such that the ordering of actions based on

expected utility agrees with the ordering

according to the individual’s preferences.
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Offspring of Decision Theory

1. Microeconomic theory is derived from decision

theory.

2. Cognitive psychologist investigate whether or not

people are “rational.”

3. A branch of statistical inference sets parameter

estimation in a decision theory context:

• Actions: Choose values for parameters.

• States: “True” parameter values.

• Consequences: Loss function that measures

estimation error.
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2.5 Statistical Decision Problems

DeGroot, M (1970) Optimal Statistical

Decisions,McGraw–Hill, New York, pages 121–149.

1. State space: Ω = {ω}.
In statistical inference, Ω is the parameter space.

2. Decision space: D = {d}.
In statistical inference, d is an estimator.

3. R is the space of all possible rewards r, which

depend on d and ω: r = σ(ω, d).

The statistician selects d; “nature” selects ω;

payoff is r.

4. P is a probability distribution on Ω.

In statistical inference, P is the prior or posterior

distribution.
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5. Expected utility:

E[U(d)|P ] =
∫

Ω
U [σ(ω, d)]dP (ω).

6. Choose d which maximizes E[U(d)|P ].

7. Instead of utility, statisticians use loss:

L(ω, d) = −U [σ(ω, d)].

Without loss of generality, L ≥ 0.

8. Risk or expected loss:

ρ(P, d) =
∫

Ω
L(ω, d)dP (ω) = E[L(W,d)] < ∞.

where W is the random variable with distribution

P for the unknown states.
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Bayes Risk and Bayes Decisions

1. Bayes Risk ρ∗(P ) is the greatest lower bound for

the risks for all decisions:

ρ∗(P ) = inf
d∈D

ρ(P, d).

2. Any decision d∗ such that its risk is equal to the

Bayes risk is called a “Bayes decision against the

distribution P” or “Bayes rule”:

ρ(P, d∗) = ρ∗(P ).
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Example

1. Two–Point Parameter Space

• Parameter Space: Ω = {0, 1}.

• Probability: P (W = 0) = 1− p and P (W = 1) = p.

• Decision Space: D = {d : 0 ≤ d ≤ 1}.

• Loss function:

L(ω, d) = |w − d|α where α > 0 is an integer.

• Risk function:

ρ(P, d) = (1− p)L(0, d) + pL(1, d)

= (1− p)dα + p(1− d)α
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2. If α = 1, the loss function is absolute error, and

the Bayes decision is:

d∗ =





0 if p < 0.5

1 if p > 0.5

any d if p = 0.5

and the Bayes risk is:

ρ∗(p) =





p if p < 0.5

1− p if p > 0.5

0.5 if p = 0.5

If D = {d : 0 < d ≤ 1} and if p < 0.5, then no

decision is the Bayes decision against p.
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3. If α > 1, then

∂ρ(p, d)

∂d
= (1− p)αdα−1 + pα(1− d)α−1 = 0

d∗ =


1 +


1− p

p




1
α−1




−1

4. For squared-error loss (α = 2):

ρ(p, d) = d2 − 2pd + p

d∗ = p

ρ∗(p) = p(1− p)



30 CHAPTER 2. FOUNDATIONS

Admissible Decisions

1. A decision d∗ is admissible if there does not exist

a decision d such that

L(ω, d) ≤ L(ω, d∗) for all ω

L(ω, d) < L(ω, d∗) for some ω

2. If such a d did exist, you definitely would not

want to use d∗.

3. James–Stein

Under squared error loss, the sample mean is

admissible estimator of the population mean in

one or two dimensions. It is not admissible in

three or more dimensions!
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Complete Class Theorem

Consider finite parameter and decision spaces.

• If p is strictly positive, then Bayes rules are

admissible.

• If a decision rule is admissible, then there exists

a prior distribution on the parameter space such

that this decision is a Bayes rule.

Bayes Rules Rule!



32 CHAPTER 2. FOUNDATIONS

Using Sample Information

1. Collect data X. Sample space X .

2. Distribution of X given parameter ω:

f (x|ω)dν(x).

3. Prior distribution of W :

p(ω)dµ(ω).

4. Marginal distribution of X:

f (x)dν(x) =
[∫

Ω
f (x|ω)p(ω)dµ(ω)

]
dν(x)

5. Posterior distribution of W given X:

p(ω|x)dµ(ω) =



f (x|ω)p(ω)

f (x)


 dµ(ω).

Note that

f (x|ω)p(ω) = p(ω|x)f (x).

6. Allow decisions to depend on observed x: d(x).
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7. Risk function integrates loss over both W and X:

ρ(P, d) = E{L[W,d(X)]}
=

∫

Ω

[∫

X L[ω, d(x)]f (x|ω)dν(x)
]
p(ω)dµ(ω).

8. Interchange the order of integration:

ρ(P, d) =
∫

Ω

[∫

X L[ω, d(x)]f (x|ω)dν(x)
]
p(ω)dµ(ω)

=
∫

X
[∫

Ω
L[ω, d(x)]p(ω|x)dµ(ω)

]
f (x)dν(x)

=
∫

X [ρ(P, d|x)] f (x)dν(x)

9. ρ(P, d|x) = E[L(W,d|x)] is the posterior risk of d(X)

or posterior expected loss.
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10. Bayes Risk and Posterior Bayes Risk:

inf
d∈D

ρ(P, d) ≥
∫

X

[
inf
d∈D

ρ(P, d|x)
]

︸ ︷︷ ︸
ρ∗(P |x)

f (x)dν(x)

11. ρ∗(P |x) is the posterior Bayes risk

against P given X.

12. d∗(X) is the Bayes decision against P given X if:

ρ(P, d∗(x)|x) = ρ∗(P |x).
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Examples

1. Squared-error Loss:

L[ω, d(x)] = [ω − d(x)]2

ρ(P, d(x)|x) =
∫

Ω
[ω − d(x)]2p(ω|x)dµ(ω)

= E
{
[ω − d(x)]2|X

}

∂ρ(P, d(x)|x)

∂d(x)
= −2

∫

Ω
[ω − d(x)]p(ω|x)dµ(ω) = 0

d∗(x) =
∫

Ω
ωp(ω|x)dµ(ω) = E(W |X)

The posterior mean of W is posterior Bayes

decision with respect to squared error loss. The

posterior variance of W is the posterior Bayes

risk.



36 CHAPTER 2. FOUNDATIONS

2. Absolute-error Loss:

L[ω, d(x)] = |ω − d(x)|
ρ(P, d(x)|x) =

∫

Ω
|ω − d(x)|p(ω|x)dµ(ω)

=
∫

ω<d
[d(x)− ω]p(ω|x)dµ(ω)

+
∫

ω≥d
[ω − d(x)]p(ω|x)dµ(ω)

∂ρ(P, d(x)|x)

∂d(x)
= P (W < d|x)− P (W ≥ d|x) = 0

P (W < d|x) = 0.5

The posterior median of W is the posterior Bayes

decision with respect to absolute error loss.
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3. Finite parameter and decision space.

• Finite parameter space:

Ω = {ωj, for j = 1, . . . , J}.

• Decision space: dj means select ωj.

• Loss function:

L(wj, dk) =





0 if j = k

cj,k > 0 if j 6= k

• Prior probabilities: pj = P (W = ωj).

• Posterior probabilities:

pj(x) = P (W = ωj|x) =
f (x|ωj)pj

f (x)
.
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• Posterior risk:

ρ(P, dk|x) =
J∑

j 6=k
cj,kpj(x).

• Bayes decision rule:

Select wi, that is d∗ = di if

ρ(P, di|x) ≤ ρ(P, dk|x) for all k.

• If the misclassification costs are equal:

cj,k = c > 0 for all j 6= k,

then the posterior risk is:

ρ(P, dk|x) = c
J∑

j 6=k
pj(x) = c[1− pk(x)].

Select wi or d∗ = di if

1− pi(x) ≤ 1− pk(x) for all k

or pi(x) ≥ pk(x) for all k.

• For equal misclassification costs, the Bayes

rule is to select the parameter with maximal

posterior probability.
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• If the costs are equal and if the each

parameter is equally likely: pi = pj, then the

Bayes rule selects ωi if f (x|ωi) ≥ f (x|ωk) for all

k.

• Applications:

– Bayesian model selection

Kass, R. E., and Raftery, A. E. (1995).

Bayes Factors. Journal of the American

Statistical Association, 90, 773–795.

– Discriminate analysis
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2.6 Large Sample Theory

Berger (1985), Statistical Decision Theory and

Bayesian Analysis, Springer–Verlag, New York,

page 225.

Assume:

1. {Xi} are i.i.d. given ω with density

f (x|ω) =
n∏

i=1
f (xi|ω).

2. Prior: p.

3. Posterior:

pn(ω|x) ∝ n∏

i=1
f (xi|ω)p(ω).

4. f and p are positive and twice differentiable near

the maximum likelihood estimate ω̂ of ω.
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Then for large sample sizes n the posterior density pn

of ω can be approximated in the following four ways,

in order of decreasing accuracy:

1. pn ≈ N(µ(x), V (x)) where µ(x) and V (x) are the

posterior mean and covariance matrix of ω given

x.

2. pn ≈ N(ω̂p, [Ip(x)]−1) where

ω̂p = arg max
ω

f (x|ω)p(ω)

Ip
i,j(x) = −





∂2

∂ωi∂ωj
log[f (x|ω)p(ω)]





ω=ω̂p
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3. pn ≈ N(ω̂, [Î(x)]−1) where Î(x) is the observed

Fisher’s information having (i, j) element:

Îi,j(x) = −




∂2

∂ωi∂ωj
log[f (x|ω)]





ω=ω̂

4. pn ≈ N(ω̂, [I(ω̂)]−1) where ω̂ is the maximum

likelihood estimator of ω, and I(ω) is the expected

Fisher’s information matrix with (i, j) element:

Ii,j = −nEX1|ω





∂2

∂ωi∂ωj
log[f (X1|ω)]
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2.7 Summary

1. Subjective Probability

2. Coherence

You can’t lose, for sure.

3. Decision Theory

Includes sample information, prior information,

and costs.

4. Complete Class Theorem

Bayes decisions are good decisions.

5. Large Sample Theory

Truth is revealed.
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3.1 Objectives

1. This chapter presents the “bare–bones” of

Bayesian inference that we will need in later

chapters.

2. After fixing notation and ideas, we will look at

the three simplest models:

(a) Beta–Binomial for 0/1 outcomes,

(b) Conjugate Normal for continuous outcomes,

(c) Conjugate Linear Regression.
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3.2 Why Bayes?

1. It provides a unified method for evaluating risk,

making decisions under uncertainty, and

updating beliefs in the light of new information.

2. Given that the model holds, it optimally uses

information and accounts for all sources of

uncertainty.

3. Bayes estimators have many attractive

frequentist properties.

4. Bayes Rules! It can’t be beat!
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3.3 Not So Simple Probability

1. A random variable X has probability mass

function (pmf) or probability density function

(pdf) [x] with:

[x] ≥ 0

∑

x
[x] = 1 if X is discrete

∫

x
[x] dx = 1 if X is continuous.

I will use “
∫
” for “

∑
” when X is discrete.

I will not be consistent. I will call [x] the

“distribution of X.”

2. The probability that X is in set A is:

P (X ∈ A) =
∫

A
[x] dx.

3. [x, y] is the joint pmf or pdf of two random

variables X and Y .
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4. The marginal distribution of X is:

[x] =
∫

y
[x, y] dy.

5. The conditional distribution of Y given X is:

[y|x] =
[x, y]

∫
y[x, y] dy

=
[x, y]

[x]
.

Note:

[x, y] = [y|x][x] = [x|y][y].

6. Total Probability:

[x] =
∫

y
[x|y][y] dy.

Check:

∫

y
[x|y][y] dy =

∫

y

[x, y]

[y]
[y] dy =

∫

y
[x, y] dy.

7. Bayes Theorem:

[y|x] =
[x|y][y]

∫
y[x|y][y] dy

∝ [x|y][y].

Check:

[y|x] =
[x, y]

[x]
=

[x|y][y]
∫
y[x|y][y] dy

.
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8. X and Y are independent if:

[x, y] = [x][y] or [y|x] = [y] or [x|y] = [x].

9. X and Y are independent given Z if:

[x, y|z] = [x|z][y|z] or [y|x, z] = [y|z] or [x|y, z] = [x|z].

Check:

[y|x, z] =
[x, y, z]

[x, z]
=

[x, y|z][z]

[x, z]
=

[x|z][y|z][z]

[x|z][z]
.

10. If X and Y are independent given Z, then

[x, y] =
∫

z
[x, y|z][z] dz =

∫

z
[x|z][y|z][z] dz.

Also,

[y|x] =
[x, y]

[x]
=

∫
z[x|z][y|z][z] dz

[x]
=

∫

z
[y|z][z|x] dz.
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3.4 Basically Bayes

1. Conditional distribution of the data given

parameters:

• Given the unknown parameter θ, the

distribution of the data X1, X2, . . . , Xn is:

[x1, . . . , xn|θ].

θ and xi may be multidimensional.

• A useful special case is when the observations

are mutually independent given θ:

[x1, . . . , xn|θ] =
n∏

i=1
[xi|θ].
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2. Likelihood Function of θ

L(θ) = [x1, . . . , xn|θ].

3. Prior Distribution of θ is [θ].

4. Joint distribution of the data and θ is:

[x1, . . . , xn, θ] = [x1, . . . , xn|θ][θ].

5. Marginal distribution of the data:

[x1, . . . , xn] =
∫

θ
[x1, . . . , xn|θ][θ] dθ
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6. Posterior distribution of θ

[θ|x1, . . . , xn] =
[x1, . . . , xn|θ][θ]

[x1, . . . , xn]

∝ [x1, . . . , xn|θ][θ]

∝ L(θ)[θ]

7. Bayesian inference about θ is based on

[θ|x1, . . . , xn]:

• Posterior Mean ⇔ Squared–Error Loss

Posterior Variance or Standard Deviation

• Posterior Median ⇔ Absolute–Error Loss

Posterior Absolute Error

• Highest Posterior Density Intervals
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8. Predictive Distribution

• Suppose that we observe x1, . . . , xn and that

we want to describe the likely vales of future

observations Xn+1, . . . , Xn+m.

• The joint pdf or pmf for X1, . . . , Xn+m is

[x1, . . . , xn+m].

• The predictive pmf or pdf of Xn+1, . . . , Xn+m

given the data x1, . . . , xn is:

[xn+1, . . . , xn+m|x1, . . . , xn] =
[x1, . . . , xn+m]

[x1, . . . , xn]
.
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• If Xn+1, . . . Xn+m are independent of X1, . . . , Xn

given θ:

[x1, . . . , xn+m|θ] = [x1, . . . , xn|θ][xn+1, . . . , xn+m|θ],

then the predictive pmf or pdf is:

[xn+1, . . . , xn+m|x1, . . . , xn] =
[x1, . . . , xn+m]

[x1, . . . , xn]

=
∫
[x1, . . . , xn+m|θ][θ] dθ

[x1, . . . , xn]

=
∫
[x1, . . . , xn|θ][xn+1, . . . , xn+m|θ][θ] dθ

[x1, . . . , xn]

=
∫
[xn+1, . . . , xn+m|θ][θ|x1, . . . , xn] dθ

• Compare to the marginal pdf of Xn+1, . . . , Xn+m:

[xn+1, . . . , xn+m] =
∫
[xn+1, . . . , xn+m|θ][θ] dθ.
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3.5 Binomial and Beta Distributions

3.5.1 Binomial Distribution

1. X has a binomial distribution with parameters θ

and n if its pmf is:

[x|θ, n] = B(x|θ, n)

=




n

x




θx(1− θ)n−x

for x = 0, 1, . . . , n;

0 ≤ θ ≤ 1; and integer n > 0.

2. Moments:

E(X|θ, n) = θ and V (X|θ, n) = nθ(1− θ).
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3.5.2 Beta Distribution

1. θ has a beta distribution with parameters α and

β if its pdf is:

[θ] = Beta(θ|α, β)

=
Γ (α + β)

Γ (α) Γ (β)
θα−1 (1− θ)β−1

for 0 ≤ θ ≤ 1; α > 0; and β > 0

Γ(x) =
∫ ∞
0

yx−1 exp(−y) dy

Γ(x + 1) = xΓ(x) and Γ(n + 1) = n! if n is an integer

Γ(0) = 1; Γ(0.5) =
√

π; and Γ(1) = 1

Γ(α)Γ(β)

Γ(α + β)
=

∫ 1

0
xα−1(1− x)β−1 dx
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2. Moments:

E[θu(1− θ)v] =
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0
θu+α−1(1− θ)v+β−1 dθ

=



Γ(α + β)

Γ(α)Γ(β)






Γ(α + u)Γ(β + v)

Γ(α + β + u + v)




for u > −α and v > −β

E(θ) =
α

α + β
and E(1− θ) =

β

α + β

V (θ) =
αβ

(α + β)2(α + β + 1)

=
E(θ)E(1− θ)

α + β + 1
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3.6 Beta–Binomial Model

1. Model

• Given θ the observations X1, . . . , Xm are

mutually independent with B(x|θ, 1) pmf:

[x|θ] = θx(1− θ)1−x

for x = 0 or 1, and 0 ≤ θ ≤ 1.

