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Abstract

The problem of measuring the precision of signals generated by fundamental macroeco-
nomic models is not trivial. In this paper, we suggest three different approaches for the
estimation of the true and unknown distribution of the population signal. We apply the
bootstrapping procedure described by Efron and Tibshirani (Stat. Sci. 1 (1986) 54) to
estimate the empirical distribution of the signal and measure its precision at a specific point
in time with confidence intervals. Direct and indirect bootstrapping methods are devised as
a way to capture the unknown variability of the signal without altering the information
content of the available data. This framework is then implemented for a simple fundamental
model for the CAD/$ exchange rate. We find that accounting for skewness and prediction
bias affects significantly the shape and width of the estimated confidence intervals around the
estimated directional signal, and that the two proposed forms of bootstrapping are more
satisfactorily than a naı̈ve Historical approach in highlighting the uncertainty surrounding
the model’s predictions, and generating a measure of precision in the resulting model’s
recommendations. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction1

Trading rules based on fundamental economic relations are widely adopted by
professional investment managers in the currency market. Deviations from equi-
librium prices implied by the purchasing power parity (PPP), the covered interest rate
parity (CIRP), and other country-specific models are exploited to generate extra profits
with respect to specific ex-ante buy-and-hold strategies or benchmarks.

The ability of these strategies to generate excess returns consistently over
significantly long periods of time is still an object of dispute in the literature.2

Fundamental signal models (FSM), as we call them in this paper, can nevertheless
offer important insights in understanding some of the economic trends that influence
the behavior of exchange rates. In any case, the proper use of FSMs requires more
statistical analysis than the one usually performed to test their effectiveness. Whether,
after having observed the output of the model at a certain point in time, the analyst
follows precisely the resulting positioning signal or simply takes it into consideration
in forming his opinion about the future direction of the currency, the precision of
that signal is going to play a relevant role in the decision process. How confident can
the analyst be that the observed signal number is close to the true signal, the one
generated by the true and unobservable multivariate distribution of the factors and
variables entering his model?

A potential answer to such a question lies in the construction of confidence intervals
for the signals generated by a FSM model. An example will help clarify this point.
Assume that, at a certain date, a properly calibrated FSM is suggesting a short position,
−5%, in a currency, with respect to a pre-specified benchmark. The analyst looks
at the signal, evaluates independently other variables not entering the model
framework, i.e., not fully captured by the signal itself,3 and eventually takes a
positioning decision. Throughout this process, the degree of precision of the signal
generated by the FSM is certainly going to play a role for the analyst in comparing
the model’s suggestion with other inputs. Hence, a confidence band of �1.5% around
the observed −5%, for a selected significance level, will give the analyst a clearer
picture of where the true and unobser�able signal should be. However, consider the
case in which the confidence band is of �9%. For the given significance level, the
true signal could even be positive, with the observed −5% representing simply a
random fluke.4

1 I would like to thank Stephen Brown, New York University, and Arun Muralidhar, J.P. Morgan
Investment Management, for their helpful comments and advices. The suggestions of an anonymous referee
considerably improved the exposition of this paper. The views, opinions and all remaining errors in this
article are naturally mine.

2 For a review of the most recent tests of efficiency in the currency markets see Levich (1985, 1989)
and Levich and Lee (1993).

3 A classical example would be political instability, market momentum, or other non-systematic factors
for the currency.

4 While the analysis that follows focuses on the ex-ante signal uncertainty for models attempting to
generate positive excess returns, some risk-management literature has been exploring the issue of
determining ex-post how much of the observed excess return generated by active trading can be explained
by skills (of the model and/or the analyst) rather than by noise. For more details, see Muralidhar and
Mala Khin (2001).
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For all its apparent importance, the problem of deriving confidence intervals
for the signals generated by a FSM model is not trivial. If the FSM were linear
in the factors and variables entering its formulation, assumptions about their
true probability distributions would put us closer to a solution. Unfortunately,
these distributions are themselves unknown, usually different from each other,
and in most cases not easily approximated as normal.5 Even if such an approxi-
mation were possible, it would not help the analyst for the case in which the
factors and the variables enter the FSM in a nonlinear fashion. Moreover, for
additive FSMs, i.e. for models averaging out different components, no ‘cross-sec-
tional ’ version of the Central Limit Theorem applies, given the limited number
of factors typically considered in a fundamental currency-positioning model.

The claim we make here is that the solution to this complicated issue lies in
the application of a bootstrapping methodology. Bootstrapping, as we shall see
in the remainder of the paper, substitutes considerable but easily manageable
amounts of computation in place of theoretical analysis, when the latter is either
impossible, as our case seems to suggest, or extraordinarily cumbersome. Boot-
strapping involves drawing a certain number of samples from the empirical
distributions of the variables entering the FSM. Each sample is called a boot-
strap sample. Because the extractions happen from the empirical distribution of
the data, a bootstrap sample turns out to be the same as a random sample of a
specified size drawn with replacement from the actual sample.6 The bootstrap-
ping algorithm proceeds in three steps:
1. Using a random number generator, a large number of bootstrap samples is

independently drawn for each of the variables entering the selected FSM;
2. The statistic of interest, e.g. the FSM signal, is then evaluated for each

bootstrap sample;
3. The sample standard deviation of the statistic is calculated and confidence

intervals are specified.
The paper is organized as follows. In Section 2, a simple structure for a general

FSM is described. The proposed model does not pretend to exploit excess return
opportunities in the currency market, but rather represents a general example of the
class of linear models widely adopted by practitioners in currency management.
Section 3 illustrates the specific non-parametric bootstrapping techniques suggested
in the article. Section 4 shows an application of the techniques to the model of
Section 2 using real market data. Section 5 concludes.

5 Assumptions of IID Normality for the variables included in the model, although unrealistic, might
still not help, for what follows in Section 2.

6 The statistical analysis that follows relies on the fundamental contributions of Efron (1981), Efron
and Gong (1983), Efron (1984), and Efron and Tibshirani (1986).
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2. A simple linear FSM model

Currency-positioning models attempt to capture the effect of macroeconomic
variables over the expected trend of the foreign exchange rate. The most frequently
adopted macro-factors result from several (and fully established in the literature)
equilibrium relationships between currency rates, price indexes, nominal and real
interest rates, and flows of international trade.