• The conjugate prior distribution for θ is the

beta distribution Beta(θ|α0, β0) with pdf:

[θ] =
Γ (α0 + β0)

Γ (α0) Γ (β0)
θα0−1 (1− θ)β0−1
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2. The joint pmf of X1, . . . , Xn given θ is:

[x1, . . . , xn|θ] = θs(1− θ)n−s

where s =
∑n

i=1 xi is the number of ones in n trials.

3. The marginal distribution of X1, . . . , Xn has pmf:

[x1, . . . , xn] =
∫ n∏

i=1
[xi|θ][θ] dθ

=
Γ(α0 + β0)

Γ(α0)Γ(β0)

∫ 1

0
θα0+

∑n
i=1 xi(1− θ)β0+n−∑n

i=1 xi dθ

=




Γ (α0 + β0)

Γ (α0) Γ (β0)






Γ (α0 +

∑n
i=1 xi) Γ (β0 + n− ∑n

i=1 xi)

Γ (α0 + β0 + n)




Define

αn = α0 +
n∑

i=1
xi

βn = β0 + n− n∑

i=1
xi
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4. Define S = X1 + · · · + Xn.

S given θ is B(s|θ, n).

The marginal distribution of S is the

Beta–Binomial distribution with pmf:

[s] = BB(s|n, α0, β0)

=




n

s







Γ (α0 + β0)

Γ (α0) Γ (β0)






Γ(α0 + s)Γ(β0 + n− s)

Γ(α0 + β0 + n)




for s = 0, . . . , n



3.6. BETA–BINOMIAL MODEL 63

Moments of S:

E(S) = Eθ[E(S|θ)]

= Eθ(nθ)

= n
α0

α0 + β0

V (S) = Eθ(V (S|θ)) + Vθ(E(S|θ))

= Eθ(nθ(1− θ)) + Vθ(nθ)

= n
α0β0

(α0 + β0)(α0 + β0 + 1)

+ n2E(θ)[1− E(θ)]

α0 + β0 + 1

= nE(θ)[1− E(θ)]


α0 + β0 + n

α0 + β0 + 1




“Extra Binomial Variation”
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5. The posterior distribution of θ given S has pdf:

[θ|x1, . . . , xn] ∝ L(θ)[θ]

∝ θs(1− θ)n−sθα0−1 (1− θ)β0−1

=
Γ (αn + βn)

Γ (αn) Γ (βn)
θαn−1 (1− θ)βn−1

= Beta(θ|αn, βn)

αn = α0 + s

βn = β0 + n− s.

Updating Parameters

Prior Posterior

α0 ⇒ αn = α0 + s

β0 ⇒ βn = β0 + n− s



3.6. BETA–BINOMIAL MODEL 65

6. Squared Error Loss Estimator of θ:

E(θ|s) =
αn

αn + βn

=
α0 + s

α0 + β0 + n

= wθ̂ + (1− w)E(θ)

θ̂ =
s

n
and w =

n

α0 + β0 + n
.

The Bayes estimator is a convex combination of

the MLE of θ and its prior mean. It “shrinks”

the MLE towards the prior mean.

7. Posterior variance:

V (θ|s) =
E(θ|s)[1− E(θ|s)]

n + α0 + β0 + 1
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8. The predictive distribution of Xn+1, . . . , Xn+m

given x1, . . . , xn has pmf:

[xn+1, . . . , xn+m|x1, . . . , xn]

=
∫ 1

0
[xn+1, . . . , xn+m|θ][θ|x1, . . . , xn] dθ

=
∫ 1

0
θ

∑n+m
i=n+1 xi(1− θ)m−

∑n+m
i=n+1 xi

× Γ (αn + βn)

Γ (αn) Γ (βn)
θαn−1 (1− θ)βn−1 dθ

=




Γ (αn + βn)

Γ (αn) Γ (βn)






Γ (αn +

∑n+m
i=n+1 xi) Γ (βn + m− ∑n+m

i=n+1 xi)

Γ(αn + βn + m)




9. Define T = Xn+1 + · · · + Xn+m. The predictive

distribution of T given S is BB(t|m,αn, βn).
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3.7 Normal, Gamma, and T Distributions

3.7.1 Normal Distribution

1. A random variable X has a normal distribution

with mean µ, standard deviation σ, and pdf:

[x|µ, σ] = N(x|µ, σ2)

=
1√

2πσ2
exp


−(x− µ)2

2σ2


 for −∞ < x < ∞.

2. In GAUSS, to generate a n×m matrix of

independent, normal random variables:

X = mean + sigma ∗ rndn(n,m);
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3.7.2 Multivariate Normal Distribution

1. If a m dimensional random vector X has a

multivariate normal distribution with mean

vector µ and m×m positive definite covariance

matrix Σ, then its density is given by:

[x|µ, Σ] = Nm(x|µ, Σ)

= (2π)−
m
2 |Σ|−1

2 exp


−1

2
(x− µ)′Σ−1(x− µ)




2. Mean and variance (covariance):

E(X) = µ

V (X) = E[(X − µ)(X − µ)′] = Σ.

3. Linear Functions:

If Y = AX + b where A is a n×m matrix of rank

n ≤ m and b is a n vector, then

[y] = Nn(y|Aµ + b, AΣA′).
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4. Conditional normals:

[Y ] =




Y1

Y2




= NM



Y |




µ1

µ2



,




Σ11 Σ12

Σ21 Σ22







.

Then

[Y2|Y1] = N(Y2|µ2|1, Σ2|1)

µ2|1 = µ2 − Σ21Σ
−1
11 (Y1 − µ1)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12.
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5. Generating Multivariate Normals:

Let C be the Cholesky decomposition of Σ.

C is an upper triangular matrix such that

C ′C = Σ.

If Z is Nm(z|0, I) where I is the identity matrix,

then

X = µ + C ′Z

is Nm(x|µ, Σ).

In GAUSS,

C = chol(Σ);

X = µ + C ′rndn(m, 1);

where rndn(r,c) returns a r × c matrix of

independent, standard normal random variates.
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3.7.3 Gamma Distribution

1. A random variable X has a gamma distribution

with pdf:

[x|α, β] = G(x|α, β)

=
βα

Γ(α)
xα−1 exp(−βx)

for x > 0; α > 0; and β > 0.

2. The moments of a gamma distribution are:

E(Xk) =
βα

Γ(α)

∫ ∞
0

xk+α−1 exp(−βx) dx

=
βα

Γ(α)

Γ(k + α)

βk+α

=
Γ(α + k)

Γ(α)βk
for k > −α

E(X) =
α

β
and V (X) =

α

β2
= E(X)

1

β
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3.7.4 Inverted Gamma Distribution

1. Define Y = 1/X. Then Y has an Inverted Gamma

distribution with density:

[y|α, β] = IG(y|α, β)

=
βα

Γ(α)
y−(α+1) exp(−β/y) for y > 0

2. Moments:

E(Y k) = E(X−k) = βkΓ(α− k)

Γ(α)
for k < α

E(Y ) =
β

α− 1

V (Y ) =
β2

(α− 1)2(α− 2)
= E(Y )2

1

α− 2
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Generating Gamma Random Deviates in GAUSS

1. If X is G(x|α, β), then Y = cX is G(y|α, β/c).

2. r × c matrix of independent G(x|α, β):

X = rndgam(r, c, α)/β;

3. r × c matrix of independent IG(y|α, β):

Y = β/rndgam(r, c, α);
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3.7.5 T–Distribution

Suppose that:

[x|m,wσ2] = N
(
x|m,wσ2

)
and [σ2] = IG

(
σ2|r

2
,
s

2

)

Marginal pdf of x has a T Distribution:

[x|m,w, r, s] =
∫ ∞
0

[x|m,wσ2][σ2] dσ2

=


 1

2πw




1
2




(
s
2

)r
2

Γ
(

r
2

)




×
∫ ∞
0

(
σ2

)−(r+3)/2
exp



−



(x−m)2

2w
+

s

2




1

σ2



 dσ2

=


 1

2πw




1
2




(
s
2

)r
2

Γ
(

r
2

)







Γ
(

r+1
2

)

[
s
2 + (x−m)2

2w

](r+1)/2




=


 1

πsw




1
2



Γ

(
r+1
2

)

Γ
(

r
2

)





1 +

(x−m)2

sw



−(r+1)/2

= T (x|m,w, r, s)
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3.7.6 Multivariate T–Distribution

Suppose that:

[x|m,Wσ2] = Np(x|m,Wσ2) and [σ2] = IG
(
σ2|r

2
,
s

2

)

Integrate out σ2:

[x|m,W, r, s] =
∫ ∞
0

[x|m,Wσ2][σ2] dσ2

=


 1

2π



p/2

|W |−1
2




(
s
2

)r
2

Γ
(

r
2

)




×
∫ ∞
0

(
σ2

)−(r+p
2 +1)

exp



−



(x−m)′W−1(x−m) + s

2




1

σ2



 dσ2

= (πs)−
p
2 |W |−1

2



Γ

(
r+p
2

)

Γ
(

r
2

)




×

1 +

1

s
(x−m)′W−1(x−m)



−(r+p

2 )

= Tp(x|m,W, r, s)
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3.8 Normal–Normal–Inverted Gamma Model

1. Conjugate Model:

• Given µ and σ, the data X1, X2, . . . are

mutually independent from N
(
x|µ, σ2

)
.

• µ given σ is N
(
µ|m0,

σ2

w0

)
.

• σ2 is IG
(
σ2|r0

2 , s0
2

)
.

Moments:

E(σ2) =
s0

r0 − 2
and V (σ2) =


 s0

r0 − 2




2 
 2

r0 − 4




E(µ) = m0 and V (µ) = E(σ2)/w0

E(X) = m0 and V (X) = E(σ2) + E(σ2)/w0
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Prior for µ is scale invariant.

Suppose Y = aX for some scalar a.

Define µY = aµ, m0,Y = am0, and σY = |a|σ. Then

[y|µ, σ2] = N(y|aµ, a2σ2)

= N(y|µY , σ2
Y )

[µY |σ] = N(µY |am0, a
2σ2/w0)

= N(µY |m0,Y , σY /w0)

[σ2
Y ] = IG(σ2

Y |r0/2, s0/(2a2))



78 CHAPTER 3. BAYESIAN INFERENCE

2. Setting Prior Parameters.

• Specify:

e0 = E(σ2) and v0 = V (σ2).

• Solve for r0 and s0:

e0 =
s0

r0 − 2

v0 = e2
0


 2

r0 − 4




s0 = e0[r0 − 2]

r0 = 2
e2

0

v0
+ 2

s0 = 2e0



e2

0

v0
+ 1
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• m0 is your prior guess at the mean of X.

• w0 expresses your uncertainty about the mean

of X. Small w0 corresponds to large

uncertainty, and large w0 corresponds to high

confidence. w0 is called the “precision.”
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3. Marginal Distribution of X:

[x] =
∫ ∞
0

∫ ∞
−∞[x|µ, σ2][µ|σ2][σ2] dµ dσ2

Integrate out µ:

[x|σ2] = N
(
x|m0,

[
1 + w−1

0

]
σ2

)
.

Integrate out σ2. Set w on page (75) to 1 + w−1
0 .

[x] =
∫ ∞
0

[x|σ2][σ2] dσ2

= T
(
x|m0, 1 + w−1

0 , r0, s0

)
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4. Joint Distribution:

[x1, . . . , xn, µ, σ2] =
n∏

i=1
[xi|µ, σ2][µ|σ2][σ2]

=
n∏

i=1
N

(
xi|µ, σ2

)
N


µ|m0,

σ2

w0


 IG

(
σ2|r0

2
,
s0

2

)

= (2π)−(n+1)/2√w0

(
s0
2

)r0
2

Γ
(

r0
2

)
(
σ2

)−(n+r0+3)/2

× exp



−

1

2σ2




n∑

i=1
(xi − µ)2 + w0(µ−m0)

2 + s0








∝
(
σ2

)−(n+r0+3)/2
exp



−

1

2σ2

[
n(µ− x̄n)2

+ w0(µ−m0)
2 + s0 + SSEn

]}

x̄n = n−1
n∑

i=1
xi and SSEn =

n∑

i=1
(xi − x̄n)2
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Complete the squares in µ:

n(µ− x̄n)2 + w0(µ−m0)
2

= (n + w0)µ
2 − 2(nx̄ + w0m0)µ + nx̄2 + w0m

2
0

= (n + w0)


µ2 − 2µ


nx̄ + w0m0

n + w0





 + nx̄2 + w0m

2
0

Define mn =
nx̄ + w0m0

n + w0
and wn = n + w0

= wn(µ−mn)2 − wnm
2
n + nx̄2 + w0m

2
0

= wn(µ−mn)2 +


 nw0

n + w0


 (x̄−m0)

2
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Joint Distribution:

[x1, . . . , xn, µ, σ2]

∝
(
σ2

)−(n+r0+3)/2
exp



−

1

2σ2

[
n(µ− x̄n)2

+ w0(µ−m0)
2 + s0 + SSEn

]}

∝
(
σ2

)−1
2 exp


− 1

2σ2
wn(µ−mn)2




×
(
σ2

)−(rn+2)/2
exp

[
− sn

2σ2

]

∝ N


µ|mn,

σ2

wn


 IG

(
σ2|rn

2
,
sn

2

)

rn = r0 + n

sn = s0 + SSEn +


 nw0

n + w0


 (x̄−m0)

2
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5. Posterior Distributions

• σ2 given the data is IG
(
σ2|rn

2 , sn
2

)
.

• µ given σ2 and the data is N
(
µ|mn,

σ2

wn

)
.

Updating:

Prior Posterior

m0 ⇒ mn =
nx̄ + w0m0

n + w0

w0 ⇒ wn = w0 + n

r0 ⇒ rn = r0 + n

s0 ⇒ sn = s0 + SSEn +


 nw0

n + w0


 (x̄−m0)

2

“Non–informative” Prior:

m0 = w0 = r0 = s0 = 0.
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6. Predictive Distribution

[x|x1, . . . , xn]

=
∫ ∞
0

∫ ∞
−∞[x|µ, σ2][µ|σ2, x1, . . . , xn][σ2|x1, . . . , xn] dµ dσ2

=
∫ ∞
0

∫ ∞
−∞N

(
x|µ, σ2

)

×N


µ|mn,

σ2

wn


 IG

(
σ2|rn

2
,
sn

2

)
dµ dσ2

= T
(
x|mn, 1 + w−1

n , rn, sn

)
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3.9 Conjugate Normal Regression

1. Model:

Y = Xβ + ε

[ε|σ2] = Nn(ε|0, σ2In)

[y|β, σ2] = Nn(y|Xβ, σ2In)

• Y is a n–vector of dependent observations.

• X is a n× p design matrix.

Need not be full rank.

• ε is a n–vector of error terms.
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2. Conjugate Priors:

[β|u0, V0, σ
2] = Np(β|u0, σ

2V0)

[σ2|r0, s0] = IG
(
σ2|r0

2
,
s0

2

)

Strange? If you change the scale of Y , then the

scale of σ2 changes, and your prior beliefs about β

are the same.

3. Marginal Distribution of Y :

[y|u0, V0, r0, s0] = Tn(y|Xu0, In + XV0X
′, r0, s0).
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4. Posterior Distributions:

[β|Y, σ2] = Np(β|un, σ
2Vn)

[σ2|Y ] = IG
(
σ2|rn

2
,
sn

2

)

Vn =
(
X ′X + V −1

0

)−1

un = Vn

(
X ′Y + V −1

0 u0

)

rn = r0 + n

sn = s0 + Y ′Y + u′0V
−1
0 u0 − u′nV

−1
n un

5. The so-called “non-informative” prior sets:

u0 = 0; V0 = 0; r0 = 0; and s0 = 0.
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You need to expand and complete the square in β

using matrices:

(y −Xβ)′(y −Xβ) + (β − u0)V
−1
0 (β − u0)

= β′(X ′X + V −1
0 )β − 2β′(X ′y + V −1

0 u0) + C0

= β′V −1
n β − 2β′V −1

n un + C0

where C0 is the appropriate constant, and Vn and

un are defined on page (88).

Then add and subtract u′nV
−1
n un to the above

equation to complete the square:

(y −Xβ)′(y −Xβ) + (β − u0)V
−1
0 (β − u0)

= (β − un)′V −1
n (β − un) + C1

where C1 is the appropriate constant.
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6. If X has full rank, then the MLE of β is:

β̂ = (X ′X)−1X ′Y.

The posterior mean of β is:

un =
(
X ′X + V −1

0

)−1 (
X ′Xβ̂ + V −1

0 u0

)

= Wnβ̂ + (In −Wn)u0

Wn =
(
X ′X + V −1

0

)−1
X ′X

• un is a convex sum of the prior mean u0 and

the MLE β̂.

• The weights depend on the prior variance σ2V0

of β and the sampling variance σ2(X ′X)−1 of β̂.

• Under weak conditions Wn approaches In as n

becomes large.
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7. Predictive distribution of Yf = Xfβ + ε where Yf is

m–vector:

[yf |y, un, Vn, rn, sn] = Tm(yf |Xfun, Im + XfVnX
′
f , rn, sn).
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8. Model Selection

• Bayesian model selection is based on the

decision theoretic development on page (37).

• Let ωj indicate the model with design matrix

Xj for j = 1, . . . , J.

• Xj is a n× pj design matrix.