We assume that the currency for which we want to construct a FSM model is the
Canadian dollar versus the US dollar, from now on CAD.7 CAD are thus units of
Canadian dollar per one US dollar. The reasons why the CAD has been selected for
our study are threefold. First, the relatively small size of the Canadian economy vis
a vis the rest of the industrialized world makes the Canadian case a good proxy for
the small country–big country Mundell–Fleming setting (see Mundell, 1961a,b;
Fleming, 1962). This widely embraced model explains the relation between interest
rate differentials and exchange rate fluctuations through the channel of interna-
tional capital flows. Second, most of the Canadian trade with the rest of the world
is characterized by an easily identifiable, and at the same time highly significant
component, commodities. Raw materials are less related to sudden swings of tastes
and preferences in the international markets than other tradable goods and services.
This in turn, as it will be shown in this section, allows us to specify a trade factor
in terms of deviations from the equilibrium in the commodities markets induced by
the world business cycle. Third, the Canadian dollar shows a definite propensity to
trend, hence it appears to represent, in our judgment, a well-suited object for the
application of a fundamental macroeconomic model of exchange rate fluctuations.
It is important to emphasize again that the model described in this section makes
no attempt of originality and does not represent a Holy Grail for profiting in the
currency markets. The following linear structure is simply an example of a FSM
structure generating positioning signals for which we want to specify some useful
statistical properties. We identify four main economic relations:

2.1. The purchasing power parity (PPP) factor

The absolute PPP paradigm asserts that in the long term the real exchange rate
between Canadian dollars and US dollars has to be equal to unity. In other terms,
this implies that R= (P ·CAD)/P*=1, where P is the Canadian producer price
index (PPI) and P* is the US PPI. For the purposes of our analysis, in order to
capture the long-term reversion of the real exchange rate toward its equilibrium, we
instead focus on the following adjusted PPP variable:8

7 However, our FSM model can be easily extended to any currency of interest.
8 In short, the adjusted version of the PPP determines the equilibrium spot rate that would be

necessary at time t to preserve the same level of real competitiveness existing at the time selected by the
analyst (BASE), if a certain inflation differential had been observed between the BASE year and t.
Consequently, the structure proposed in Eq. (1) signals an unfavorable trend for the CAD when the
domestic inflation is relatively high and the Canadian dollar is expected to depreciate to restore previous
levels of competitiveness, and vice-versa when the domestic inflation is relatively low.
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In Eq. (1) PPPt is the equilibrium spot nominal exchange rate, BASE is the base
month selected for the construction of the PPP factor, � is a real exchange barrier
trigger, and � is a calibration parameter.9 A positive value of the factor signals a
favorable trend for CAD.

2.2. The flows of funds factor

This component is built on the assumption that, when the Canadian real interest
rate is unusually lower than the US real interest rate, an expected depreciation of the
Canadian currency is needed to balance outstanding and future flow of funds.10 The
factor translating this hypothesis into a trend signal is the following:

Ft
REAL=�((r t

CAD−r t
US)− (rHt

CAD−rHt
US)) (2)

Here rt is simply a short-term moving average of the money-market real interest
rate, calculated a la Fisher as a difference between the nominal cash rate and the
corresponding ex-post inflation rate; rHt is a long-term moving average of money-
market real interest rates, attempting to capture the equilibrium component.11

Finally, � is a calibration parameter selected by the analyst. A negative value for the

9 As PPI data are released monthly, daily PPP values are inferred through interpolation. Different
versions of the basic PPP hypothesis use different price variables, in particular the GDP Deflator, CPI
or even expected CPI. We selected the PPI indicator as a good proxy for the relative competitiveness of
the Canadian economy, given the relevant weight that Bank of Canada attributes to commodity prices
in its formulation.

10 Some literature, see Isard (1995) for a review, rejects the hypothesis that the covered interest rate
parity (CIRP) is an adequate description of currency dynamics. In short, the CIRP assumes that flows
of funds and exchange rates are immensely more rapid than sticky nominal interest rates in adjusting to
interest rate differentials, and that markets are continuously and instantaneously in equilibrium. Hence,
a positi�e spread between Canadian and US interest rates is justified in equilibrium just if investors
expect a depreciation of the Canadian dollar by the same amount. For example, a positive interest rate
spread would imply a negati�e signal for the domestic currency, in this case CAD. Relying on the
available empirical evidence, we decided to adopt instead the flows-of-funds approach described in the
text.

11 The choice of an ex-post measure of the real interest rate is still controversial in the economic
literature, more than a century after the publication of the seminal work by Fisher (1892) on monetary
topics. For an overview of the issue of proper specification of measures of real interest rates, see
Pasquariello (1994).
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factor represents an expected depreciation of the CAD, thus reflects a positive view
of the model for the US dollar.

2.3. The market segmentation factor

This component tries to capture the existing market segmentation between
short-term traders and long-term-oriented investors. We measure short-term versus
long-term fluctuations of the interest rates to capture their effect on the CAD
through the movement of flows of funds looking for more rewarding investment
opportunities. Hence, the factor is:

Ft
YIELD=�((i t

CAD− i t
US)− (iHt

CAD− iHt
US)) (3)

In this case, it is a short-term moving average of a nominal interest rate that is
representative of the long-end of the Canadian yield curve, while iHt represents its
long-term moving average. � is a calibration parameter selected by the analyst.
Again, a negative value for the signal invites the investment manager to reduce a
long position in CAD.

2.4. The industrial factor

The last component of this stylized fundamental model attempts to capture the
portion of long-term currency variability explained by the build-up in demand for
Canadian commodities, as measured by a world industrial production index. An
expansion in the world economy is likely to determine higher demand for raw
materials, higher commodity prices, and eventually an upward pressure over CAD,
given the presumed significance of commodity trade for the Canadian economy.
Hence, the factor is:

Ft
RAW=�(I t

WORLD−IHt
WORLD) (4)

In this case, It is a short-term moving average of a world industrial production
index, while IHt is its long term moving average. Historically high demand for
Canadian raw materials will translate in expected appreciation for the currency, and
consequently a positive factor signal. � is, as usual, a calibration parameter selected
by the analyst.12 The resulting FSM signal will be positive when the model believes
it is appropriate for the investment manager to be longer in CAD, negative when
it suggests a relative short position in CAD.