• Priors for model j:

[β|σ2, ωj] = Npj
(β|u0,j, V0,j)

[σ2|ωj] = IG
(
σ2|r0,j/1, s0,j/2

)

qj = P (ωj).
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• Posterior probability of model j:

qj(y) = [ωj|y] =
[y|ωj]qj

∑J
k=1[y|ωk]qk

[y|ωj] = Tn(y|Xju0,j, In + XjV0,jX
′
j, r0,j, s0,j)
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3.10 Used Car Prices

Automobile Prices
Kelly Blue Book: kbb.com

Zipcode is 48109. Mid–level Trim Lines

Year Miles (1000) Camary Accord Taurus Grand Prix Intrepid
00/01 0 23,613 22,390 22,135 22,615 22,920

98 10 17,830 18,315 12,965 16,365 17,500
98 20 17,730 18,215 12,890 16,265 17,400
98 30 17,155 17,640 12,415 15,690 16,000
96 20 15,065 14,815 10,450 11,090 12,345
96 40 14,790 14,540 10,250 10,865 12,120
96 60 13,965 13,715 9,725 10,190 11,445
94 30 11,465 10,250 7,660 8,025 8,175
94 60 11,115 9,900 7,410 7,775 7,925
94 90 9,890 8,675 6,560 6,925 7,075
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Dependent Variable:
Percent Difference from New = 100*[Price 00/01 - Price t]/[Price 00/01]

Priors:

[β|σ2] = N(β|0, 100σ2I) and [σ2] = IG(σ2|1, 1)

Estimated Models
Posterior STD are parentheses.

Model ln[Y ] Constant Age Miles Japan Japan* Error
Age Variance

1 −168.7 11.59 8.47 52.30
(2.85) (0.66) (11.28)

2 −192.5 27.61 0.45 128.47
(3.28) (0.07) (27.71)

3 −200.1 50.21 −11.84 210.03
(2.79) (4.41) (45.30)

4 −175.4 11.59 7.44 0.10 48.99
(2.76) (0.87) (0.06) (10.57)

5 −149.1 16.33 8.47 −11.84 18.63
(1.78) (0.39) (1.31) (4.02)

6 −154.1 15.84 8.59 −10.62 −0.31 18.57
(2.19) (0.51) (3.47) (0.80) (4.00)

7 −190.0 32.35 0.45 −11.84 94.80
(3.06) (0.06) (2.96) (20.45)

8 −152.7 16.33 7.44 0.10 −11.84 15.32
(1.62) (0.49) (0.03) (1.19) (3.30)

9 −157.7 15.84 7.56 0.10 −10.62 −0.31 15.26
(1.99) (0.57) (0.03) (3.14) (0.73) (3.29)

ln[Y ] is the natural logarithm of the marginal

distribution of the data. See page 37 for using these

quantities to pick the “best” model.
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• If misclassification costs are unequal, select the

model that minimized the expected loss.

• If misclassification costs are equal, select the

model the maximized its posterior probability

qj(y).

• If prior probabilities qj are equal, select the

model with the largest marginal distribution of y.

• The models do not have to be nested.

• You could use different transformations of Y , but

you need to be careful about the priors.
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3.11 Summary

1. Basic computations for Bayesian Analysis

2. Beta–Binomial Conjugate Family

3. Normal–Normal–Inverted Gamma Conjugate

Family

4. Conjugate Normal Regression

5. Model Selection
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Outline

1. Objectives

2. Linear Regression Model

3. Markov Chain Monte Carlo (MCMC)

4. Numerical Integration

5. Slice Sampling

6. Autocorrelated Errors
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4.1 Objectives

1. The Bayesian analysis of linear regression is

straightforward if one uses conjugate priors. In

this chapter, we will use a non–conjugate model

in order to introduce Markov chain Monte Carlo

(MCMC), which is a numerical method for

computing integrals. MCMC uses the structure

of the statistical model (joint distributions are

expressed as products of standard distributions)

to simplify the analysis.

2. Any practical benefits for being a Bayesian in

linear regression? Usually not. For moderate

sample sizes, MLE & Bayes are approximately

the same. If your design matrix is

ill–conditioned, then Bayes estimates are more

stable (ridge regression).
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3. The chapter presents a brief discussion about

numerical integration.

4. This chapter also presents “slice sampling,”

which decomposes complex distributions into

simpler ones.

5. We then analyze the autocorrelated error

regression model using slice sampling.
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4.2 Model

1. Linear regression model for observation i is

yi = x′iβ + εi for i = 1, . . . n.

=
p∑

j=1
xi,jβp + εi

where

• yi is the dependent variable for subject i.

• xi is a p vector of independent variables.

• Usually, xi,1 = 1.

• β is a p vector of unknown regression

coefficients.

• The error terms {εi} form a random sample

from a normal distribution with mean 0 and

variance σ2.
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2. Matrix Model:

Y = Xβ + ε

Y =




y1

y2

...

yn




; X =




x′1

x′2
...

x′n




; and ε =




ε1

ε2

...

εn




.

• Y is a n vector of dependent observations.

• X is the n× p design matrix.

• β is a p vector of unknown regression

coefficients.

• ε is a n vector of random errors:

[ε] = Nn(ε|0, σ2In)

where In is a n× n identity matrix.
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3. The density of Y is:

[Y |β, σ2] = Nn(Y |Xβ, σ2In)

= (2πσ2)−
n
2 exp


− 1

2σ2
(Y −Xβ)′(Y −Xβ)


 .

4. If X has full rank, the maximum likelihood

estimators are:

β̂ = (X ′X)−1X ′Y

σ̂2 =
1

n
(Y −Xβ̂)′(Y −Xβ̂).

In GAUSS:

bhat = invpd(x’x)*x’y;

s2hat = (y - x*bhat)’(y- x*bhat)/n;
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4.3 Prior Distributions

1. β has a normal distribution with density:

[β|u0, V0] = Np(β|u0, V0)

= (2π)−
p
2 |V0|−1

2 exp


−1

2
(β − u0)

′V −1
0 (β − u0)


 .

I usually set u0 = 0, and V0 = cIp for large c.

2. σ2 has an Inverted Gamma distribution with pdf:

[σ2|r0, s0] = IG(σ2|r0/2, s0/2)

=

(
s0
2

)r0
2

Γ
(

r0
2

)
(
σ2

)−r0
2 −1

exp
(
− s0

2σ2

)
.

for σ2 > 0.

I usually set r0 and s0 to very small positive

numbers.
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4.4 Bayesian Inference

1. Joint density:

[Y, β, σ2] = [Y |β, σ2][β][σ2]

= Nn(Y |Xβ, σ2I)

× Np(β|u0, V0)

× IG(σ2|r0/2, s0/2)
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2. Posterior Distribution of β and σ:

[β, σ2|Y ] =
[Y, β, σ2]

∫ ∫
[Y, β, σ2] dβ dσ2

=
[Y |β, σ2][β][σ2]

∫ ∫
[Y |β, σ2][β][σ2] dβ dσ2

∝ [Y |β, σ2][β][σ2]
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3. Predictive Distribution of Yf

(a) Model for Yf :

Yf = Xfβ + εf ,

or

[Yf |β, σ2] = Nm(Yf |Xfβ, σ2I).

Its predictive distribution is:

[Yf |Y ] =
∫
[Yf |β, σ2][β, σ2|Y ] dβ dσ2

(b) Predictive mean:

E(Yf |Y ) = XfE(β|Y ).

(c) Predictive variance:

V (Yf |Y ) = E(V (Yf |β, σ2)|Y ) + V (E(Yf |β, σ2)|Y )

= E(σ2|Y ) + V (Xfβ|Y )

= E(σ2|Y ) + XfV (β|Y )X ′
f
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4.5 Markov Chain Monte Carlo

1. Generate β and σ2 from their posterior

distribution.

(a) Recursively generate from “full conditionals:”

[β|σ, Y ] and [σ2|β, Y ].

• Generate β(i+1) from

[β|σ(i), Y ].

item Generate σ(i+1) from

[σ2|β(i+1), Y ].

• The sequence {β(i), σ(i)} forms a Markov

chain such that the stationary distribution

is the posterior distribution. That is,

eventually the sequence will act as though

they are random draws from [β, σ|Y ].
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(b) Joint density:

[Y, β, σ2] = [Y |β, σ2][β][σ2]

= Nn(Y |Xβ, σ2I)

× Np(β|u0, V0)

× IG(σ2|r0/2, s0/2)
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(c) Full conditional for β:

[β|Y, σ2] =
[Y |β, σ2][β][σ2]

∫
[Y |β, σ2][β][σ2]dβ

∝ [Y |β, σ2][β]

∝ Nn(Y |Xβ, σ2I)Np(β|u0, V0)

∝ exp


− 1

2σ2
(Y −Xβ)′(Y −Xβ)




× exp


−1

2
(β − u0)

′V −1
0 (β − u0)




Write this as a function of β.
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Expand the squares in β.

1

2σ2
(Y −Xβ)′(Y −Xβ) =

1

2
(β − u0)

′V −1
0 (β − u0) =
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Complete the squares in β:
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Did you get

[β|Y, σ2] = Np(β|un, Vn)

with

Vn =


 1

σ2
X ′X + V −1

0



−1

un = Vn


 1

σ2
X ′Y + V −1

0 u0
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(d) Full conditional for σ2.

Write it as a function of σ2.
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Did you get

[σ2|Y, β] = IG(σ2|rn/2, sn/2)

with

rn = r0 + n

sn = s0 + (Y −Xβ)′(Y −Xβ)



118 CHAPTER 4. LINEAR REGRESSION

2. Use random iterates for inference.

Suppose you have generated a sequence of

random deviates: {β(i), σ(i)} for i = B + 1, . . . , M .

Blow-off the first B iterates (transitory period).

(a) Point Estimates

Approximate posterior parameters by

corresponding summary statistics from

{β(i), σ(i)}.

• Posterior Mean ≈ Sample Means:

E(β|Y ) ≈ 1

M −B

M∑

i=B+1
β(i).

• Posterior Median ≈ Sample Median.

• Posterior Standard Deviations ≈
Sample Standard Deviations.

• Posterior Covariance ≈ Sample Covariance.
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(b) Marginal Distributions

• Make histograms based on {β(i), σ(i)}.
• Better but more work:

[β|Y ] =
∫
[β|Y, σ][σ|Y ] dσ

≈ 1

M −B

M∑

i=B+1
Np(β|u(i)

n , V (i)
n )

[σ2|Y ] =
∫
[σ2|Y, β][β|Y ] dβ

≈ 1

M −B

M∑

i=B+1
IG(σ2|r(i)

n /2, s(i)
n /2)

For example, fix a grid of values for σ2.

At each iteration of the MCMC,

compute IG(σ2|r(i)
n /2, s(i)

n /2) density at each

grid point σ2. Then average these densities

over the iterations.
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(c) Predictive distributions:

• Nice but lots of work:

[Yf |Y ] =
∫
[Yf |β, σ2][β, σ2|Y ] dβ dσ2

≈ 1

M −B

M∑

i=B+1
Nm(Yf |Xfβ

(i),
(
σ(i)

)2
I)

• During or after MCMC, you could generate

[Yf |Y, β(i), σ(i)] = Nn(Yf |Xfβ
(i), (σ(i))2I)

and use {Y (i)
f } anyway you want.

• Predictive mean:

E(Yf |Y ) = XfE(β|Y ) ≈ 1

M −B

M∑

i=B+1
Y

(i)
f

• Predictive variance:

V (Yf |Y ) = E(σ2|Y ) + XfV (β|Y )X ′
f

≈ Sample Covariance of {Y (i)
f }.
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4.6 Example using Simulated Data

Generate 30 observations from:

Y = 2− 1X1 + 3X2 + 0X3 + ε

where ε is from the normal distribution with mean 0

and standard deviation 2.

Priors:

[β] = N4(β|0, 100I)

[σ2] = IG(σ2|1, 1)
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Model

Y = X*beta + epsilon

Number of observations = 30.00000

Number of independent variables = 3.00000 (excluding the intercept).

Summary Statistics

Variable Mean STD MIN MAX

X1 -0.07043 1.15915 -2.71526 2.11850

X2 -0.09506 1.14323 -2.46804 2.28341

X3 0.04298 0.76840 -1.82211 1.51536

Y 2.11729 3.53558 -5.30671 9.19462

R-Squared = 0.79150

Multiple R = 0.88966

MLE Error STD = 1.58728

Estimated Regression Coefficients

Variable MLE StdError

Constant 2.31687 0.29142

X1 -0.66872 0.28760

X2 2.86992 0.28536

X3 0.60799 0.39830
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MCMC Analysis

Total number of MCMC iterations = 2000

Number of iterations used in the analysis = 1000

Number in transition period = 1000

Number of iterations between saved iterations = 0.00000

Bayes R-Square = 0.79150

Bayes Multiple R = 0.88966

Error Standard Deviation

Posterior mean of sigma = 1.65428

Posterior STD of sigma = 0.22341

Regression Coefficients

Variable PostMean PostSTD

Constant 2.31821 0.22730

X1 -0.66451 0.22825

X2 2.86502 0.23195

X3 0.60480 0.32320
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MCMC for Error STD
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MCMC for Coefficients
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4.7 Numerical Integration

1. Bayesian analysis requires the computation of

integrals:

E[T (X)] =
∫

X T (x)f (x)dx.

where X has density f , and T is a function.

2. Examples

• Under squared-error loss, the Bayes rule is the

posterior mean, and the Bayes risk is the

posterior variance.

• Under absolute-error loss, the Bayes rule is

the posterior median.

• Posterior distributions and the posterior

probability of a model require the marginal

distribution of the data, which integrates the

likelihood with respect to the prior.
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T(x) and f(x)
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X
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T(x)f(x)

0
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X
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3. Grid methods such as the trapezoid rule and

Simpson’s integration can achieve a high degree

of accuracy with relative few functional

evaluations of T (x)f (x).

4. Downside of grid methods

• You have to be really smart to make them

work well.

– You need to know the support of T (x)f (x).

– You need to know how wavy T (x)f (x) is.

• They do not scale-up to higher dimensions.

The number of gird points increases

geometrically with the number of dimensions.
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5. Monte Carlo

• Suppose that you have a random number

generator for f .

• Generate an iid sequence X1, X2, . . . , XM .

• Approximate

̂
E[T (X)] =

1

M

M∑

i=1
T (Xi).

This converges to E[T (X)] by the strong law of

large numbers as M increases.

• The accuracy of the approximation in root

mean squared error is

M−1/2STD[T (X1)].
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6. Upside of Monte Carlo

• You do not have to be smart.

The researchers who developed f and its

random number generator did all the hard

thinking for you.

• It scales up to higher dimensions.

The rate of convergence is M−1/2 regardless of

the dimension. As you increase dimensions,

the absolute accuracy declines, but the rate

stays the same.

7. Downside of Monte Carlo

• In many applications, you do not have a

random number generator for f .
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8. Importance sampling.

• Suppose that you only know the function form

of f :

f (x) = g(x)/c

c =
∫

X g(x)dx.

Importance sampling does not require that

you know c.

• For example, the posterior density is:

p(θ|x) ∝ f (x|θ)p(θ).

• You would like to use Monte Carlo, but you

have a random number generator for h, not f

where h has the same support as f .

• Generate Y1, Y2, . . . YM iid from h.
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• We need to approximate

∫

X T (x)f (x)dx =
∫
X T (x)g(x)dx

∫
X g(x)dx

=

∫
X T (x)g(x)

h(x)h(x)dx
∫
X

g(x)
h(x)h(x)dx

̂E[T (X)] =
M−1 ∑M

i=1 T (Yi)
g(Yi)
h(Yi)

M−1 ∑M
i=1

g(Yi)
h(Yi)

=
M−1 ∑M

i=1 T (Yi)W (Yi)

M−1 ∑M
i=1 W (Yi)

W (Y ) = g(Y )/h(Y )

• The strong law of large number applies if

∫

X T (x)2
g(x)2

h(x)
dx < ∞

∫

X
g(x)2

h(x)
dx < ∞.
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9. Upside of importance sampling.

• Greatly extends the applicability of existing

random number generators.

10. Downside of importance sampling.

• You need to be a little smart or else it will not

converge very rapidly or at all.

• h should match g as well as possible.

• If the tails of h are smaller than that of g, the

approximation may fail.

• If the tails of h are much larger than that of g,

the approximation may be inaccurate.

• How do you know?
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11. Markov Chain Monte Carlo

• Exploits the structure of Bayesian models.

• Simplifies complex posterior distributions by

successive conditioning.

• Generate random deviates from a Markov

chain such that the stationary distribution is

the posterior distribution.
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12. Example:

• Generate (X, Y ) from the joint distribution

f (x, y).

• We do not have a random number generator

for f (x, y).

• We have random number generators for the

conditionals g(x|y) and h(y|x).

• Recursively generating Y |X and X|Y :

[xi|yi−1] = g(xi|yi−1)

[yi|xi] = h(yi|xi)
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• Why does it work?

g(x) =
∫

Y g(x|s)h(s)ds

h(y) =
∫

X h(y|x)g(x)dx

=
∫

X h(y|x)
[∫

Y g(x|s)h(s)ds
]
dx

=
∫

Y
[∫

X h(y|x)g(x|s)dx
]
h(s)ds

=
∫

Y h(s)K(s, y)ds

• The marginal distribution of Y is the

stationary distribution for the transition

probability K(s, y), which the probability that

the Markov chain moves from s to y.

• The joint distribution of the pairs (Xi, Yi)

converges to f (x, y).
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13. Upside of MCMC

• Often it is very easy.

• Allows the analysis of very complex models.

14. Downside of MCMC

• Random deviates are not independent.