Calibration of the model is critical to its use as a trading rule. The analyst
chooses values for the calibration parameters �, �, �, �, and � that make the factors
additive and comparable. Moreover, those parameters implicitly attribute weights
to each of the factors in the total signal. Different weighting techniques are

12 This signal is generated every month, thus posing a specific problem for the bootstrap procedure.
In Section 4.2, we illustrate a possible solution to this issue.
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available. Most practitioners select the weights on the factors on the basis of their
relative volatility. The weights can also be adjusted to take into account the
existence of statistically significant correlation among factors. The additive FSM
signal will then be:

Ft
TOT=Ft

PPP+Ft
REAL+Ft

YIELD+Ft
RAW (5)

Calibration is also important for this fundamental macroeconomic model to
generate specific positioning signals. Any of the four factors in Eqs. (1)– (4) will be
negative (or positive) by construction when the corresponding economic model
suggests that a depreciation (appreciation) of the CAD is going to occur, hence that
CAD should be sold (bought). It is then possible to interpret the factor signals as
(sometimes contrasting) indicators of the expected relative strength (or weakness) of
CAD with respect to the US dollar. An investor can therefore trade on them, not
differently from the case of buy–sell signals resulting from technical analysis of the
time series of CAD. Moreover, as in technical trading models, practitioners use the
relative intensity of the negative (or positive) strength signal, and some pre-specified
measure of risk to derive more specific positioning suggestions from the FSM.
Consider for example the case of a US-based portfolio manager who wants to
hedge the currency exposure of an underlying long position in CAD-denominated
assets with the directional signals generated by a fundamental macro-model. He
could then use historical data on CAD to choose the set of parameters � to � that
maximizes the Sharpe ratio of the performance differential versus a benchmark
passive hedging strategy, given a target level for the standard deviation of that
performance differential. With the proper calibration and the selected risk measure
with respect to the benchmark strategy, the FSM model can specify by how many
percentage points the manager should deviate from the selected passive hedge.

Now the analyst’s question suggested in Section 1 arises: how to build a
confidence interval for the signal generated by the FSM model at a certain date t?
Next section proposes a simple bootstrapping methodology that provides the
analyst with a satisfactory answer.

3. The bootstrapping methodology

3.1. Confidence inter�als for the FSM signal Ft
TOT

The major theoretical task in computing the standard error (SE) of a generic
FSM signal Ft, and confidence intervals for given levels of significance lies in the
correct estimation of its true population distribution � at a certain point in time t.
As already emphasized in Section 1, the problem of specifying an exact expression
for � is analytically intractable, unless some very restrictive assumptions are made
with respect to the distributions of the variables entering the FSM signal, but also
with respect to the functional form of the signal itself.

The only viable alternative remains to specify an empirical distribution for the
signal, �� . Given an estimated �� , the literature, especially in Efron and Tibshirani
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(1986), has identified different techniques apt to measure the statistical error or
better the accuracy of a given statistic �, in our case the signal Ft, at a certain point
in time t. More specifically, the following expression defines a measure R(F,�� ) of
the precision in the estimate of the true signal as:

R(Ft,�� t)=Ft−	(�� ) (6)

Here 	 is the sample average for the signal F at time t estimated from the sample
distribution of the signal, �� . Hence, R(Ft,�� t) provides a rough measure of the
accuracy of our signal Ft in measuring the mean of the true signal, as inferred from
the sample distribution �� t. The standard error for the estimate Ft of the true signal
is then given by:

SE(Ft,�� t)=

� �
N

i=1

(R� (Fi,�� t))2

N(N−1)

�1/2

=

� �
N

i=1

(Fi−F� (�� t))2

N(N−1)

�1/2

(7)

The specification of the mean signal F� and N depends on the methodology
adopted to estimate �, as it will be made clearer later in the exposition. Finally, the
confidence interval for the estimated signal Ft can be set according to the following
alternative but closely related methods:

3.1.1. The standard approach
A range centered at the estimated signal is specified as:

[Ft�SE(Ft,�� t)z (�)] (8)

where z(�) is the 100− (�/2) percentile point of a standard normal distribution.
The Standard approach is clearly not appropriate when the underlying popula-

tion distribution for Ft, or our estimate �� is not symmetric, but skewed. In that
case, a central sample interval clearly ignores the degree of asymmetry in the true
distribution. Efron and Tibshirani (1986) show that the following two methods
perform more satisfactorily when the analyst has reason to believe that the
underlying � is strikingly asymmetric.

3.1.2. The percentile approach
If we define �� t to be the estimated cumulati�e density function of Ft, then this

approach identifies the following endpoints for a confidence inter�al around Ft:

�� t(s)=Pr{Ft�s}


(�/2)=�� t
−1(�/2) 
(1−�/2)=�� t

−1(1−�/2) (9)

[
(�/2),
(1−�/2)]

In other terms, the confidence inter�al calculated through the percentile approach is
simply the inter�al between the 100(�/2) and 100(1−�/2) percentiles of the estimate
for the distribution �.

Another possible reason why the standard methodology can be misleading is that
it ignores the possibility that F� t, our observed signal, contains a prediction bias, as
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described in Eq. (6). The simple percentile approach does not take this bias into
account in the construction of a viable confidence interval. The following procedure
makes an adjustment for this type of bias.

3.1.3. The bias-corrected percentile approach
Let:

z0=�−1(�� t
−1(Ft)), (10)

where � is the standard Normal cumulati�e density function. Then the confidence
inter�al for Ft, is deri�ed as:

�� t(s)=Pr{Ft�s}

�(�/2)=�� t
−1(�(2z0+z (�/2))) �(1−�/2)=�� t

−1(�(2z0+z (1−�/2))) (11)

[�(�/2),�(1−�/2)]

The confidence inter�al generated by Eq. (11) can be further adjusted for skewness, by
implementing the following correction:

SKEWt=SKEW(� log (�� t(Ft))/�F)

b=SKEWt/6

�*(�/2)=�� t
−1��

�
z0+

z0+z (�/2)

1−b(z0+z (�/2))
��

(12)

�*(1−�/2)=�� t
−1��

�
z0+

z0+z (1−�/2)

1−b(z0+z (1−�/2))
��

[�*(�/2),�*(1−�/2)]

The statistic SKEWt depends on the degree of skewness bias existing in the true
population distribution for Ft. As suggested by Efron (1984), SKEWt is approxi-
mately equal to z0 under reasonable asymptotic conditions.

3.2. Bootstrapping

We now turn to the issue of determining an empirical distribution �� t for the
signal statistic FTOT

t . We propose three different procedures to obtain �� t from
available historical data for both the signal realizations and the variables entering
Ft

TOT.