• It is more difficult to compute the numerical

accuracy than in Monte Carlo.

• In complex models, the autocorrelation is very

high. This means that the MCMC will have

to run for a long time to obtain accurate

approximations.

• There is a transition period before the

random deviates start coming from the

stationary distribution.

• There are diagnostics for the transition

period, but all of them are flawed.
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4.8 Uniform Distribution

1. X has the uniform distribution on θ1 to θ2 for

θ1 < θ2 if its density is:

[x] = U(x|θ1, θ2)

=
1

θ2 − θ1
for θ1 < x < θ2

2. Moments

E(Xk) =
1

θ2 − θ1

∫ θ2

θ1
xkdx

=
θk+1

2 − θk+1
1

(k + 1)(θ2 − θ1)

E(X) =
1

2
(θ1 + θ2) and V (X) =

1

12
(θ2 − θ1)

2

3. Generate X:

x = (θ2 − θ1)u + θ1

where u is uniform on 0 to 1.
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4.9 Slice Sampling

1. Slice sampling is a method of decomposing

complex distributions into simpler ones for

random variable generation.

2. Suppose that the distribution you want to

generate from has the form:

[x] ∝ g(x)h(x).

3. Introduce an auxiliary random variable V so that

the joint density of V and X is:

[v, x] ∝ I [0 < v < g(x)]h(x).

where I is the indicator function.

4. Key concept:

[x] =
∫
[v, x]dv ∝

[∫ g(x)

0
dv

]
h(x) = g(x)h(x).
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5. Full conditional of V is:

[v|x] ∝ I [0 < v < g(x)]

= U(v|0, g(x))

So V is uniform from 0 to g(x). Generate V :

V = g(x)U where U is uniform on 0 to 1.

6. Full conditional of X is:

[x|v] ∝ h(x) for x such that v < g(x)

7. Generate X from the truncated distribution of h

on the set {x|v < g(x)}:

• if it is easy to invert g(x) and

• if it is easy to generate from

truncated density h.
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8. Univariate, truncated distributions.

Fact: If F is the cdf of X,

F (a) = P (X < a),

then U = F (X) is uniform:

P (U < u) = P (F (X) < u) = P (X < F−1(u))

= F [F−1(u)] = u for 0 < u < 1.

The cdf F of X is:

[x] ∝ h(x)I(a < x < b)

F (x) =
∫ x
a h(s)dx
∫ b
a h(s)ds

F (x) =
H(x)−H(a)

H(b)−H(a)

where H is the cdf corresponding

to the density h.
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Set F (x) = u where u is uniform on 0 to 1.

Solve for x:

x = H−1 [uH(b) + (1− u)H(a)] .

This works well if you can easily

obtain H and H−1.

• Uniform

• Exponential

• Gamma (sometimes)

• Normal
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4.10 Autocorrelated Errors

4.10.1 Model

yt = x′tβ + εt for t = 1, . . . , T

εt = ξt + ρεt−1 for t = 2, . . . , T

ρ ∈ (−1, 1)

[ξt] = N(ξt|0, σ2) for t = 2, . . . , T

[ε1] = N


ε1|0, σ2

1− ρ2


 .

1. The innovations or “shocks,” {ξ2, . . . , ξT}, are iid.

2. ε1 is independent of the {ξt} and has a normal

distribution with mean 0 and stationary variance

σ2/(1− ρ2).
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3. Write the error terms as geometric series of past

innovations:

ε2 = ξ2 + ρε1

ε3 = ξ3 + ρε2

= ξ3 + ρξ2 + ρ2ε1

ε4 = ξ4 + ρε3

= ξ4 + ρξ3 + ρ2ξ2 + ρ3ε3

εt = ξt + ρεt−1

= ξt + ρξt−1 + ρ2ξt−2 + · · · + ρt−2ξ2 + ρt−1ε1

4. The stationary variance makes all of the

variances of the εt equal, say σ2
ε :

V (εt) = σ2 + ρ2V (εt−1)

σ2
ε = σ2 + ρ2σ2

ε

σ2
ε = σ2/(1− ρ2)
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5. Using the geometric series expression for εt, the

covariances are:

E(εtεt+u) = σ2 ρu

1− ρ2
for u > 0.

6. The variance–covariance matrix of the error

terms is:

E(εε′) = Σ

=
σ2

1− ρ2
Υ

Υ =




1 ρ ρ2 . . . ρt−1

ρ 1 ρ . . . ρt−2

... . . . ...

ρt−1 ρt−2 ρt−3 . . . 1
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7. Υ is the familiar Topelitz matrix and has inverse

and determinate:

Υ−1 =
1

1− ρ2




1 −ρ 0 0 . . . 0

−ρ 1 + ρ2 −ρ 0 . . . 0

0 −ρ 1 + ρ2 −ρ . . . 0

... . . . . . . . . . ...

0 . . . −ρ 1 + ρ2 −ρ

0 . . . 0 −ρ 1




det(Υ) = (1− ρ2)T−1
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8. Define the residuals:

rt = yt − x′tβ.

Then the conditional distribution of

Y given β, σ, and ρ is:

[Y |β, σ, ρ] ∝ det(Σ)−1/2 exp



−

1

2
(Y −Xβ)′Σ−1(Y −Xβ)





∝



√
1− ρ2

σT


 exp



−

1

2σ2


(1− ρ2)r2

1 +
T∑

t=2
(rt − ρrt−1)

2







9. Note that:

rt − ρrt−1 = yt − ρyt−1 − (xt − ρxt−1)
′β.
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10. Define

y∗1 = (1− ρ)y1

y∗t = yt − ρyt−1 for t = 2, . . . T

x∗1 = (1− ρ)x1

x∗t = xt − ρxt−1

Y ∗ =




y∗1

y∗2
...

y∗T




and X∗ =




x∗
′

1

x∗
′

2

...

x∗
′

T




.

11. The AR normal density is:

[Y |β, σ, ρ] ∝
√

1− ρ2

σT
exp



−

1

2σ2
(Y ∗ −X∗β)′(Y ∗ −X∗β)



 .
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12. The prior distributions are:

[β] = Np(β|u0, V0)

[σ2] = IG(σ2|r0/2, s0/2)

[ρ] = U(ρ| − 1, 1).
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4.10.2 MCMC

1. Full Conditional for β:

[β|Y, σ, ρ] ∝ [Y |β, σ][β]

= Np(β|uT , VT )

VT =
[
X∗′X∗/σ2 + V −1

0

]−1

uT = VT

[
X∗′Y ∗/σ2 + V −1

0 u0

]
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2. Full Conditional of σ:

[σ2|Y, β, ρ] ∝ [Y |β, σ, ρ][σ]

= IG(σ2|rT/2, sT/2)

rT = r0 + T

sT = s0 + (Y ∗ −X∗β)′(Y ∗ −X∗β)
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3. Full Conditional of ρ:

[ρ|Y, β, σ] ∝ [Y |β, σ2][ρ]

∝ exp



−

1

2σ2


(1− ρ2)r2

1 +
T∑

t=2
(rt − ρrt−1)

2







×
√
1− ρ2I(−1 < ρ < 1)

∝ exp



−

1

2σ2


ρ2




T∑

t=2
r2
t


− 2ρ




T∑

t=2
rtrt−1











×
√
1− ρ2I(−1 < ρ < 1)

∝
√
1− ρ2N(ρ|a, b2)I(−1 < ρ < 1)

b2 = σ2



T∑

t=2
r2
t



−1

a =
∑T

t=2 rtrt−1
∑T

t=2 r2
t
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Use slice sampling with

g(ρ) =
√
1− ρ2

h(ρ) = N(ρ|a, b2)I(−1 < ρ < 1)

• Given ρ, generate V from a uniform

on 0 to (1− ρ2)1/2:

v =
√
1− ρ2u where u is uniform on 0 to 1.

• Given v, find the region where

v <
√
1− ρ2 or −

√
1− v2 < ρ <

√
1− v2.

• Given v, generate ρ from a truncated normal:

[ρ|v] ∝ N(ρ|a, b2)

for max(−1,−
√

1− v2) < ρ < min(1,
√

1− v2).
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4.10.3 Quarterly Revenue

Data: Quarterly revenues for the Ford Motor Corp.
from 1962 Q1 to 2000 Q1.

Linear Regression with Autocorrelated Errors

Y = X*beta + epsilon

epsilon_t = rho*epsilon_{t-1} + z_t

Number of observations = 153.00000

Summary Statistics

Variable Mean STD MIN MAX

Year 81.00000 11.07785 62.00000 100.00000

Q1 0.25490 0.43724 0.00000 1.00000

Q2 0.24837 0.43348 0.00000 1.00000

Q3 0.24837 0.43348 0.00000 1.00000

Sales 9.99955 0.40603 9.24249 10.70802

--------------------------------------------------------------------------

MLE Analysis

R-Squared = 0.98043

Multiple R = 0.99017

One-Step Ahead Predictive RMSE = 0.05678

MLE Error STD = 0.05662

Estimated Regression Coefficients

Variable MLE StdError

Const 7.08147 0.03492

Year 0.03617 0.00041

Q1 -0.00484 0.01291

Q2 0.02564 0.01299

Q3 -0.06815 0.01299
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MCMC Analysis

Total number of MCMC iterations = 2000.00000

Number of iterations used in the analysis = 1000.00000

Number in transition period = 1000.00000

Number of iterations between saved iterations = 0.00000

Bayes R-Square = 0.98042

Bayes Multiple R = 0.99016

One-Step Ahead Predictive RMSE without AR Correction = 0.05697

One-Step Ahead Predictive RMSE Corrected for AR Errors = 0.04123

Error Standard Deviation

Posterior mean of sigma = 0.04197

Posterior STD of sigma = 0.00246

Error Correlation

Posterior mean of rho = 0.71377

Posterior STD of rho = 0.06288

Regression Coefficients

Variable PostMean PostSTD

Const 7.10347 0.09090

Year 0.03587 0.00111

Q1 -0.00405 0.00704

Q2 0.02403 0.00785

Q3 -0.06863 0.00691
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4.11 Summary

1. Non–conjugate Linear Regression Model

2. Markov Chain Monte Carlo

3. Slice sampling

4. Autoregressive errors
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Outline

1. Objectives

2. Matrix Algebra

3. Distributions

• Matrix Normal Distribution

• Wishart Distribution

• Inverted Wishart Distribution

4. Model

5. Prior Distributions

6. Full Conditionals
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5.1 Objectives

1. Multivariate regression is an extension of linear

regression. It requires advanced “book keeping”

to keep track of the numbers. The advanced

book keeping are some definitions and identities

from matrix algebra. Its not hard, but if you

were not aware of these identities, the statistics

would become very tough.

2. The analysis of hierarchical Bayes models relies

heavily on this chapter. One output of this

chapter will be a subroutine that is frequently

called for other models.
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3. The multivariate model requires the matrix

normal and Wishart and Inverted Wishart

distributions.

4. The Wishart and Inverted Wishart distributions

are the multivariate extensions of the Gamma

and Inverted Gamma distributions. The Inverted

Wishart distribution is used for the prior

distribution of the covariance matrix.
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5.2 Matrix Algebra

1. A = (aij) is a m×m matrix.

The trace of A is the sum of its diagonal elements:

tr(A) =
m∑

i=1
aii.

2. A is a m× n matrix with columns aj

A = [a1 a2 · · · an].

vec(A) is a mn× 1 vector that stacks the columns

of A:

vec(A) =




a1

a2

...

an




.

vec(A′) stacks the rows of A.

3. Gauss has the operators “vec(A)” that stacks the

columns of A, and “vecr(A)” that stacks the rows

of A.
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4. Kronecker Product or Direct Product

A = (aij) is a p× q matrix.

B = (bij) is a r × s matrix.

Their direct product is a pr × qs matrix:

A⊗B =




a11B a12B . . . a1qB

a21B a22B . . . a2qB

... ... . . . ...

ap1B ap2B . . . apqB
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5. Mini Facts about Direct Products

(a) (aA)⊗ (bB) = ab(A⊗B) for scalars a and b.

(b) (A + B)⊗ C = A⊗ C + B ⊗ C.

(c) (A⊗B)⊗ C = A⊗ (B ⊗ C).

(d) (A⊗B)′ = A′ ⊗B′.

(e) (A⊗B)(C ⊗D) = AC ⊗BD

(f) (A⊗B)−1 = A−1 ⊗B−1
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(g) If H and Q are both orthogonal matrices

(H ′ = H and H ′H = I), then so is H ⊗Q.

(h) If A and B are both m×m:

tr(A⊗B) = [tr(A)][tr(B)].

(i) If A is m×m and B is n× n, then

|A⊗B| = |A|n|B|m.

(j) A is m×m with latent roots a1, . . . , am.

B is n× n with latent roots b1, . . . , bm.

The latent roots of A⊗B are aibj

for i = 1, . . . , n and j = 1, . . . , m.

(k) If A and B are positive definite, then so is

A⊗B.
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(l) If B is r ×m; X is m× n, and C is n× s, then

vec(BXC) = (C ′ ⊗B)vec(X).

(m) If B is k ×m and C is m× n.

vec(BC) = (In ⊗B)vec(C)

= (C ′ ⊗ Ik)vec(B)

= (C ′ ⊗B)vec(Im)

(n) B is k ×m; C is m× n, and D is n× k.

tr(BCD) = [vec(B′)]′(In ⊗ C)vec(D)

(o) For B, X, C, and D of the correct dimensions:

tr(BX ′CXD) = [vec(X)]′(B′D′ ⊗ C)vec(X)

= [vec(X)]′(DB ⊗ C ′)vec(X)
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6. Example

• There are n subjects.

• There are m measurements for each subject:

Yi is a m vector for i = 1, . . . , n.

• The subjects are independent, and

E(Yi) = µi

V (Yi) = Σ.
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• Define

Y =




Y ′
1

Y ′
2

...

Y ′
n




and M =




µ′1

µ′2
...

µ′n




.

– Y is a n×m random matrix.

– The rows of Y correspond to subjects.

– The columns of Y correspond to variables.

– M is a n×m matrix such that

E(Y ) = M.

• The covariance matrix of Y is defined as:

V (Y ) ≡ V [vec(Y ′)]

= E {[vec(Y ′)− vec(M ′)][vec(Y ′)− vec(M ′)]′}
= In ⊗ Σ



174 CHAPTER 5. MULTIVARIATE REGRESSION

5.3 Distributions

5.3.1 Matrix Normal Distribution

1. Y is a n×m matrix. Usually,

• Rows of Y correspond to subjects.

• Columns of Y correspond to variables.

• Yi are the m measurements for subject i.

• E(Yi) = µi.

• Set

Y =




Y ′
1

...

Y ′
n




and M =




µ′1
...

µ′n




.

• See previous example.
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2. Special form for the covariance.

• Let Σ be a m×m pds matrix.

• Let Φ be a n× n pds matrix.

If

V (Yi) = φiiΣ

Cov(Yi, Yj) = E[(Yi − µi)(Yj − µj)
′] = φijΣ,

then

V (Y ) ≡ V [vec(Y ′)] = Φ⊗ Σ.

If the subjects are mutually independent,

Φ = In.
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3. The matrix normal pdf for Y is:

[Y |M, Φ, Σ] = Nn×m(Y |M, Φ, Σ)

= (2π)−
mn
2 |Φ|−m

2 |Σ|−n
2

× exp



−

1

2
tr

[
Σ−1(Y −M)′Φ−1(Y −M)

]

 .
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4. The matrix multivariate density can also be

written by stacking the rows of Y . Define

Y ∗ = vec(Y ′) and M ∗ = vec(M ′).

Then

[Y ∗|M ∗, Φ, Σ] = Nmn(Y ∗|M ∗, Φ⊗ Σ)

= (2π)−
mn
2 |Φ⊗ Σ|−1

2

× exp



−

1

2
(Y ∗ −M ∗)′ (Φ⊗ Σ)−1 (Y ∗ −M ∗)





5.
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Are the two pdfs the same?

Use Mini–Fact (5i) on page (170):

|Φ⊗ Σ|−1
2 = |Φ|−m

2 |Σ|−n
2 .

Use Mini–Fact (5o) on page (171):

tr
[
Σ−1(Y −M)′Φ−1(Y −M)I

]

= (Y ∗ −M ∗)′ (Φ⊗ Σ)−1 (Y ∗ −M ∗) .

6. If V (Y ) is not Φ⊗Σ, then the matrix normal for Y

is defined by vec(Y ′) being multivariate normal.
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5.3.2 Wishart Distribution

(Arnold Zellner, An Introduction to Bayesian

Inference and Econometrics, 1971, John Wiley &

Sons, ISBN 0–471–98165–6)

1. X is a m×m positive definite, symmetric matrix.

2. X has a Wishart distribution if its density is:

[X|v, G] = Wm(X|v, G)

= k
|X|(v−m−1)/2

|G|v/2
exp


−1

2
tr

(
G−1X

)


k−1 = 2vm/2πm(m−1)/4
m∏

i=1
Γ [(v + 1− i)/2]

for v ≥ m, and G is a positive definite, symmetric,

m×m matrix.



180 CHAPTER 5. MULTIVARIATE REGRESSION

3. The Wishart is the multivariate generalization of

the Gamma distribution.

4. I will call v the degrees of freedom, and G the

scale matrix.

5. Moments:

E(X) = vG

V (xij) = v(g2
ij + giigjj)

Cov(xij, xkl) = v(gikgjl + gilgjk)

6. If z1, . . . , zv are iid Nm(z|0, Σ), then the distribution

of

X =
v∑

i=1
ziz

′
i

is Wm(X|v, Σ).

S = 1
v

∑v
i=1 ziz

′
i is Wm(S|v, Σ/v).
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7. The Standard Wishart sets G = I.

8. If Y = Wm(Y |v, I) and if X = C ′Y C, then

X = Wm(X|v, C ′C).

9. Bartlett’s Decomposition

(Brian Ripley, Stochastic Simulation, pp.

99–100, 1987, John Wiley & Sons, ISBN

0271-6356)

is used to generate the standard Wishart.
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5.3.3 Inverted Wishart Distribution

1. Y , a m×m, positive definite, symmetric matrix

has the inverted Wishart distribution with

density:

[Y |v, H ] = IWm(v,H)

= k
|H|v/2

|Y |(v+m+1)/2
exp



−

1

2
tr

(
Y −1H

)



k−1 = 2vm/2πm(m−1)/4
m∏

i=1
Γ [(v + 1− i)/2]

where v ≥ m and H is a m×m, positive definite,

symmetric matrix.

2. If X is Wm(X|v,G), then Y = X−1 is IWm(Y |v, G−1).
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3. I wrote a subroutine in plbam.src that returns a

Wishart and Inverted Wishart. Its calling

statement is

{w, wi } = Wishart(m,v,G);

where

[w] = Wm(w|v, G)

[wi] = IWm(wi|v,G−1).
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5.4 Multivariate Regression Model

1. For subject i:

Yi = B′xi + εi for i = 1, . . . , n

where

• there are n subjects

• and m dependent observations for each

subject;

• Yi is a m vector for i = 1, . . . , n;

• xi is a k vector for i = 1, . . . , n;

• B is a k ×m matrix of regression coefficients;

• [εi] is Nm(εi|0, Σ);

• the error terms are mutually independent and

independent of {xi}.
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2. Define

Y =




Y ′
1

Y ′
2

...

Y ′
n




; X =




x′1

x′2
...

x′n




and U =




ε′1

ε′2
...

ε′n




.

• Y is a n×m matrix.

• The rows correspond to subjects.

• The columns correspond to variables.

• X is the n× k design matrix.

• U is the n×m error matrix with

E(U) = 0

V (U) = V [vec(U ′)] = In ⊗ Σ
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3. The multivariate regression model is:

Y = XB + U.

The pdf of Y given B and Σ is:

[Y |B, Σ] = Nn×m(Y |XB, In, Σ)

∝ |Σ|−n
2 exp



−

1

2
tr

[
Σ−1(Y −XB)′(Y −XB)

]



This version is used in computing the full

conditional of Σ.
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4. Set Y ∗ = vec(Y ′) and B∗ = vec(B′).

Another representation can be derived from:

vec(Y ′) = vec(B′X ′) + vec(U ′)

= (X ⊗ Im)vec(B′) + vec(U ′)

Y ∗ = (X ⊗ Im)B∗ + ε∗

E(ε∗) = 0

V (ε∗) = In ⊗ Σ

The pdf of Y ∗ is:

[Y ∗|B∗, Σ] = Nnm(Y ∗|[X ⊗ Im]B∗, In ⊗ Σ)

∝ |Σ|−n
2 exp



−

1

2
[Y ∗ − (X ⊗ Im)B∗]′

(
In ⊗ Σ−1

)

[Y ∗ − (X ⊗ Im)B∗]} .

This version is used in computing

the full conditional of B or B∗.
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5. If X has full rank, the MLEs are:

B̂ = (X ′X)−1X ′Y

Σ̂ =
1

n
(Y −XB̂)′(Y −XB̂)

In Gauss,

bhat = invpd(x’x)*x’y;

sighat = (y-x*bhat)’(y-x*bhat)/n;
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5.5 Conjugate Model

This section present the analysis of the multivariate

normal model with conjugate prior distributions.

The analysis has analytical expressions.

5.5.1 Conjugate Prior Distributions

The conjugate prior distribution is similar to that

for linear regression: the prior distribution for the

regression coefficients depend on the variance of the

error terms.

[B|Σ] = Nk×m(B|U0, V0, Σ)

∝ |V0|−m
2 |Σ|−k

2 exp



−

1

2
tr

[
Σ−1(B − U0)

′V −1
0 (B − U0)

]



[Σ] = IWm(Σ|f0, G0)

∝ |Σ|− (f0+m+1)
2 exp


−1

2
tr

(
Σ−1G−1

0

)
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5.5.2 Posterior Distributions

[B|Y, Σ] = Nk×m (B|Un, Vn, Σ)

Vn =
(
X ′X + V −1

0

)−1

Un = Vn

(
X ′Y + V −1

0 U0

)

[Σ|Y ] = IGm(Σ|fn, Gn)

fn = f0 + n

Gn = G0 +
(
Y ′Y + U ′

0V
−1
0 U0 − U ′

nV
−1
n Un

)−1

The key computation is combining the traces from

the likelihood and prior distribution for B:

tr
[
Σ−1(Y −XB)′(Y −XB)

]
+ tr

[
Σ−1(B − U0)

′V −1
0 (B − U0)

]

= tr
[
Y ′Y + U ′

0V
−1
0 U0 + B′ (

X ′X + V −1
0

)
B

− B′ (
X ′Y + V −1

0 U0

)
−

(
Y ′X + U ′

0V
−1
0

)
B

]

= tr
[
Y ′Y + U ′

0V
−1
0 U0 − U ′

nV
−1
n Un + (B − Un)′V −1

n (B − Un)
]
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If one needs to generate from these distributions,

then generate Σ from an inverted Wishart. Given Σ

generate B, which has compact code in a matrix

based languages, such as GAUSS:

B = Un + A′Z ∗D

where A = chol(Vn), the upper-triangular Cholesky

decomposition as in Gauss; D = chol(Σ); and Z is a

k ×m matrxix of iid standard normal random

deviates. Obviously, B will have the correct mean,

Un. A check on the covariance matrix gives:

var(A′ZD) = var[vec(D′Z ′A)]

= A′A⊗D′D

= Vn ⊗ Σ
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5.6 Non-conjugate Model

We re-analyze the multivariate normal model

without using conjugate prior distributions. In this

case, one needs to use MCMC.

5.6.1 Prior Distributions

1. B∗ = vec(B′) is Nkm(B∗|u0, V0):

[B∗|u0, V0] ∝ exp



−

1

2
(B∗ − u0)

′V −1
0 (B∗ − u0)



 .

2. Σ is IWm(Σ|f0, G
−1
0 ):

[Σ|f0, G0] ∝ |Σ|−(f0+m+1)/2 exp



−

1

2
tr

(
Σ−1G−1

0

)

 .
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5.6.2 Full Conditionals

1. Generate B.

Define Y ∗ = vec(Y ′) and B∗ = vec(B′).

[B∗|Y ∗, Σ] ∝ [Y ∗|B∗, Σ][B∗]

∝ Nnm(Y ∗|[X ⊗ Im]B∗, In ⊗ Σ)

× Nkm(B∗|u0, V0)
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• Expand the squares in B∗, combine terms, and

compete the squares.

• It works just like the linear regression model

on page (88).

• Use Kronecker product algebra:

(X ⊗ Im)′(In ⊗ Σ−1) = X ′ ⊗ Σ−1

(X ⊗ Im)′(In ⊗ Σ−1)(X ⊗ Im) = X ′X ⊗ Σ−1
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Full Conditional of B∗:

[B∗|Y ∗, Σ] = Nkm(B∗|un, Vn)

Vn =
[(

X ′X ⊗ Σ−1
)

+ V −1
0

]−1

un = Vn

[(
X ′ ⊗ Σ−1

)
Y ∗ + V −1

0 u0

]
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2. Generate Σ.

[Σ|Y,B] ∝ [Y |B, Σ][Σ]

∝ Nn×m(Y |XB, In, Σ)

× IWm(Σ|f0, G
−1
0 )
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Full conditional of Σ:

[Σ|Y,B] = IWm(Σ|fn, G
−1
n )

fn = f0 + n

G−1
n = G−1

0 + (Y −XB)′(Y −XB).

So, Σ−1 is Wm(Σ−1|fn, Gn).

The calling statement in Gauss is:

{sigmai, sigma} = wishart(mvar,f0n,gn);
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5.7 Summary

1. Multivariate regression is a “easy” extension of

multiple regression.

2. It requires some specialized matrix algebra to

simplify the “book keeping.”

3. Other models heavily rely on components of

multivariate regression.
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6. Special Case: Common Design Matrix
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6.1 Objectives

1. Hierarchical Bayes (HB) models allow for

multiple sources of uncertainty.

2. Random effects models are a special case.

3. Simplest yet powerful case:

• Within–Subject Model:

A linear regression model that relates

covariates to individual–level regression

coefficients.

• Between–Subject Model:

A multivariate regression model that

describes the variation or heterogeneity in the

individual–level coefficients across the

population of customers.
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4. Example:

• All households have the same structural form

for their sales response function.

• Households are allowed to have their own

preferences and responses to the marketing

mix. That is, they have household–level

coefficients.

• The household–level coefficients may be

related to demographics such as household

income, family size, and age and education of

head of household. E.g., high–income

households are less price sensitive than

low–income households, and older households

are less sensitive to advertising than younger

households.
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6.2 Model

1. Within–subject model:

Yi = Xiβi + εi for i = 1, . . . , n

where

• there are n subjects and

• mi observations for subject i;

• Yi is a mi vector;

• Xi is a mi × p design matrix;

• βi is a p vector of individual–level regression

coefficients; and

• εi is a mi vector of error terms with pdf

[εi|σi] = Nmi
(εi|0, σ2Imi

).
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2. Between–subjects model:

βi = Θ′zi + δi for i = 1, . . . , n

where

• zi is a q vector of covariates for subject i.

• Θ is a q × p matrix of regression coefficients.

• δi is a p vector of error terms with pdf:

[δi|Λ] = Np(δi|0, Λ).

The between–subjects model describes the

heterogeneity in the subject–level coefficients

across the population.
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3. Matrix version of the between–subjects model:

B = ZΘ + ∆,

where

B =




β′1
...

β′n




, Z =




z′1
...

z′n




and ∆ =




δ′1
...

δ′n




.

• B is a n× p matrix of the individual–level

coefficients.

• Z is a n× q matrix of covariates.

• Θ is a q × p matrix of regression coefficients.

• ∆ is a n× p matrix of error terms with pdf:

[∆|Λ] = Nn×p(∆|0, In, Λ).

• The pdf of B is:

[B|Θ, Λ] = Nn×p(B|ZΘ, In ⊗ Λ).

• This model is the same as the multivariate

regression model on page (186).
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4. Why “Interaction” Model?

Yi = Xiβi + εi

βi = Θ′zi + δi

Yi = Xi(Θ
′zi + δi) + εi

= XiΘ
′zi + Xiδi + εi.

XiΘ
′zi is a mi vector.

Use Mini–Fact (5l) on page (171):

XiΘ
′zi = vec(XiΘ

′zi) = (z′i ⊗Xi)vec(Θ′).

Define:

X∗
i = z′i ⊗Xi; Θ∗ = vec(Θ′) and ε∗i = Xiδi + εi.

Note that

[ε∗i ] = Nmi
(ε∗i |0, σ2Imi

+ XiΛX ′
i).
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Within–subject Model:

Yi = X∗
i Θ∗ + ε∗i

where

• The design matrix

X∗
i = z′i ⊗Xi

contains all of the cross products between the

variables in Xi and zi.

• Θ∗ is a pq vector of regression coefficients that

do not depend on the subject.

• ε∗i has a non-zero correlation structure:

[ε∗i ] = Nmi
(ε∗i |0, σ2Imi

+ XiΛX ′
i).
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6.3 Priors

1. The prior pdf for σ2 is:

[σ2|r0, s0] = IG
(
σ2|r0

2
,
s0

2

)
.

2. The prior pdf for Θ∗ = vec(Θ′) is:

[Θ∗|u0, V0] = Npq(Θ
∗|u0, V0).

3. The prior pdf for Λ is:

[Λ|f0, G
−1
0 ] = IWm(Λ|f0, G

−1
0 ).
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6.4 Joint Distribution

n∏

i=1

{
[Yi|βi, σ

2][βi|Θ, Λ]
}
[σ2|r0, s0][Θ

∗|u0, V0][Λ|f0, G0] =

=
n∏

i=1
Nmi

(Yi|Xiβi, σ
2Imi

)Nn×p(B|ZΘ, In, Λ)

× IG
(
σ2|r0

2
,
s0

2

)
Npq(Θ

∗|u0, V0)IW (Λ|f0, G
−1
0 )
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6.5 Full Conditionals

1. Full Conditional for βi.

[βi| Rest ] ∝ [Yi|βi, σ
2][βi|Θ, Λ]

∝ Nmi
(Yi|Xiβi, σ

2Imi
)Np(βi|Θ′zi, Λ)

2. Generate βi.

[βi| Rest ] = Np(βi|ui, Vi)

Vi =


 1

σ2
X ′

iXi + Λ−1


−1

ui = Vi


 1

σ2
X ′

iYi + Λ−1Θ′zi


 ,

which is similar to the full conditional of β on

page (115) for the linear regression model.
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3. Suppose Xi has full rank.

• The MLE of βi is:

β̂i = (X ′
iXi)

−1X ′
iYi.

• The conditional, posterior mean of βi is:

E(βi|Yi, Θ, σ, Λ)

=


 1

σ2
X ′

iXi + Λ−1


−1 

 1

σ2
(X ′

iXi)β̂i + Λ−1Θ′zi




= Wβ̂i + (Ip −W )Θ′zi

W =


 1

σ2
X ′

iXi + Λ−1


−1 

 1

σ2
X ′

iXi


 ,

which is a convex combination of

– within–subject MLE for βi, and

– its between–subjects estimate Θ′zi.
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• The Bayes estimator “shrinks” the

individual–level MLE towards the

between–subjects estimator.

• The amount of shrinkage depends on the

relative precision of the two estimators.

• As mi increases, W → Ip under mild conditions

on Xi, so that the Bayes estimator puts more

weight on the within–subject estimator and

less on the between-subjects estimator.
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4. Full conditional for σ2.

[σ2| Rest ] ∝ n∏

i=1
[Yi|βi, σ

2][σ2|r0, s0]

∝ n∏

i=1
Nmi

(Yi|Xiβi, σ
2Imi

)IG
(
σ2|r0

2
,
s0

2

)
.

5. Generate σ2

[σ2| Rest ] = IG
(
σ2|rn

2
,
sn

2

)

rn = r0 +
n∑

i=1
mi

sn = s0 +
n∑

i=1
(Yi −Xiβi)

′(Yi −Xiβi),

which is similar to the full conditional for σ2 on

page (117) for the linear regression model.
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6. Full conditional for Θ.

[Θ| Rest ] ∝ n∏

i=1
[βi|Θ, Λ][Θ]

∝ Nnp(B
∗|[Z ⊗ Ip]Θ

∗, In ⊗ Λ)Npq(Θ
∗|u0, V0)

7. Generate Θ∗ = vec(Θ′).

[Θ∗| Rest ] = Npq(Θ
∗|un, Vn)

Vn =
[(

Z ′Z ⊗ Λ−1
)

+ V −1
0

]−1

un = Vn

[(
Z ′ ⊗ Λ−1

)
B∗ + V −1

0 u0

]
,

which is similar to the full conditional for B∗ on

page (195) for the multivariate regression model.
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8. Full Conditional for Λ:

[Λ| Rest ] ∝ n∏

i=1
[βi|Θ, Λ][Λ|f0, G0]

∝ Nn×p(B|ZΘ, In, Λ)IWm(Λ|f0, G
−1
0 )

9. Generate Λ.

[Λ| Rest ] = IWm(Λ|fn, G
−1
n )

fn = f0 + n

G−1
n = G−1

0 + (B − ZΘ)′(B − ZΘ),

which is similar to the full conditional for Σ on

page (197) for the multivariate regression model.
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6.6 Common Design Matrix

1. Xi = X and mi = m for all i = 1, . . . , n. Then

Yi = Xβi + εi

Y = BX ′ + U

Y =




Y ′
1

...

Y ′
n




; B =




β′1
...

β′n




; and U =




ε′1
...

ε′n




.
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2. Full conditional of B is:

[B|Y, σ, Θ, Λ] = Nn×p(B|B̄, In, V )

V =


 1

σ2
X ′X + Λ−1



−1

B̄ =
(
Y X + ZΘΛ−1

)
V

3. B can be generated in Gauss in one line:

B = (Y ∗X + Z ∗ Θ ∗ Λ−1) ∗ V + rndn(n,p) ∗ V
1
2

where

V
1
2 = chol(V ).



218 CHAPTER 6. HB REGRESSION: INTERACTION MODEL

4. Full conditional of σ2

[σ2|Y, B, Θ, Λ] = IG
(
σ2|rn

2
,
sn

2

)

rn = r0 + nm

sn = s0 + tr[(Y −BX ′)′(Y −BX ′)],

although this is an inefficient method

of computing sn.
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6.7 Different Design Matrices

If each subject has a different design matrix, then

the data structures become more complex.

1. Stack the independent and dependent variables.

ydata =




Y1

...

Yn




and xdata =




X1

...

Xn




.

2. Use pointers to indicate the rows of xdata and

ydata for each subject:

• iptxy is a n by 2 matrix.

• iptxy[i,1] = starting row for subject i.