3.2.1. � from History
A certain number of past obser�ations for the signal Ft

TOT are considered to
estimate its mean and standard de�iation, as well as �� t. In Eq. (7), N becomes the
distance, in number of trading days, between the current obser�ation t and the first
obser�ation in the time-range selected by the analyst.

As the empirical application in the next section makes clear, the Historical
method is not appealing, as it does not capture the variability of the signal.
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Consequently, the estimated standard deviation does not measure accurately the
effective degree of uncertainty related to the signal provided by the FSM. Non-
parametric bootstrapping from historical data presents more attractive features.
This procedure involves drawing a certain number of samples from the empirical
distribution of the statistic of interest. Past observations contain information about
the true and unknown distribution of the data and true and unknown characteris-
tics of the underlying population. Hence, the empirical distribution obtained
through a cross-sectional bootstrap sample drawn with replacement from the actual
series turns out to be the non-parametric maximum likelihood estimate (MLE) of
the unknown distribution �. Consequently, Efron and Tibshirani (1986) show that
the standard error of the signal Ft

TOT is the non-parametric MLE of the true
standard error.

The bootstrapping procedure can also be carried out parametrically. However,
this would imply for the analyst to assume ex-ante a specific form for the true
sampling distribution �. Such an assumption may limit the effectiveness of the
technique and ignore some population characteristics not fully described by any
available theoretical distribution. These are exactly the characteristics that the
non-parametric bootstrapping technique preserves by extracting �� from the avail-
able data. As we shall see, the cross-sectional sampling may involve the sample
Ft

TOT series or the series of factors entering Ft
TOT. In the first case we have the

following.

3.2.2. � from Indirect bootstrapping
Gi�en a time-range selected by the analyst, at time t N bootstrapped unit-samples

for each of the factors in the signal Ft
TOT are independently drawn with a random

number generator. For each of the samples, the resulting signal is computed. Then, the
empirical distribution for �� t is deri�ed from the N signals Ft

TOT and formulas (6)– (12)
are implemented.

To ensure internal consistency at a specific point in time among macroeconomic
variables that the analyst assumes to be related to each other, a special grouping
procedure can be implemented. By using the same random number generator
output in drawing a sample for the selected variables, it is in fact possible to
preserve the underlying simultaneous relationship among them. For example, if the
random number generator output corresponds to date (t−k) for the nth bootstrap
unit-sample at time t, values from date (t−k) are used for each of the grouped
variables, and the nth bootstrapped Ft

TOT is calculated according to those variables.
Finally, if sampling involves the total FSM signal defined in Eq. (5), we have the
following.

3.2.3. � from Direct bootstrapping
In this case, gi�en a time-range selected by the analyst, N bootstrapped unit-sam-

ples for Ft
TOT are generated with random and independent drawings from the obser�ed

sample of past total signals. Then, the empirical distribution �� t is deri�ed accordingly.
Indirect bootstrapping with grouping appears to be the most appealing procedure

to an analyst on an ex-ante basis. The reasons for this bias are twofold. First, the
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proposed methodology substantially replicates N times the same event occurring at
time t, when the FSM model generates the signal. This ensures consistency between
the random generation process and the true, and in this case known, generation
process for the signal. Second, using the same random generator output for each of
the variables entering the model guarantees internal consistency among the data at
a specific point in time. This procedure preserves cross-sectional correlation among
factors, i.e., information contained in the relationship among the variables that
would otherwise be lost in a complete randomization of the simulation process.13 In
other terms, that consistency derives from basic and unknown economic relation-
ships among the different factors. Grouping selected variables in the bootstrapping
approach simply allows the analyst to preserve these unobservable characteristics of
the data while trying to define the degree of precision of the signal. The procedure
does not come without cost, given the trade-off between the gain in internal
coherence among the randomly extracted variables and the loss of variability in the
simulation process. Direct bootstrapping is an extreme form of grouping, for it
preserves completely the cross-sectional consistency among the components of the
FSM signal, at the cost of reduced variability in the simulated generation of the
factors.

It is important to observe that, in the light of the evidence reported in footnote
13, the presence of serial correlation for some of the variables to be bootstrapped,
but not in the total signal, does not help us selecting among the criteria. In fact the
autocorrelation should not affect significantly the results of the bootstrapping
method when it is both very significant or so low that can be ignored. Why?
Suppose that the serial correlation for a time series to be bootstrapped is very high,
explaining more than 90% of the series variability for lags up to 30 months, and
more than 75% of the same variability for lags up to 100 months, as in the case of
the PPP series for Canada. Then, the value assumed by the variable at time t will
be a good proxy for values assumed by the same variable at time (t− j ) or (t+ j ).
If the serial correlation for the variable is instead very low and decreasing for higher
lags, then the direct bootstrapping procedure is clearly neutral and harmless. The

13 Note that any serial correlation of the factors is pulled out from the data through bootstrapping.
This is the reason why no technical signal has been introduced as part of the basic FSM model, although
Levich and Lee (1993) show that the profitability of technical trading rules in the foreign exchange
market is statistically significant even when the underlying time series of currency futures prices is
bootstrapped. Nonetheless, we maintain that the exclusion of mechanical trading rules from the
factor-construction process is more appropriate, as the procedure adopted in this paper does not
preserve any time-series property of each of the bootstrapped variables. This limitation could be
particularly severe in the case of price-related series, where persistence is much more pronounced. For
example, the AR(1) coefficient for the Canadian versus US real interest rate differential over the time
frame adopted for our analysis is 0.9973 and does not reduce below 0.90 up to 30 lags. The nominal
yield differential shows similar values for AR(1) to AR(5) components, but there the autocorrelation
fades away much faster. Not surprisingly, autocorrelation is most evident in the PPP series, and least
evident for the industrial factor. However, interestingly enough, autocorrelation is much less evident for
the total signal generated by the model. In the interval for which, as described in Section 4, we generated
confidence intervals for the total signal generated by the model, the AR(1) coefficient for Ft

TOT is equal
to 0.5105 and not statistically significant for lags of 5 months or more.
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Section 4 is devoted to an empirical application of the three techniques here
described to the CAD exchange rate and the FSM model of Eqs. (1)– (5).

4. An application of non-parametric bootstrapping to the CAD FSM model

4.1. Model building and bootstrapping procedures

The model of Section 2 offers the opportunity to apply the methodologies
proposed in this paper and compare their results. Daily time series for each of the
variables in Eqs. (1)– (5) are used to build a FSM signal for the Canadian dollar
from January 1, 1980 to April 30, 1998.14 Short- and long-term moving averages in
Eqs. (2)– (4) are computed over three-month and ten-year intervals, respectively. As
previously mentioned, calibration of the model implicitly weights the contribution
of each factor to the total signal FTOT. Consistently with a widely adopted strategy
among practitioners, we compute the daily performance differential, t, an analyst
would have experienced by passively hedging (i.e. selling) 50% of a hypothetical
position in Canadian dollars held by a US-based investor, instead of hedging the
same position by following the deviations from the benchmark suggested by the
FSM model. Then, we choose the set of values for the various parameters in Eqs.
(1)– (4) that maximizes the average annual Sharpe ratio for t, subject to the
constraint that each of the factors contributes equally to a target level for the
standard deviation of that performance differential.15

Fig. 1A shows the behavior of the CAD/$ spot exchange rate and the FSM signal
from January 1, 1993 to April 30, 1998.

As expected, the signal becomes negative in periods of US dollar strength, when
it suggests selling more than 50% of the underlying CAD asset exposure, positive in
periods of CAD appreciation, when it instead suggests reducing the benchmark
hedged position. Fig. 1B illustrates the performance of each of the four factors
entering the FSM signal according to Eq. (5). FYIELD and FREAL appear to have
directed the model to increase the hedge for the underlying CAD asset exposure in
1996. A decline in FRAW seems instead to have supported the more recent negative
view on the Canadian dollar in spite of an increase in FYIELD and FPPP. FPPP is
always positive in our sample, suggesting a relatively virtuous behavior of the
Canadian inflation rate between 1993 and 1998.

14 The interest rate and price data have been kindly provided by J.P. Morgan Investment Management
and originate from Bank of Canada and the Federal Reserve Bank. The spot rates correspond to the
noon buying rate for cable transfers payable in foreign currencies as registered by the Federal Reserve
Bank of New York each business day. The World Production Index is calculated monthly by the IMF.

15 The standard deviation of the performance differential between an actively managed portfolio and
a benchmark is known among practitioners as ‘tracking error ’. The constraint that each factor
contributes equally to the total tracking error arises from a common ex-ante assumption among currency
portfolio managers about the relative importance of the signals. The (rounded) parameter values
resulting from this procedure and adopted in this section are �=0.75 and �=0.05 in Eq. (1), �=3.85
in Eq. (2), �=14 in Eq. (3) and �=76.5 in Eq. (4).
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Fig. 1. (A) CAD/$ spot exchange rate and the FSM signal from January 1, 1993 to April 30, 1998. The
spot rate corresponds to the noon buying rate for cable transfers payable in foreign currencies as
registered by the Federal Reserve Bank of New York each business day. The FSM signal is calculated
according to Eqs. (1)– (5) in the text. (B) FSM Factors from January 1, 1993 to April 30, 1998. The
factors are computed according to Eqs. (1)– (4) in the text. The data series utilized in the computations
were kindly provided by J.P. Morgan Investment Management.
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Table 1 reports summary statistics for the FSM signal FTOT and for each of its
components. FRAW and FREAL appear to be the most volatile factors, while FPPP, as
suggested above, is the most stable.

It is worth observing that the FSM signal may take contrarian views: at the end
of 1997 for example, FTOT was suggesting a reduction of the benchmark 50% hedge
in spite of a continuing depreciation of the Canadian dollar.16 It is in similar
circumstances that the precision of the signal is particularly important for the
analyst: again, how confident, he might ask, was the model that the passive hedge
position should have been reduced? How precise was the signal in that specific time
frame? To explore these issues, we focus on the following sub-interval, May 15,
1997 to April 30, 1998. Using each of the procedures described in the past section
to extract the empirical distribution of the signal Ft

TOT, �� t, we calculate bias,
standard errors (SE) and confidence intervals (CI) according to Eqs. (6)– (12).

The implementation of the Indirect bootstrapping approach requires additional
attention for the following reasons. First, one of the factors, FRAW, relies on data
that are released by the IMF at the beginning of each month. Thus, the resulting
signal does not proceed smoothly along the sample but jumps in the first trading
day of each month, according to the data release schedule. To reflect this process,
we randomly draw the variables entering FRAW just at the beginning of each month,
in order to maintain the same internal consistency advocated for in Section 3. As
we shall see, this decision affects, although not significantly, some of the results that
follow. Second, we specify FYIELD and FREAL as the variables to be grouped in the
Indirect bootstrapping procedure. Although some economic considerations make
this choice reasonable, the selection is still somehow arbitrary, and it should reflect
the analyst’s view of the interaction among the components of Ft

TOT.
We carry out the bootstrapping methods described in Section 3 by independently

drawing (with replacement) N separate time t unit-samples for each of the factors
described by Eqs. (1)– (4) from a sample of 252 trading days before time t. We then

Table 1
Sample statistics for the FSM signal and its four components—January 1, 1993 to April 30, 1998

FREALFPPPFTOTStatistics FRAWFYIELD

3.40 3.304.32 −3.33Mean −0.89
−1.26 5.60Median 4.52 4.60 −4.27

S.D. 13.86 1.93 7.40 4.00 7.58
11.67Absolute deviationa 6.023.126.381.61

a The absolute deviation statistic is computed as the average of the absolute deviations of each
observation from its mean.

16 It is important to note that capturing the directionality of the exchange rate does not necessarily
make the model more profitable (or less unprofitable) than the passive hedge strategy. The returns
potentially generated by the model’s suggested deviations from the benchmark have to be eventually
adjusted by transaction costs and cost-of-carry, if the positions are implemented on a forward basis.
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compute time t sample statistics and confidence intervals using the resulting N
observations for each of the factors and the total signal Ft

TOT. The Historical method
is instead implemented using 504 trading days immediately preceding time t. We
finally repeat this procedure for each day t of our selected sub-sample, May 15, 1997
to April 30, 1998. As an example, Table 2 reports values for bias, SE and confidence
intervals (CI) for each of the suggested approaches for t=April 30, 1998, and
N=1000.17

Table 2
Precision measures of the FSM signal Ft

TOT for each of the bootstrappinga techniques proposed in the
text—April 30, 1998

Statistics (and the � from � from Indirect� from Direct � from Indirect
corresponding bootstrappingd bootstrapping bootstrapping—Historyb,c

[1] no groupinge [4][2] —groupinge [3]equation in the text)

−14.02 −14.02Observed FSM signal −14.02 −14.02
(5)