• iptxy[i,2] = ending row for subject i.

• xi = xdata[iptxy[i,1]:iptxy[i,2],.];

• yi = ydata[iptxy[i,1]:iptxy[i,2],.];
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6.8 Examples

6.8.1 Simulated Data

• 100 subjects

• 10 observations per subject

• 3 predictor X variables

• 2 predictor Z variables.

• Common design matrix.
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• Parameter Values:

True Λ

0.250 0.125 −0.250 0.0250

0.125 1.062 −0.125 1.512

−0.250 −0.125 2.500 −0.775

0.0250 1.512 −0.775 6.502

True Θ

2 −1 −3 4

−1 0 −2 3

3 2 1 0

True σ = 5
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MCMC Analysis

Total number of MCMC iterations = 2000.00000

Number of iterations used in the analysis = 1000.00000

Number in transition period = 1000.00000

Number of iterations between saved iterations = 0.00000

Number of subjects = 100.00000

Number of observations per subject = 10.00000

Number of dependent variables X = 3.00000 (excluding intercept)

Number of dependent variables Z = 2.00000 (excluding intercept)

Independent variables in first level equation:

Y_i = X*beta_i + epsilon_i

Summary Statistics for X

Variable Mean STD MIN MAX

Constant 1.00000 0.00000 1.00000 1.00000

X01 -0.11050 1.27044 -2.12788 2.20340

X02 -0.46143 0.94077 -2.15512 0.98589

X03 -0.09866 0.65677 -1.03349 1.12585

Independent variables in second level equation:

beta_i = Theta*z_i + delta_i

Summary Statistics for Z

Variable Mean STD MIN MAX

Constant 1.00000 0.00000 1.00000 1.00000

Z01 0.11417 1.02464 -2.84694 3.01263

Z02 0.02264 1.04794 -2.37418 2.44308

----------------------------------------------------------
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Fit Measures:

HB Predictive Correlation (Mulitple R) = 0.82457

HB R-Square = 0.67991

ML Predictive Correlation (Mulitple R) = 0.89144

ML R-Square = 0.79466

Estimation of the error STD sigma

True Sigma = 5.00000

MLE = 3.80709

Posterior Mean = 5.01259

Posterior STD = 0.12984

----------------------------------------------------------

Statistics for Individual-Level Regression Coefficients

True Beta

Variable Mean STD

Constant 1.88851 3.28475

X01 -0.98853 2.16424

X02 -3.06624 2.73293

X03 4.15631 4.21870

MLE of Beta

Variable MeanMLE StdMLE

Constant 1.84409 3.80061

X01 -0.84922 2.83973

X02 -3.16501 3.81054

X03 4.01565 4.61408

HB Estimates of Beta

Variable PostMean PostSTD

Constant 1.85342 3.42690

X01 -0.85958 2.33013

X02 -3.13697 2.95597

X03 3.98942 3.44017

-----------------------------------------------------------
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Comparison of True Beta to Individual Level Estimates

Component 1.00000

Correlation between true and HB = 0.98804

RMSE between true and HB = 0.51925

Correlation between true and MLE = 0.87768

RMSE between true and MLE = 1.81354

Component 2.00000

Correlation between true and HB = 0.90406

RMSE between true and HB = 0.97365

Correlation between true and MLE = 0.79723

RMSE between true and MLE = 1.71425

Component 3.00000

Correlation between true and HB = 0.88952

RMSE between true and HB = 1.28619

Correlation between true and MLE = 0.77942

RMSE between true and MLE = 2.38908

Component 4.00000

Correlation between true and HB = 0.82364

RMSE between true and HB = 2.39809

Correlation between true and MLE = 0.86105

RMSE between true and MLE = 2.35154

-----------------------------------------------------------
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HB Estimates of Theta

True Theta

Constant X01 X02 X03

Constant 2.00000 -1.00000 -3.00000 4.00000

Z01 -1.00000 0.00000 -2.00000 3.00000

Z02 3.00000 2.00000 1.00000 0.00000

Posterior Mean of Theta

Constant X01 X02 X03

Constant 1.92295 -0.94529 -2.91245 3.64369

Z01 -1.19826 0.33663 -2.19426 3.09412

Z02 2.99088 2.10593 1.25096 -0.02394

Posterior STD of Theta

Constant X01 X02 X03

Constant 0.41884 0.40341 0.49638 0.51457

Z01 0.40569 0.43122 0.51118 0.56754

Z02 0.41302 0.41631 0.50330 0.53965

------------------------------------------------------
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HB Estimate of Lambda

True Lambda

Constant X01 X02 X03

Constant 0.25000 0.12500 -0.25000 0.02500

X01 0.12500 1.06250 -0.12500 1.51250

X02 -0.25000 -0.12500 2.50000 -0.77500

X03 0.02500 1.51250 -0.77500 6.50250

Posterior Mean of Lambda

Constant X01 X02 X03

Constant 0.55059 0.02989 -0.65302 -0.29281

X01 0.02989 0.33414 -0.18733 0.16148

X02 -0.65302 -0.18733 2.02920 0.60925

X03 -0.29281 0.16148 0.60925 1.60154

Posterior STD of Lambda

Constant X01 X02 X03

Constant 0.28660 0.14160 0.30269 0.33139

X01 0.14160 0.25645 0.44023 0.46170

X02 0.30269 0.44023 0.81322 0.70251

X03 0.33139 0.46170 0.70251 1.43604

==================================================
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6.8.2 Metric Conjoint Study

Lenk, DeSarbo, Green, and Young (1996) Marketing Science
MBA Computer Survey

Attributes and Their Level

A. Telephone Service Hotline H. Color of Unit
–1 = No –1 = Beige
1 = Yes 1 = Black

B. Amount of RAM I. Availability
–1 = 8 MB –1 = Mail order only
1 = 16 MB 1 = Computer store only

C. Screen Size J. Warranty
–1 = 14 inch –1 = 1 year
1 = 17 inch 1 = 3 year

D. CPU Speed K. Bundled Productivity Software
–1 = 50 MHz –1 = No
1 = 100 MHz 1 = Yes

E. Hard Disk Size L. Money Back Guarantee
–1 = 340 MB –1 = None
1 = 730 MB 1 = Up to 30 days

F. CD ROM/Multimedia M. Price
–1 = No –1 = $2000
1 = Yes 1 = $3500

G. Cache
–1 = 128 KB
1 = 256 KB

Y = Likelihood of purchase from 0 to 10.
HB model for σ2

i is IG.
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Subject Level Covariates

FEMALE = 0 if male and 1 if female
YEARS = Years of full–time work experience
OWN = 1 if own or lease a microcomputer and 0 otherwise
TECH = 1 if engineer, computer programmer or systems analysis

0 otherwise
APPLY = Number of categories of applications used with microcomputers
EXPERT = Sum of two self–evaluations. Each evaluation in on a five–point scale

with 1 = Strongly Disagree, 3 = Neutral, and 5 = Strongly Agree. The
first evaluation is, “When it comes to purchasing a microcomputer, I
consider myself pretty knowledgeable about the microcomputer mar-
ket.” The second is, “When it comes to using a microcomputer, I
consider myself pretty knowledgeable about microcomputers.”

Number of subjects: 179
Number of calibration profiles per subject: 16
Number of validation profiles per subject: 4
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Pooled Sample Aggregate Conjoint Analysis

R–Squared: 0.2437; Adjusted R–Squared: 0.2403
Standard Error of the Estimate: 2.439

Estimated Coefficients

Variable Coefficient STD Error T–Value
Intercept 4.7301 0.0457 103.5541 ∗∗

A Hotline 0.0946 0.0457 2.0715 ∗

B RAM 0.3446 0.0457 7.5447 ∗∗

C Screen Size 0.1924 0.0457 4.2119 ∗∗

D CPU 0.3900 0.0457 8.5384 ∗∗

E Hard Drive 0.1700 0.0457 3.7227 ∗∗

F CD ROM 0.4920 0.0457 10.7705 ∗∗

G Cache 0.0304 0.0457 0.6650
H Color 0.0262 0.0457 0.5733
I Availability 0.0772 0.0457 1.6893
J Warranty 0.1233 0.0457 2.6984 ∗∗

K Software 0.1945 0.0457 4.2577 ∗∗

L Guarantee 0.1114 0.0457 2.4385 ∗

M Price –1.1205 0.0457 –24.5298 ∗∗

ANOVA Table

Source Sums of Squares DF Mean Square F–Ratio
Regression 5488.019 13 392.0013 65.6∗∗

Error 17030.347 2850 5.9756
Total 22518.366 2863

∗p < 0.05
∗∗p < 0.01
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Sensitivity of Part–worths to Subject Level Covariates
(Posterior standard deviations are in parentheses.)

Covariate
Variable Intercept FEMALE YEARS OWN TECH APPLY EXPERT

Intercept 3.698∗∗ –0.043 –0.111∗∗ –0.158 –0.248 0.112∗ 0.167∗∗

(0.598) (0.271) (0.049) (0.347) (0.271) (0.080) (0.071)
A Hotline –0.047 0.226∗∗ –0.002 –0.105 –0.019 –0.004 0.026∗

(0.195) (0.087) (0.016) (0.115) (0.084) (0.025) (0.023)
B RAM 0.515∗∗ –0.085 –0.003 0.139∗ 0.168∗ 0.043∗ –0.065∗∗

(0.208) (0.093) (0.017) (0.127) (0.086) (0.027) (0.024)
C Screen Size 0.058 –0.055 –0.009 0.044 0.109∗ 0.005 0.013

(0.176) (0.079) (0.014) (0.102) (0.078) (0.022) (0.020)
D CPU –0.167 –0.101 –0.026∗ 0.158 0.171∗ 0.014 0.059∗

(0.279) (0.131) (0.023) (0.172) (0.127) (0.038) (0.033)
E Hard Drive 0.013 –0.157∗ –0.014 0.037 0.060 0.017 0.015

(0.183) (0.082) (0.014) (0.105) (0.080) (0.023) (0.021)
F CD ROM 0.591∗∗ –0.164∗ –0.010 –0.062 –0.075 0.015 0.001

(0.251) (0.113) (0.020) (0.148) (0.107) (0.033) (0.029)
G Cache –0.266∗ –0.043 –0.004 0.127∗ 0.019 –0.036∗ 0.049∗∗

(0.192) (0.092) (0.015) (0.118) (0.087) (0.026) (0.023)
H Color 0.274∗ –0.047 –0.004 0.017 –0.095∗ –0.014 –0.019∗

(0.160) (0.070) (0.013) (0.093) (0.072) (0.021) (0.019)
I Availability 0.157∗ 0.037 0.021∗ 0.138∗ –0.097∗ –0.011 –0.029∗

(0.156) (0.068) (0.013) (0.092) (0.070) (0.021) (0.018)
J Warranty –0.089 0.149∗ 0.024∗ 0.029 0.008 0.026∗ –0.010

(0.167) (0.079) (0.015) (0.100) (0.072) (0.022) (0.020)
K Software 0.315∗ 0.009 –0.032∗∗ –0.034 0.101∗ 0.010 –0.004

(0.179) (0.081) (0.014) (0.104) (0.079) (0.023) (0.020)
L Guarantee 0.023 0.031 0.025∗ –0.117∗ –0.081 0.013 0.004

(0.185) (0.085) (0.015) (0.107) (0.081) (0.025) (0.022)
M Price –1.560∗∗ 0.385∗∗ 0.040∗ –0.176 –0.064 0.001 0.041

(0.398) (0.173) (0.031) (0.233) (0.170) (0.052) (0.047)

∗ The posterior mean is at least one posterior standard deviation from zero.
∗∗ The posterior mean is at least two posterior standard deviations from zero.
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Validation Sample Performance Measures

Market Shares

Profiles Cor(Y, Ŷ ) RMSEY Hit Rates 1 2 3 4
Individual-Level Ordinary Least Squares

16 0.7152 1.998 0.637 0.115 0.099 0.325 0.462
Hierarchical Bayes

16 0.7530 1.811 0.670 0.061 0.089 0.363 0.492
12 0.7425 1.851 0.687 0.039 0.078 0.335 0.548
8 0.7029 1.983 0.654 0.028 0.106 0.358 0.508
4 0.5877 2.262 0.587 0.028 0.045 0.285 0.643

Observed Market Shares 0.095 0.049 0.395 0.461

I randomly deleted profiles from the calibration

sample. The individual–subject OLS estimates did

not exist for everyone with only 12 profiles per

subject. Using all 16 profiles, the HB predictions of

the hold–out sample are better than the OLS. With

only 8 profiles per subject, the HB predictions

performed about as well as the OLS.
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6.9 Stock Returns & Portfolio Analysis

Young and Lenk (1998) Management Science

Model

Yi = βiXi + εi

βi = Θ′zi,b + δi,b

ln(σ2) = ψ′zi,s + δi,s

1. Response Variable: Monthly Returns

2. Predictor Variables:

• Value weighted monthly returns of NYSE

• Return for portfolio of lowest decile market

value minus return for portfolio of highest

decile market value on NYSE.
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3. Covariates:

• Manufacturing 0/1

• Utility 0/1

• Finance 0/1

• Service 0/1

• Firm Size
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Data

1. 500 randomly selected securities.

2. 19 four year intervals:

1955–1959, 1957–1961, . . . , 1991–1994

3. First two years used for estimation: HB and

Multiple Shrinkage (MS) Karolyi (1992)

4. Compare to OLS in second two years.

5. Form optimal portfolio using HB and MS.
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Parameter Estimates

1. Utilities tend to have lower beta and

idiosyncratic risk.

2. Larger firms have lower beta and idiosyncratic

risk.

3. Firm size is strongly related with size sensitivity

measure.
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MAE and Portfolio Certainty Equivalent

Out–of–sample Performance:

Estimate during first two years.

Compare to OLS during second two years.

19 time periods, 500 securities

Mean STD # Wins

Intercept HB 1.57 0.30 18
MS 1.64 0.33 1

Beta HB 0.41 0.07 18
MS 0.43 0.07 1

Variance HB 2.33 0.54 11
MS 2.34 0.53 8

Certainty HB −49.58 30.56 14
Equivalent MS −78.56 51.76 5

Certainty Equivalent is a risk adjusted measure of

portfolio performance: the bigger the better.
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6.10 Summary

1. Hierarchical models vastly extend “standard”

statistical models.

2. They provide a fuller description of complex,

multi–level data.

3. The interaction model uses a multivariate

regression model to describe the variation in the

parameters.
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Outline

1. Objectives

2. Distributions

3. Model

4. Priors

5. “Latent” Variables

6. Joint Distribution

7. Full Conditionals
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7.1 Objective

1. Distributions:

• Multinomial Distribution

• Dirichlet Distribution

• Dirichlet–Multinomial Distribution

• Ordered Dirichlet Distribution

2. Mixture Models

• Unobserved segment membership.

• Subjects within a segment are more

homogeneous than subjects in different

segments.
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3. “Latent” Variables

• Introducing “latent” variables in the model

can simplify MCMC.

• Idea is similar to that used in data imputation

and EM.

– Given “missing data,” it is simple to

generate “parameters.”

– Given “parameters” it is simple to generate

“missing data.”
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• Bayesian inference treats all unknown

quantities as random variables. It does not

make a distinction between “missing data”

and “parameters.”

• Concept is not new to us. In linear regression,

it is simple to generate β given σ and to

generate σ given β.

• Now, we introduce “parameters” or “missing

data” that are not explicitly part of the model

specification.

• At an abstract level, these parameters

correspond to dummy variables of integration.
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7.2 Distributions

7.2.1 Multinomial Distribution

1. Define:

• K vector of non–negative integers:

N = (n1, . . . , nK)′

n = n1 + · · ·nK.

• K vector of probabilities:

Ψ = (ψ1, . . . , ψK)′

where 0 ≤ ψk and ψ1 + · · · + ψK = 1.

2. Example:

• n is the total number of customers.

• nk is the number of customers in segment k.

• ψk is the probability of segment k.
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3. N given Ψ has a multinomial distribution

with pmf:

[N |Ψ] = MNK(N |Ψ)

≡




n

n1 n2 · · · nK




K∏

k=1
ψ

nk
k

= n!
K∏

k=1

ψ
nk
k

nk!
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4. Moments:

E(nk|Ψ) = nψk

V (nk|Ψ) = nψk(1− ψk)

Cov(nj, nk|Ψ) = −nψjψk

Cor(nj, nk|Ψ) = −



ψj

1− ψj




1
2 

 ψk

1− ψk




1
2
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5. We will need a special case where n = 1.

I have written a Gauss routine in plbam.src that

returns a vector of segment memberships given a

matrix of membership probabilities.

z = rndzmn(zprob);

zprob is a nsub by K matrix of segment

probabilities, and z is a nsub vector whose entries

are 1 to K.
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7.2.2 Dirichlet Distribution

1. The Dirichlet distribution is the multivariate

extension of the Beta distribution.

2. Let Ψ = (ψ1, . . . , ψK)′ be a K vector of

probabilities:

0 ≤ ψk and
K∑

k=1
ψk = 1.

3. Let W = (w1, . . . , wK)′ be a K vector of positive

numbers, and define w = w1 + · · ·wK.

4. Ψ has a Dirichlet distribution with pdf:

[Ψ|W ] = DirK(Ψ|W )

=
Γ(w)

∏K
k=1 Γ(wk)

K∏

k=1
ψ

wk−1
k

for 0 ≤ ψk and
K∑

k=1
ψk = 1
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5. It can be derived from the following.

• Let Xk be G(Xk|wk, β).

• Assume that X1, . . . , XK are mutually

independent.

• Define:

ψk = Xk/S for k = 1, . . . , K

S = X1 + · · ·XK

• Ψ and S are independent.

• [S|W ] = G(S|w, β).

• [Ψ|W ] = DirK(Ψ|W ).
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6. Moments

Let vk be positive numbers, and v = v1 + · · · + vK.

E




K∏

k=1
ψ

vk
k


 =




Γ(w)
∏K

k=1 Γ(wk)







∏K
k=1 Γ(wk + vk)

Γ(w + v)




E(ψk) =
wk

w

V (ψk) =
1

w + 1
E(ψk)[1− E(ψk)]

Cov(ψj, ψk) = − 1

w + 1
E(ψj)E(ψk)

Cor(ψj, ψk) = −



E(ψj)

1− E(ψj)




1
2




E(ψk)

1− E(ψk)




1
2
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7.2.3 Dirichlet–Multinomial

[N |W ] =
∫

Ψ
MNK(N |Ψ) DirK(Ψ|W ) dΨ

= n!Γ(w)
∫

Ψ

K∏

k=1

ψ
nk+wk−1
k

nk!Γ(wk)
dΨ

= n!
Γ(w)

Γ(n + w)

K∏

k=1

Γ(nk + wk)

nk!Γ(wk)
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7.2.4 Ordered Dirichlet Distribution

1. Ψ has the ordered Dirichlet Distribution with pdf:

[Ψ|W ] = ODirK(Ψ|W )

∝ DirK(Ψ|W )I(0 ≤ ψ1 ≤ ψ2 ≤ · · · ≤ ψK)

2. I have written a Gauss routine in plbam.src that

generates ordered Dirichlet.

{psi, xgam} = dirord(w, xgam),

where

• w is the K vector of parameters.

• xgam is nsub by K matrix of ordered gamma

random deviates. xgam is updated on each

call of dirord. It needs to be initialized for the

first call.

• psi is a nsub by K matrix of ordered Dirichlet

probabilities.
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7.3 Model

1. Within–Subject Model:

Yi = Xiβi + εi

where

• there are n subjects and

• mi observations for subject i;

• Yi is a mi vector;

• Xi is a mi × p design matrix;

• βi is a p vector of individual–level regression

coefficients; and

• εi is a mi vector of error terms with pdf

[εi|σ] = Nmi
(εi|0, σ2Imi

).
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2. Between–Subjects Mixture Model:

[βi|Θ, Λ, K] =
K∑

k=1
ψkNp(βi|θk, Λk).

where

• θk is a p vector for k = 1, . . . , K.

• Λk is a p× p pds covariance matrix

for k = 1, . . . , K.

• 0 ≤ ψ1 < ψ2 < · · · < ψK and
∑K

k=1 ψk = 1.
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3. Interpretation of the Mixture Model.

• Each subject belongs to one of K segments.

• The distribution of parameter heterogeneity

in segment k is:

[βi|k, θk, Λk] = Np(βi|θk, Λk).

• Segment membership is unknown.

• The prior probability of belonging

to segment k is ψk.

• In order the identify the model, the

probabilities are ordered: the first segment is

the smallest, and the last segment is the

largest.
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4. Mixture Model for Yi

• Mixture model for βi induces a mixture model

for the marginal distribution of Yi.

• Integrate βi out of the model.

• Obtain:

[Yi|K, Θ, Λ] =
K∑

k=1
ψkNmi

(Yi|Xiθk, σ
2Imi

+ XiΛkX
′
i).

• If subject i belongs to segment k, then

Yi = Xiθk + εi(k)

V (εi(k)) = σ2Imi
+ XiΛkX

′
i

• Probability of belonging to segment k is ψk.
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7.4 Priors

[σ2|r0, s0] = IG
(
σ2|r0

2
,
s0

2

)

[θk|u0, V0] = Np(θk|u0, V0)

[Λk|f0, G0] = IWp(Λk|f0, G
−1
0 )

[Ψ|W0] = ODirK(Ψ|W0)
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7.5 “Latent” Variables

1. In the MCMC we will introduce a segment

membership variable for each subject.

2. If subject i belongs to segment k, define

Zi = k

[Zi = k] = ψk.

3. Given Zi = k, the distribution of βi is:

[βi|Zi = k] = Np(βi|θk, Λk).
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7.6 Joint Distribution

1. Define the number of subjects in segment k:

nk =
n∑

i=1
I(Zi = k)

N = (n1, . . . , nK)′

[N |Ψ] = MNK(N |Ψ)
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2. Joint distribution for the HB Mixture Model:

n∏

i=1
{[Yi|βi, σ][βi|Zi = k][Zi = k]} K∏

k=1
{[θk][Λk]} [σ][Ψ]

=
n∏

i=1
Nmi

(Yi|Xiβi, σ
2)

× n∏

i=1
Np(βi|θk, Λk)

× K∏

k=1
Np(θk|u0, V0)IWp(Λk|f0, G

−1
0 )

× MNK(N |Ψ)ODirK(Ψ|W0)

× IG
(
σ2|r0

2
,
s0

2

)
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7.7 Full Conditionals

1. Given segment membership Z and Ψ, how do you

generate βi, θk, Λk, and σ2?
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2. Given segment membership and the rest,

generate Ψ:

[Ψ|Rest] = ODirK(Ψ|Wn)

Wn = W0 + N

3. Full conditional of Zi:

[Zi = k|Rest] =
[βi|Zi = k]ψk

∑K
j=1[βi|Zi = j]ψj

=
|Λk|−1

2 exp
{
−1

2(βi − θk)
′Λ−1

k (βi − θk)
}
ψk

∑K
j=1 |Λj|−1

2 exp
{
−1

2(βi − θj)′Λ−1
j (βi − θj)

}
ψj

This corresponds to the posterior probability of

subject i belonging to segment k given the

parameters.
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7.8 Simulated Data

• 200 subjects

• 5 observations per subject

• 1 predictor X variable

• Error STD σ = 5

• 3 component model

• True means for components:

θ1 =




0

0



; θ2 =




−10

7



; and θ3 =




7

5



,

• True variance matrices for components:

Λ1 =




1 0

0 1



; Λ2 =




25 9

9 4



; and Λ3 =




9 −5

−5 5



,

• Mixture proportions:

ψ1 = 0.2, ψ2 = 0.3, and ψ3 = 0.5
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MCMC Analysis

Total number of MCMC iterations = 6000.00000

Number of iterations used in the analysis = 5000.00000

Number in transition period = 1000.00000

Number of iterations between saved iterations = 0.00000

Number of subjects = 200.00000

Mean # of observations per subject = 5.00000

STD # of observations per subject = 0.00000

MIN # of observations per subject = 5.00000

MAX # of observations per subject = 5.00000

Total number of observations = 1000.00000

Number of independent variables X = 1.00000 (excluding intercept)

Dependent variable is Y

Independent variables in first level equation:

Y_i = X_i*beta_i + epsilon_i

Variable Mean STD MIN MAX

Constant 1.00000 0.00000 1.00000 1.00000

X 1 0.00654 0.99302 -3.09851 3.18555

--------------------------------------------------------
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Statistics of Fit Measures for each Subject

Average Predictive Correlation (Muptiple R) = 0.58701

STD of Predictive Correlations = 0.39932

Average R-Squared = 0.50324

STD of R-Squared = 0.32678

Average Error Standard Deviation = 4.37049

STD of Error Standard Deviation = 1.42166

---------------------------------------------------------

Estimation of the error STD sigma

True Sigma = 5.00000

MLE = 3.81725

Posterior Mean = 5.03351

Posterior STD = 0.13035

---------------------------------------------------------

Comparison of True Beta to Individual Level Estimates

Variable is Constant

Correlation between true and HB = 0.96306

RMSE between true and HB = 2.13864

Correlation between true and MLE = 0.95487

RMSE between true and MLE = 2.43523

Variable is X 1

Correlation between true and HB = 0.72655

RMSE between true and HB = 2.24838

Correlation between true and MLE = 0.65192

RMSE between true and MLE = 3.41463

----------------------------------------------------------
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Estimated Group Probabilities psi

Group 1 Group 2 Group 3

True 0.20000 0.30000 0.50000

Group 1 Group 2 Group 3

HB Mean 0.23917 0.31850 0.44233

HB STD 0.02444 0.03008 0.03519

---------------------------------------------------------

Classification Rates:

True versus Maximum HB Posterior Probability

HB Group True 1 True 2 True 3 Total

Group 1 38 3 7 48

Group 2 2 58 1 61

Group 3 3 1 87 91

Total 43 62 95 200

---------------------------------------------------------
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HB Estimates of Theta

True Theta

Variable Group 1 Group 2 Group 3

Constant 0.00000 -10.00000 7.00000

X 1 0.00000 7.00000 5.00000

Posterior Mean of Theta

Variable Group 1 Group 2 Group 3

Constant 0.65579 -9.96220 7.03063

X 1 0.28745 7.08078 5.23424

Posterior STD of Theta

Variable Group 1 Group 2 Group 3

Constant 0.39694 0.73518 0.43332

X 1 0.48984 0.41366 0.38365

------------------------------------------------------
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HB Estimate of Lambda

True Lambda for group 1.00000

Variable Constant X 1

Constant 1.00000 0.00000

X 1 0.00000 1.00000

Posterior Mean of Lambda for group 1.00000

Variable Constant X 1

Constant 0.64158 0.18413

X 1 0.18413 1.19855

Posterior STD of Lambda for group 1.00000

Variable Constant X 1

Constant 0.62639 0.70570

X 1 0.70570 1.66026

-----------------------------------------------------
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True Lambda for group 2.00000

Variable Constant X 1

Constant 25.00000 9.00000

X 1 9.00000 4.00000

Posterior Mean of Lambda for group 2.00000

Variable Constant X 1

Constant 17.01619 5.78113

X 1 5.78113 2.49008

Posterior STD of Lambda for group 2.00000

Variable Constant X 1

Constant 5.65565 2.08201

X 1 2.08201 1.24675

------------------------------------------------------
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True Lambda for group 3.00000

Variable Constant X 1

Constant 9.00000 -5.00000

X 1 -5.00000 5.00000

Posterior Mean of Lambda for group 3.00000

Variable Constant X 1

Constant 6.82231 -5.35847

X 1 -5.35847 5.01464

Posterior STD of Lambda for group 3.00000

Variable Constant X 1

Constant 2.44737 1.57009

X 1 1.57009 1.70303
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7.9 Model Selection

• Vary the number of components.

• Compute the posterior probability of the model.

• See page (37) for the decision theoretic basis for

model selection. The different models correspond

to different ωi.

• Lenk and DeSarbo (2000) Psychometrika use the

method of Gelfand and Dey (1994) JRSSb to

select the model.

• For the model with K components, indicate all of

the parameters by ΩK.
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• The marginal density of the data given K

components is:

fK(Y ) =
∫

ΩK
fK(Y |ΩK)pK(ΩK)dΩK

=



E




gK(ΩK)

fK(Y |ΩK)pK(ΩK)








−1

.

– fK is the density of the data given the

parameters for model K.

– pK is the prior density of the parameters.

– gK is an arbitrary density on the support of

ΩK.

– The expectation is with respect to the

posterior distribution of ΩK.
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• The MCMC approximation is

f̃K(Y ) =




1

U −B

U∑

u=B+1

gK

(
Ω

(u)
K

)

fK

(
Y |Ω(u)

K

)
pK

(
Ω

(u)
K

)




−1

.

– Ω
(u)
K is the value of ΩK on the iteration u of the

Markov chain.

– The last U −B iterations of U iterations are

used.

– If gK is the posterior density of ΩK, then the

approximation is exact.

– One choice of gK is multivariate normal for

suitably transformed parameters. Estimate

the mean and covariance matrix from the

MCMC random deviates.
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7.10 Metric Conjoint Study

See page (229) for a description of the MBA

computer survey.

Posterior probabilities of the number of components

and predictive performance.

Finite Mixture, Individual Latent

Random Effects Level MLE Class

Number of Components Four Three Two One — Four

Probability1 0.083 0.382 0.426 0.109 — —

Correlation2 0.783 0.782 0.782 0.778 0.732 0.683

RMSE3 1.724 1.726 1.728 1.742 1.948 4.048

Hit Rate4 0.700 0.705 0.711 0.689 0.626 0.380

1 Posterior probability of the model.

2 Correlation between observed and predicted responses for the validation data.

3 Root mean squared error between observed and predicted responses for the validation

data.

4 Proportion of times correctly predicted the maximum in validation sample.
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Means and variances of the regression coefficients within each class for the two component

solution for the computer survey. Posterior standard errors are in parentheses.

Means Variances
Mixing Probability 0.061 0.939 0.061 0.939
Intercept 4.931 4.662 0.437 2.252

(0.343) (0.117) (0.404) (0.250)
Hot Line 0.030 0.088 0.307 0.110

(0.228) (0.034) (0.319) (0.022)
RAM 0.389 0.309 0.363 0.124

(0.214) (0.036) (0.258) (0.023)
Screen 0.015 0.200 0.226 0.074

(0.173) (0.031) (0.157) (0.014)
CPU 1.143 0.337 1.869 0.222

(0.417) (0.046) (1.250) (0.047)
Hard Disk 0.674 0.125 1.843 0.070

(0.352) (0.031) (1.314) (0.015)
CD ROM 0.442 0.492 0.803 0.209

(0.319) (0.043) (0.604) (0.042)
Cache 0.162 0.044 0.259 0.117

(0.188) (0.035) (0.187) (0.023)
Store 0.163 0.082 0.204 0.052

(0.162) (0.028) (0.140) (0.011)
Warranty 0.128 0.097 0.282 0.063

(0.185) (0.030) (0.192) (0.013)
Software 0.131 0.195 0.197 0.080

(0.160) (0.031) (0.131) (0.016)
Guarantee 0.133 0.102 0.230 0.084

(0.177) (0.032) (0.152) (0.018)
Price -0.459 -1.168 0.264 0.764

(0.211) (0.070) (0.195) (0.094)
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7.11 Summary

1. The mixture model describes the variation in the

parameters with a mixture of multivariate

normal distributions.

2. The interaction model describes this variation

with a multivariate regression model.

3. Which one is better is an empirical issue.

4. A model that generalizes both is a mixture of

multivariate regression models.
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7. Multivariate Probit Model
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8.1 Objectives

1. Revealed preference models use random utilities.

2. Probit models assume that utilities are

multivariate normal.

3. Probit MCMC generates latent, random utilities.

4. Logit models assume that the random utilities

have extreme value distributions.

5. Logit MCMC uses the Hastings–Metropolis

algorithm.

6. Hastings–Metropolis algorithm is a general

purpose, flexible algorithm for generating

random variables.
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8.2 Random Utility Model

1. Utility for alternative m is:

Yi,j,m = x′i,j,mβi + εi,j,m

i = 1, . . . , n

j = 1, . . . , Ji

m = 1, . . . , M + 1

where

• there are n subjects or customers,

• M + 1 alternatives in the choice set, and

• Ji choice occasions for subject i.
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2. Subject picks alternative k if

Yi,j,k ≥ Yi,j,m for all m.

3. The probability of selecting k is

P (Yi,j,k ≥ Yi,j,m for all m).

4. Statistical Models:

• {εi,j,m} are Normal ⇒ Probit Model.

• {εi,j,m} are Extreme Value ⇒ Logit Model.

[ε] = exp
{−ε− e−ε}

for −∞ < ε < ∞

P (ε ≤ x) =
∫ x

−∞[ε] dε = exp {− exp(−x)}
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5. Revealed preference data:

Ci,j = k

if alternative k was selected by subject i on

choice occasion j.

6. Model Identification

• Alternative M + 1 is the base alternative.

• Assume Yi,j,M+1 = 0.

• Measure independent variables relative to

base alternative.

• Define:

Yi,j =




Yi,j,1

...

Yi,j,M




; Xi,j =




x′i,j,1
...

x′i,j,M




, and εi,j =




εi,j,1

...

εi,j,M




.



8.2. RANDOM UTILITY MODEL 291

• Example

– Four brands.

– Independent variables are Price and

Advertising.

Xi,j =




1 0 0 p1 − p4 a1 − a4

0 1 0 p2 − p4 a2 − a4

0 0 1 p3 − p4 a3 − a4




and

βi =




βi,1

βi,2

βi,3

βi,P

βi,A




Brand Preference 1

Brand Preference 2

Brand Preference 3

Price Effect

Advertising Effect
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8.3 Probit Model

1. Within–Subject Latent Utility Model:

Yi,j = Xi,jβi + εi,j

where

[εi,j] = NM(εi,j|0, Σ)

σM,M = 1.
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2. Between–Subjects Model:

B = ZΘ + ∆

where

[∆] = Nn×p(∆|0, In, Λ).

and

B =




β′1
...

β′n




and Z =




z′1
...

z′n




.



294 CHAPTER 8. REVEALED PREFERENCE MODELS

3. Identification Trick. The model specifics that

σM,M is one. In this case, the inverted Wishart

distribution is not appropriate for Σ. McCulloch

and Rossi (1994) had a brilliant insight:

• Ignore the constraint on σM,M .

• Use the inverted Wishart prior for Σ. This

model is not identified.

• After generating random iterates in MCMC,

divide Y , β, and Θ by
√

σM,M , and divide Σ and

Λ by σM,M .