+3.22Bias measure (6) +2.45−1.83 +2.34
Standard error (7)f 0.313 0.103 0.196 0.177

−0.144 +0.414+0.493 +0.474SKEWg

−14.54 toStandard CI (8)h −14.19 to −14.34 to −14.31 to
−13.70−13.85 −13.73−13.51
−25.01 to−22.26 to−21.91 toPercentile CI (9)h −24.07 to

−12.16+0.30 −6.60−4.78
−21.92 to −25.23 toBias percentile CI −22.06 to −24.35 to

−4.35(10–11)h −5.75+0.23 −12.20
−24.34 to−21.68 to −25.22 to−22.07 toSkew percentile CI

+0.81(10–12)h −5.72−12.19 −4.31

a Independent drawings are performed from a sample of 252 days before time t.
b The ‘historical’ � has been computed using the past 504 trading days’ observations for the signal

FTOT.
c The empirical �� is derived from past observations for the signal F(t), as described in the text.
d The empirical �� is derived from Direct bootstrapping of the signal F(t), as described in the text.
e The empirical �� is derived from Indirect bootstrapping of the variables entering the signal FTOT

t ,
with our without grouping, as described in the text.

f In Eq. (7), N=504 in [1], as the variance is computed from the past 504 trading days, while N=1000
for both Direct [3] and Indirect [2] bootstrapping.

g SKEW is a measure of the asymmetry of the distribution of the signal. For a symmetric distribution
of �, SKEW would be zero. If SKEW is positive, the ‘long tail’ of the distribution is in the positive
direction.

h Confidence intervals (CI) are calculated for a 10% significance level.

17 The issue of establishing the optimal bootstrapping sample size has not been solved yet by the literature.
Efron and Tibshirani (1986) assert that there is little improvement in the estimation of the standard error
of the relevant statistic past N=100. The situation seems to be quite different, they argue, for setting
bootstrap confidence intervals, with Efron (1984) claiming that N=1000 is a rough minimum for the number
of samples necessary to compute percentile intervals. However, bootstrap experiments implemented by
the author for N�1500 did not show any significant improvement in the results, with respect to our initial
assumption of N=1000. As suggested by Efron (1984), the coefficient b in Eqs. (10)– (12) is estimated
as SKEW(Ft

TOT)/(6N0.5). Again, N is equal to 504 trading days for the Historical method.
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The symmetric confidence intervals computed using the standard approach are
very tight, as they do not take into account any form of skew or prediction bias
possibly affecting the model’s directional signal FTOT. However, when the percentile
approach is used and the correction for bias and skewness are accounted for, the
confidence intervals computed from Eqs. (9)– (12) are very different from the
intervals resulting from the standard approach, although very similar to each other,
independently from the procedure used to estimate �. All lower bands are signifi-
cantly smaller, although do not seem to be significantly different whether estimated
with the History or Indirect bootstrapping method, with and without grouping (i.e.
completely at random). This is not the case for the upper band, as long as bias and
skew corrections are accounted for in the interval calculation procedure. In fact, for
the Historical method the adjusted upper bands become even positive, for the
existing bias measure was negative, as 	(�)�Ft

TOT. This means that the corre-
sponding empirical distribution for the total FSM signal implies a slightly less
pessimistic view for the CAD than in the case of Indirect bootstrapping. Thus, the
resulting estimated upper bands are higher. Direct bootstrapping offers a different
picture. The confidence intervals so estimated are tighter and shifted downward,
thus signaling a stronger confidence of the model regarding the suggested increase
in the hedge for the underlying CAD asset than in the case of the other two
alternative procedures described in the paper. Interestingly enough, the estimated
skew for Ft

TOT is lower than the one computed with indirect bootstrapping or
simply from historical data; however, the bias measure is generally higher.

To better evaluate the performance of the three methodologies presented in the
paper, we repeat the same exercise of Table 2 for each date between May 15, 1997
and April 30, 1998 and report our results in Figs. 2 and 3. Fig. 2A displays the 10%
significance-confidence interval for the signal FTOT when the distribution � is
estimated from past observations, i.e. according to Section 3.2.1, and the endpoints
of the CI are computed using the standard approach of Eq. (8). As already
mentioned, the intervals are relatively tight in nature and do not take into account
model’s uncertainty, skewness and bias-prediction errors in the estimation of FTOT.

When the skewness bias is considered and a bias-corrected percentile confidence
interval is calculated according to Eq. (12) of Section 3.1, the resulting band, as
shown in Fig. 2B, is significantly wider and fluctuates less over time, because the
historical percentiles contain less information about the variability of the true and
unobservable signal. In other terms, the 90% interval adjusts less rapidly to the

Fig. 2. Confidence intervals for FTOT from May 15, 1997 to April 30, 1998. FTOT is computed according
to Eqs. (1)– (5) in the text. In (A) the distribution for Ft

TOT has been estimated using an interval of 504
trading days immediately preceding time t. The confidence interval is computed according to the
standard procedure described in the text, Section 3.1 Eq. (8). In (B) the distribution for Ft

TOT has been
estimated using an interval of 504 trading days immediately preceding time t. The confidence interval is
computed according to the bias-corrected percentile procedure described in the text, Section 3.1 Eqs.
(10)– (12). The data series utilized in the computations were kindly provided by J.P. Morgan investment
management.
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Fig. 2. (Continued)
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amount of information contained in the most recent signal data. Nonetheless, it
also appears to account more explicitly for the uncertainty surrounding the model’s
predictions, as it suggests a bigger range of values in which the true and unobserv-
able total signal is likely to be found, given the information contained in the past
values for the observed directional signal.

More importantly, in the second half of 1997 the observed signal frequently
crosses its confidence band. This is made possible by the more explicit recognition
of the asymmetry of the unknown distribution �. How to interpret this result? As
observed by Wang (1992), the bias-correction percentile method generally performs
well when the bootstrapped samples are approximately normal, but might produce
extremely asymmetric confidence intervals when the empirical distribution of the
statistic FTOT is highly skewed. The average skewness measure for the interval
during which the bootstrapped total FSM signal crosses the lower end of the
confidence interval is in fact negative (−0.11) and statistically significant. This
finding implies that the empirical distribution of FTOT was characterized by an
asymmetric tail extending toward more negative values, but also that the degree of
skewness in the bootstrapped distribution �� for FTOT was small. Moreover, the
confidence interval in Fig. 2B is already adjusted for the presence of skewness bias,
as in Efron and Tibshirani (1986).