• Next, compute posterior means, STDs, etc.
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4. Priors for Unidentified Model

(No constraint on σM,M):

[Σ] = IWM(Σ|s0, R
−1
0 )

[vec(Θ′)] = Npq(vec(Θ′)|u0, V0)

[Λ] = IWp(Λ|f0, G
−1
0 )
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5. Probit MCMC

(a) Joint pdf:

n∏

i=1

Ji∏

j=1
[Ci,j|βi, Σ]

n∏

i=1
[βi|Θ, Λ][Σ][Θ][Λ].

Introduce latent variables Yi,j:

n∏

i=1

Ji∏

j=1
[Ci,j|Yi,j][Yi,j|βi, Σ]

n∏

i=1
[βi|Θ, Λ][Σ][Θ][Λ].

What is [Ci,j|Yi,j]

• when Ci,j = k for k ≤ M?

• when Ci,j = M + 1?
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(b) Full conditional of Yi,j:

[Yi,j|Ci,j = k,Rest]

∝ NM(Yi,j|Xi,jβi, Σ)I(Yi,j,k ≥ Yi,j,m for all m)

which is a truncated normal density.

• Sequentially generate components of Yi,j.

• Define

Yi,j,−m = (Yi,j,1, . . . , Yi,j,m−1, Yi,j,m+1, . . . Yi,j,M)′.

• Generate Yi,j,m given Yi,j,−m.

– See page (69) for the conditional normal

distribution.

– See page (143) for generating from

truncated, univariate distributions.
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(c) Full conditional of βi

[βi|Rest] = Np(βi|ui, Vi)

Vi =




Ji∑

j=1
X ′

i,jΣ
−1Xi,j + Λ−1



−1

ui = Vi




Ji∑

j=1
X ′

i,jΣ
−1Yi,j + Λ−1Θ′zi
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(d) Full conditional of Σ:

[Σ|Rest] = IWM(Σ|sn, R
−1
n )

sn = s0 +
n∑

i=1
Ji

R−1
n = R−1

0 +
n∑

i=1

Ji∑

j=1
(Yi,j −Xi,jβi)(Y

∗
i,j −X∗

i,jβi).
′
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6. Post–MCMC Identification. On the iterations

that you save for analysis, perform the following

standardizations:

• Σ ← Σ/σM,M

• Λ ← Λ/σM,M

• Yi,j ← Yi,j/
√

σM,M

• βi ← βi/
√

σM,M

• Θ ← Θ/
√

σM,M

The left arrows mean replace the left–hand–side

with the right–hand–side.
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8.3.1 Example

• Study by McKinsey and IntelliQuest

• Conjoint Survey of Company Purchasers

• Profiles: Personal Computers

• 316 Subjects

• 3 Profiles per Choice Task + “None”

• 8 Choice Sets per Person

• Different Design Matrices
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Attributes

1. 5 Brands

2. Performance or Speed:

Low, Average, High

3. Channel:

Telephone, Retail Store, Onsite Sales Rep

4. Warranty:

90 Day, 1 Year, 5 Year

5. Service:

Ship back, Retail Store, Onsite

6. Price:

Low, Med-Low, Med-High, High
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Subject Level Covariates Z

1. Expect to Pay:

Low, Average, High

2. Buying Expertise:

Average, High

3. Education:

HS, College Graduate, Advanced Graduate

4. Gender

5. Company Size:

Small, Medium, Large
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MCMC

1. 6000 total iterations

2. 5000 initial iterations

3. 1000 iterations used in the analysis

4. 13 hours on a 430 MHz Pentium
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Posterior Means of βi

Mean STD

Brand A -3.50 3.51

Brand B -1.23 4.43

Brand C 0.96 4.93

Brand D -1.62 3.34

Brand E -1.13 4.13

Slow -1.83 2.53

Fast 24.82 6.69

Buy over Telephone -1.48 1.77

Buy Onsite -1.49 2.46

90 Day Warranty -0.43 3.69

5 Year Warranty -1.78 2.64

Ship back for Service 2.15 2.18

Onsite Service 2.22 2.77

Med-Low Price -2.09 3.42

Med-High Price -2.89 3.68

High Price -3.00 5.34
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Error Variance Σ

Posterior Mean

Profile 1 Profile 2 Profile 3

Profile 1 1.24 0.68 0.32

Profile 2 0.68 2.17 0.43

Profile 3 0.33 0.43 1.00

Posterior STD

Profile 1 Profile 2 Profile 3

Profile 1 0.51 0.44 0.20

Profile 2 0.45 1.19 0.30

Profile 3 0.20 0.30 0.00
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Posterior Mean of Θ′

(Blank if |mean|/std < 2)

Price Expert Education Company

Constant Low High Buyer HS Grad Female Small Large

Brand

A -3.34 4.21 -2.84 -3.27 -4.05 3.44

B -3.32 -4.17 -8.84 2.01

C -2.49 -3.04 1.85 5.73 -4.13 -3.32 5.46 6.38

D -5.65 4.50 2.27 4.01

E 5.22 -6.45

Speed

Slow -3.22 2.04

Fast 19.43 4.16 5.69 2.31 3.76

Channel

Telephone -2.62

Onsite -2.90 -2.00 2.39

Warranty

90 Day -6.56 3.83

5 Year -3.50

Service

Ship 1.85 -2.03 -2.20 2.38

Onsite 3.20 -2.89 -2.21 1.76

Price

Med-Low -1.96 -2.17 4.95 -4.64 -3.08

Med-High -3.28 -1.66 -3.84 3.56

High 4.72 -5.71 -4.41 -4.77 2.06 -7.91 -1.79
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Error Variance Λ for Second Equation

• Posterior mean of the STDs were close to one.

• Correlation were small and not very informative
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8.4 Logit Model

1. Within–Subject Model:

P (Ci,j = k|βi) = P (Yi,j,k ≥ Yi,j,m for all m)

=
exp(x′i,j,kβi)

1 +
∑M

m=1 exp(x′i,j,mβi)
if k ≤ M

=
1

1 +
∑M

m=1 exp(x′i,j,mβi)
if k = M + 1.

2. Between–Subjects Model:

B = ZΘ + ∆

[∆] = Nn×p(∆|0, In, Λ)

3. Priors:

[vec(Θ′)] = Npq(vec(Θ′)|u0, V0)

[Λ] = IWp(Λ|f0, G
−1
0 )



310 CHAPTER 8. REVEALED PREFERENCE MODELS

8.5 Hastings–Metropolis

Generate random variables X from a density that is

proportional to f :

[x] ∝ f (x).

These random deviates are X1, X2, . . . .

1. Initialize X1.

2. At iteration i + 1, generate a candidate Y from a

jump distribution: gi(y|xi)

• Independence:

g(y|x) = g(y).

• Symmetric:

g(y|x) = g(x|y).

• Conditional normal:

g(y|x) = N(y|x, Υ).
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3. Set Xi+1 = Y on iteration i + 1 with probability:

p(xi, y) = min





f (y)gi(xi|y)

f (xi)gi(y|xi)
, 1



 .

4. Set Xi+1 = Xi on iteration i with probability:

1− p(xi, y).

The resulting sequence is a Markov chain

such that its stationary distribution is proportional

to f .
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Logit MCMC,

f (βi) = L(βi)Np(βi|Θ′zi, Λ)

g(y|x) = Np(y|x, c2Ip)

1. c2 is selected by the user.
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2. Advice about c:

• If c is too large, then Y tends to be far from

X, and there will be too many rejects. That

is, X is retained too often.

• If c is too small, then Y is too close to X. It

will be accepted frequently, but the chain will

move slowly through its sample space. That is,

the auto correlation of the chain will be big.

• Some authors recommend c so that the

proportion of acceptances is in the 30% to

40% range.

• c is similar to step size in some optimization

routines.
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8.6 Data Structures

1. M + 1 alternatives, which do not change.

2. J choice occasions per subject.

3. Each subject receives the same design matrix on

choice j.

4. cdata contains the subjects’ selections:

cdata = (Ci,j).

cdata is an n× J matrix.
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5. xdata stacks the design matrices:

xdata =




X1

...

XJ




.

xdata is a JM × p matrix.

6. iptx is a pointer into xdata that gives the design

matrix for the choice sets. iptx is a J × 2 matrix.

7. The design matrix for choice set j is:

xj = xdata[iptx[j,1]:iptx[j,2],.];

8. beta is a n× p matrix.

9. theta is a q × p matrix.

10. zdata is a n× q matrix.
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8.7 Scanner Panel Data

Allenby and Lenk (1994) JASA

Data

1. 735 households in Springfield, Missouri from

1986 to 1987.

2. Household Demographics:

• Mean income = $30,800 and STD = $19,300.

• Mean family size = 3 and STD = 1.25
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3. Four brands of ketchup: Heinz, Hunt’s, Del

Monte, and House Brand.

4. Market Shares:

• Heinz = 43.1%

• Hunt’s = 23.9%

• House Brand = 22.4%

• Del Monte = 10.6%

5. Marketing Mix

% Time % Time Mean STD

Brand Display Feature Price Price

Heinz 8.3 14.3 1.23 0.29

Huntz 10.3 5.7 1.27 0.26

Del Monte 5.4 1.2 1.28 0.24

House 8.5 5.2 0.78 0.11
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Logistic Regression Model

1. Choice probabilities:

Household i, purchase occasion t, brand j:

pi,t(j) = exp[yi,t(j)]/





m∑

k=1
exp[yi,t(k)]
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2. Utilities:

yi,t(j) = [α0(j)+βi,0(j)]+xi,t(j)′[α1+βi,1]+d′i,tα2(j)+εi,t(j)

• xi,t(j) are the marketing variables.

• di,t are the demographic variables.

• α’s are fixed effects.

• βi’s are random effects N(0, Λ).

• εi,t’s are error terms.

• After adjusting for the marketing activity and

the household’s demographics, household’s i

preference for brand j on purchase occasion t

is

α0(j) + βi,0(j) + εi,t(j).
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3. Autocorrelated Error Structure:

εi,t = Φεi,t−1 + ζi,t

• Φ is a diagonal matrix with φ(j) on the

diagonal.

• Each φ(j) is between –1 and 1.

• {ζi,t} are mutually independent and identically

distributed from Nm(0, Σ).

• The error terms that proceed the observation

period, {εi,0}, are mutually independent and

identically distributed from Nm(0, C).
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4. Identification:

α0(4) = 0

βi,0(4) = 0

α2(4) = 0

Need more than two choices.
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Estimated Fixed Effects

Parameters Chain 1 Chain 2 Chain 3
Fixed Effects Heinz 1.988 1.956 1.903
Intercepts Hunt’s 1.675 1.672 1.683

Del Monte 0.496 0.487 0.492
Fixed Effects Heinz 1.394 1.404 1.411
Income Hunt’s 0.987 0.965 0.984

Del Monte 0.987 0.984 0.970
Fixed Effects Heinz –1.227 –1.234 –1.219
Family Size Hunt’s –0.537 –0.560 –0.542

Del Monte –0.621 –0.614 –0.618
Fixed Effects Price –6.637 –6.682 –6.571
Marketing Display 2.235 2.289 2.301
Variables Feature 2.087 2.176 2.063
Random Effects Heinz 1.735 1.812 1.805
Intercepts Hunt’s 0.670 0.664 0.671

Del Monte 1.201 1.159 1.250
Random Effects Price 2.331 2.415 2.301
Marketing Display 2.175 2.174 2.210
Variables Feature 1.671 1.701 1.615
Error Heinz 0.482 0.463 0.478
Variances Hunt’s 0.281 0.274 0.269

Del Monte 0.219 0.251 0.235
House Brand 1.017 1.093 1.040

Autocorrelation Heinz 0.469 0.473 0.480
Coefficients Hunt’s 0.563 0.572 0.575

Del Monte 0.430 0.418 0.452
House Brand 0.969 0.972 0.971
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Random Effects Covariance Matrix

Upper triangular matrices are correlations.
Standard deviations are in parentheses.

Intercepts Slopes
Heinz Hunt’s Del Monte Price Display Feature

Heinz 1.753 0.097 –0.388 0.413 –0.237 0.039
(0.532)

Hunt’s 0.105 0.670 0.057 –0.223 –0.034 –0.132
(0.237) (0.206)

Del –0.563 0.051 1.201 –0.497 0.230 –0.102
Monte (0.248) (0.283) (0.505)
Price 0.834 –0.279 –0.831 2.331 –0.194 0.104

(0.437) (0.534) (0.689) (1.331)
Display –0.462 –0.041 0.371 –0.436 2.175 0.558

(0.382) (0.263) (0.314) (0.599) (0.573)
Feature 0.067 –0.140 –0.144 0.206 1.063 1.671

(0.378) (0.298) (0.330) (0.792) (0.403) (0.453)
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Error Covariance and Autocorrelation

Error Covariances
Heinz Hunt’s Del Monte House Brand

Heinz 0.482 0.347 0.182 –0.571
(0.196)

Hunt’s 0.128 0.281 0.118 –0.386
(0.132) (0.088)

Del 0.059 0.029 0.219 –0.154
Monte (0.099) (0.071) (0.075)
House –0.400 –0.206 –0.073 1.017
Brand (0.182) (0.135) (0.150) (0.369)

Autocorrelation Coefficients
0.469 0.563 0.430 0.969

(0.144) (0.153) (0.337) (0.012)
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Aggregate Market Response

ψi,t(j, k) ≡ E




∂pi,t(j)

∂ log(Price of Brand k)




= (α1 + βi,1)E{pi,t(j) [δk(j)− pi,t(j)]}

Price Sensitivity
Heinz Hunt’s Del Monte House Brand

Heinz –0.527 0.246 0.122 0.160
(0.019) (0.011) (0.006) (0.010)

Hunt’s 0.246 –0.458 0.105 0.107
(0.011) (0.016) (0.006) (0.008)

Del 0.122 0.105 –0.314 0.087
Monte (0.006) (0.006) (0.014) (0.007)
House 0.160 0.107 0.087 –0.354

(0.010) (0.008) (0.007) (0.018)
Display Sensitivity

Heinz Hunt’s Del Monte House Brand
0.170 0.145 0.099 0.121

(0.011) (0.009) (0.007) (0.008)
Feature Sensitivity

Heinz Hunt’s Del Monte House Brand
0.163 0.133 0.082 0.110

(0.013) (0.010) (0.008) (0.009)
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1. Heinz has the largest aggregate market response

to its own price changes (entries on the

diagonal), followed by Hunt’s, the House Brand,

and Del Monte.

2. 20% price reduction in the price of Heinz

increases its choice share by 10.5%.

3. This 10.5% increase in choice share for Heinz

from a 20% discount in its price comes at the

expense of decreasing the choice share of Hunt’s

by 4.9%, of Del Monte by 2.4%, and of the House

Brand by 3.2%.

4. The market share weighted mean choice

probability increases by 14.6% for an in–store

display and 13.5% for a feature advertisement.
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8.8 Multivariate Probit

1. Pick/Don’t Pick decision for many alternative

2. Person i, product j.

3. Ci,j = 1 if j is selected, and 0 if it is not.

4. Random utility to person i for product j:

Yi,j = µj + εi,j.

5. Pick j if Yi,j > 0
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Constraints

1. Error variances are 1.

2. Errors are correlated.

3. The covariance matric Σ for the error is a

correlation matrix.
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MCMC

1. Ignore the constraint on Σ during the MCMC.

2. Postprocess the iterates by:

• Dividing µj by sqrt(σj,j.

• Making Σ a correlation matrix.
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8.9 Summary

1. The presentation of this chapter framed the

models as a choice problem.

2. These models are also applicable to any situation

that has nominal outcomes.

3. The logit and probit models assume different

error structures. Which one to use? Good

question, but it probably does not matter too

much.
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Foundations

• Subjective Probability

• Coherence

• Decision Theory

• Complete Class Theorem

• Large Sample Theory
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Beta–Binomial & Conjugate Normal Models

• Preliminaries

– Binomial Distribution

– Beta Distribution

– Normal Distribution

– Gamma and Inverted Gamma Distributions

– T–Distribution

• Bayesian Inference

– Joint Distribution

– Marginal Distribution

– Posterior Distribution

– Predictive Distribution
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Linear Regression

• Preliminaries

– Multivariate Normal Distribution

– Gamma and Inverted Gamma Distributions

• Bayesian Inference

– Full Conditionals

– MCMC

• Slice Sampling

• Autocorrelated Errors
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Multivariate Regression

• Preliminaries

– Matrix Facts

– Matrix Normal Distribution

– Wishart and Inverted Wishart Distributions

• Bayesian Inference

– Full Conditionals

– MCMC
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Hierarchical Bayes Regression:

Interaction Model

• Preliminaries

– Application of multiple and

multivariate regression

• Bayesian Inference

– Within & Between Models

– Full Conditionals



339

Hierarchical Bayes Regression:

Mixture Model

• Preliminaries

– Multinomial Distribution

– Dirichlet Distribution

– Mixture Distributions

• Bayesian Inference

– Latent Variables
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Probit Model

• Preliminaries

– Random Utility Model

• Bayesian Inference

– Latent Variables
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Logit Model

• Preliminaries

– Extreme Value Distribution

• Bayesian Inference

– Hastings–Metropolis Algorithm
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Conclusion

• Good models include all major sources

of uncertainty and variation.

• Bayesian inference explicitly account for these

sources.

• MCMC has proven to be a flexible method

of analyzing complex models.

• This course has presented the basic framework.

• As the complexity of your problems increase,

you will want to go beyond the basics.