These considerations suggest us a more natural interpretation for Ft
TOT being

lower than �*(�). The confidence interval is defined, at the chosen significance level
�, by the probability 1−� that the unobservable true FSM signal FTOT lies in the
estimated band. In other terms, this means that in repeated sampling an interval
constructed in this fashion would contain the true parameter 100(1−�) percent of
the times. Hence, the fact that the observed FTOT does not fall into the band
indicates that the value observed for the FSM signal simply represents a tail-event.
In other terms, the model registered an unlikely value for the signal. The analyst
would then be less confident in the precision of the model’s estimate for the true
(and unobservable) FTOT, and consequently less confident in the resulting sugges-
tion to increase the hedge for the underlying position in CAD assets. The larger
bandwidth for the confidence interval at or around the time when FTOT��*(�)
suggests in fact that more noise was conditioning the precision of the signal-gener-

Fig. 3. Confidence interval for FTOT from May 15, 1997 to April 30, 1998. FTOT is computed according
to Eqs. (1)– (5) in the text. In (A) the distribution for Ft

TOT has been estimated by Indirect bootstrapping
of the variables entering the FSM signal. YIELD and REAL variables are grouped, according to the
analysis of Section 3. The confidence interval is computed according to the bias-corrected percentile
procedure described in the text, Section 3.1 Eqs. (10)– (12). In (B) the distribution for Ft

TOT has been
estimated by Direct bootstrapping of the variables entering the FSM signal. Variables are not grouped.
The confidence interval is computed according to the percentile procedure described in the text, Section
3.1 Eq. (9). In (C) the distribution for Ft

TOT has been estimated by Direct bootstrapping of the variables
entering the FSM signal. Again, variables are not grouped. The confidence interval is computed
according to the bias-corrected percentile procedure described in the text, Section 3.1 Eqs. (10)– (12).
The data series utilized in the computations were kindly provided by J.P. Morgan Investment
Management.
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ation process of Eqs. (1)– (5) than in subsequent periods. When the confidence
interval is obtained from the Indirect bootstrapping procedure with grouping, as in
Fig. 3A, FTOT still crosses the lower endpoint of its confidence interval several times
between July and September of 1997.

Next, the Indirect bootstrapping procedure without grouping is considered. As
explicitly stated in Section 3.2, the rationale for this approach lies in the attempt to
reproduce as accurately as possible the experiment of the formation of the signal,
at the cost of losing the internal consistency among the macroeconomic data
entering the model. The expected gain is in an estimated distribution function of the
signal, �� t, that better reflects the variability of each of the variables selected by the
analyst to be relevant for the Canadian dollar. And in fact the resulting CI (not
reported here) shows that complete randomization seems to generate a slightly
tighter and smoother band around the observed Ft

TOT, with respect to the interval
obtained with Indirect bootstrap with grouping in Fig. 3A. In other words,
independently bootstrapping FREAL and FYIELD reduces the uncertainty of the
model in generating a directional signal, and the resulting confidence interval is
tighter.

Finally, the least randomized procedure, Direct bootstrapping, is examined.
Direct bootstrapping, as such, groups all the variables entering the selected model
for the currency, thus preserving the cross-sectional consistency of the observations
at the cost of a supposedly serious loss of variability in the simulation process. How
costly is this loss? From Fig. 3B it appears that, for the last part of the sample
interval, as anticipated by the analysis in Table 2, the confidence interval around
FTOT estimated using the percentile approach of Eq. (9) is generally tighter than the
ones generated by Historical and Indirect bootstrapping methods. If however, the
CI is corrected for potential bias and skewness, according to Eqs. (10)– (12), the
resulting gain in precision with respect to Indirect bootstrapping disappears, as
evident from comparing Fig. 3A and 3C. Clearly, the impact of the adjustment for
prediction bias and skewness in � on the width of the confidence interval for Ft

TOT

may be significant.

4.2. Procedure selection and model analysis

The theory presented in Section 3 does not prescribe exactly how to choose the
endpoints for a confidence interval. An obvious criterion would be to select the
technique that minimizes the width of the interval. If the sampling distribution is
symmetric, the symmetric interval is always the best one, and the analyst will
choose the tightest among the intervals provided by Eqs. (8)– (12) and the sampling
approaches of Section 3.2. However, if the sampling distribution is not symmetric,
then this criterion won’t be optimal. When this is the case, again no clear-cut
answers are available in the theory. In such a circumstance, we believe the choice
of the analyst should fall over the technique that best reflects the estimated degree
of skewness for the empirical distribution of the FSM signal and the bias contained
in the observed Ft

TOT. The resulting corrections can in fact be important, as we have
seen in the examples of Figs. 2 and 3. Moreover, our empirical analysis suggests
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that alternatively Direct and Indirect bootstrapping with grouping generate the
lowest standard error for the observed Ft

TOT and the tightest confidence intervals
in different sub-periods, although still accounting for prediction bias and skew-
ness. From a different perspective, the evidence presented in Section 4.1 also
reveals that the bandwidth of the confidence intervals for the FSM signal varies
over time, independently from the procedure adopted to compute them.

These considerations lead us to the following question: can the analyst explain
why most of the confidence intervals estimated above, and reported in Figs. 2
and 3, become tighter in the last few months of the sample? In other terms, why
does the model become more precise in generating a directional signal in the first
few months of 1998? An apparently satisfying answer to this question lies in the
analysis of the rolled volatility of the CAD daily returns, of the signal itself and
of the factors that enter the FSM model over time. When the return, the signal
and/or the factors’ volatility increase, it should be more difficult for the model
to discern a direction for the currency. Consequently, the estimated band for the
true signal is expected to be wider. Vice-versa for the case when volatility de-
creases: in that circumstance, the model should be able to point more confidently
toward a specific direction.

Nonetheless Fig. 4A, with the confidence interval width (obtained with direct
bootstrapping) on the left axis and the rolled annualized CAD daily return
volatility18 on the right axis, suggests a strikingly different and prima facie
counterintuitive story. While the confidence interval band has been tightening by
at least 10 percentage points since August 1997, with a pronounced decline
between the end of 1997 and the beginning of 1998, the currency volatility
increased by more than 30% on an annual basis.

There are two equally reasonable explanations for this fact. The signal seems
to become more precise when strongly heading in a specific direction, and this
usually happens when the underlying spot rate, here the CAD, moves away from
its historical mean, thus implying by definition an increase in the volatility.
Moreover, the higher degree of precision for the total signal might have been
generated by lower volatility of the signal itself and of the factors that compose
it, or from a change in the correlation among these factors. And in fact, as Fig.
4B reveals, this is what we observe for the selected time frame. We calculate the
volatility of each of the factors and the FSM signal at time t as the correspond-
ing annualized rolled standard deviation for a window of 252 trading days. The
volatility of the total signal starts to drop at the beginning of August 1997. The
decline seems to be induced mostly by the industrial production factor FRAW

and the real rate spread. Both FREAL and FYIELD factor-volatility first decrease
and then increase sharply by the end of the year, but the total rolled standard

18 The rolled volatility is calculated over a window of 252 trading days. Then, the daily CAD volatility
is annualized by multiplying the resulting numbers by the square root of 252.
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Fig. 4. (A) Confidence interval width for FTOT from May 15, 1997 to April 30, 1998 and CAD annualized
return volatility. FTOT is computed according to Eqs. (1)– (5) in the text. The distribution for Ft

TOT has
been estimated by direct bootstrapping of the variables entering the FSM signal. The confidence interval
is computed according to the bias-corrected percentile procedure described in the text Section 3.1 Eqs.
(10)– (12). The rolled volatility is calculated over a window of 252 trading days and consequently annualized
by multiplying the resulting values by the square root of 252. (B) Rolled volatility of each of the factors
and the FSM signal at time t. The rolled volatility is calculated over a window of 252 trading days and
consequently annualized by multiplying the resulting values by the square root of 252. The data series
utilized in the computations were kindly provided by J.P. Morgan Investment Management.
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deviation of FTOT keeps moving downward because of the assumed weightings
and the structure of the covariance among the signals.

Hence, the precision of the variables entering the total FSM output seems to
play an important role for the analyst to examine critically the precision of his
model and to properly use its indications. Thus, given the degree of accuracy of
the signal estimated through one of the suggested procedures, it appears legiti-
mate to ask which factors contribute the most to the relative statistical strength
or weakness of FTOT. In other terms, can we say something about the precision
of each of the factors in the model of Eqs. (1)– (5)? The resulting information
would be as precious for the analyst as the confidence interval for the global
directional signal. Why? Because less than significant or uncertain signals might
be excluded from the computation of the total directional output of the model,
FTOT, thus improving its precision. The procedures that are necessary to identify
confidence intervals for each of the variables entering the selected FSM follow
most of the analysis developed in the last section. However, the distinction
between Direct and Indirect bootstrapping is now redundant, for each factor
results from a single time series of observations. Fig. 5A–5D show the behavior
of non-symmetric confidence intervals for the four factors included in the model,
computed with the bias-corrected percentile approach of Eqs. (10)– (12).

How to explain the less-than-favorable and lower-than-usual total CAD signal
between July and September of 1997 we observe in Figs. 2 and 3? As evident
from Fig. 5A and B, FPPP (5A) and FREAL (5B) were contributing significantly
to the less than usual (for a 90% level of confidence) CAD-favorable signal.
FRAW (5D) is unusually negative, i.e. crosses the lower endpoint of its confidence
interval for most of the sample interval considered in the analysis, while FYIELD

(5C) ends roughly centered at zero, with a wide band oscillating from +3 to
−3. Clearly, a wise manager could exclude from time to time the factors that
are not informative enough (when they cross the endpoints of their correspond-
ing CI) or simply not precise enough (when the bandwidth of their CI is too
large) to give a reasonable contribution to a more precise total directional signal.
Finally, the sudden downward shift in the width of the CI for FTOT, displayed in
Fig. 4A, appears to be due to the dynamics of the two interest rate factors in
the trading rule of Eqs. (1)– (5). In fact, the confidence intervals for both FREAL

(5B) and FYIELD (5C) shrink dramatically in December of 1997, after a period of
declining rolled volatility, as previously observed in Fig. 4B. The CI for FRAW

(5D) tightens only by the end of January 1998, while the uncertainty surround-
ing FPPP (5A) is substantially unchanged over the sample period.

A word of ca�eat is necessary. The confidence interval decomposition ignores,
for its nature, the existence of co-movements among factors. Hence, any conclu-
sion implying from it has to be attenuated by the acknowledgement that two
mutually dependent and equally imprecise factors may still generate a more
precise confidence interval for the aggregate signal. Nonetheless, confidence inter-
val decomposition helps the analyst in discerning the elements that contribute to
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Fig. 5. Confidence interval for FPPP (A), FREAL (B), FYIELD (C) and FRAW (D) from May 15, 1997 to
April 30, 1998. Each factor is computed according to Eqs. (1)– (4) in the text. The distribution for each
factor has been estimated by Direct bootstrapping. The confidence intervals are computed according to
the bias-corrected percentile procedure described in the text, Section 3.1 Eqs. (10)– (12). The data series
utilized in the computations were kindly provided by J.P. Morgan Investment Management.
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Fig. 5. (Continued)

the degree of precision of the model he aims to use profitably in the currency
markets. The knowledge of the estimated precision of each factor at a specific point
in time could also be utilized to update the calibration parameters, i.e. to make the
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factor-weights endogenous, and hence to generate a more precise directional signal
as an output of a fundamental model of exchange rate behavior.19

5. Conclusions

The problem of measuring the precision of signals generated by fundamental
macroeconomic models is not trivial. In this paper, we suggested three different
approaches for the estimation of the true and unknown distribution of the
population signal. We then used established statistical techniques and the informa-
tion contained in the empirical distribution of the signal to measure its precision at
a specific point in time. Direct and Indirect bootstrapping are devised to capture the
unknown variability of the signal without altering the information content of the
historical data.

We implement this framework for a simple fundamental model for the CAD/$
exchange rate. We find that accounting for skewness and prediction bias affects
significantly the shape and width of the estimated confidence intervals around the
estimated directional signal. When this is done, the results lead us to exclude the
naı̈ve Historical approach from the analyst’s set of options, for it does not satisfy
the need for a measure of precision in the model’s recommendations. No clear-cut
selection criteria seem to be available in choosing between the two proposed forms
of bootstrapping. Nonetheless, factor-decomposition and statistical analysis of the
building blocks for FTOT may enhance the analyst’s understanding of the degree of
precision observed for the total factor, facilitate a more precise selection of
significant signals, and determine a more effective factor-weighting in forming a
directional view on the currency.
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