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A yield curve can be described as a sequence of 
yields on debt instruments with specified 
maturities, or as a set of discrete yields plotted 
versus maturity in a graph. Even if in most of the 
cases the points are connected to form a 
piecewise linear but smooth graph, the real data 
is always a finite set of discrete points. A simple 
observation of the chart below shows that the 
shape as well as the level of the yield curve for 
Treasury securities changes over time. As a 
consequence, interest-rate risk cannot be 
summarized just in terms of parallel shifts of the 
curve. 

Changes in yields on securities of different 
maturities can be separated into independent 
modes of fluctuations. In broad terms, shifts in 
the curve can be characterized as changes in 
level, slope and curvature. Higher order effects 
eventually contribute to the shape of the term 
structure of interest rates. However, statistical 
analysis shows that the first three components 
explain more than 90% of the volatility of each 
of the points on the curve1. In most of the 
financial and economic applications related to 
the analysis of the yield curve, representing the 
curve itself and its modes of fluctuations as 
continuous functions is a desirable task to 
implement. This paper examines the problem of 
representing a yield curve and its modes of 

                                                      
1 For a complete analysis of this and most of the 
theoretical issues of this paper we refer to Kenneth 
Garbade, “Fixed Income Analytics”, The MIT Press, 
Cambridge, MA, 1996, especially in chapters 16 to 
20. 

fluctuations with polynomial functions of 
maturity. This will imply the attempt of 
expressing the yield on a default-free debt 
instrument as a power function of its maturity 
and, more particularly in this paper, of obtaining 
numerical estimates of the coefficients of the 
chosen power function. In the next paragraph we 
state some general assumptions on the structure 
of the curve and its variation through time. We 
then analyze and implement a 10-steps method 
for the estimation of the coefficients of the 
selected polynomial. 
 

Basic assumptions of the model2 
Let R(t,y) denote the yield at time t of a debt 
instrument with a term to maturity of y years3. 
R(t,y) is a continuous function of y for fixed t, 
where y runs continuously from zero to some 
upper limit such as 30 years. We assume the 
yield curve at time t can be expressed as: 

Here, R0(y) and f1(y)………fJ(y) are stationary 
functions of maturity. Equation [1] simply states 
that the curve at time t can be constructed as a 
“baseline” function R0(y) plus a linear 
combination of shift functions f1(y)……fJ(y). 
Wj(y) is the weight on the jth shift function at 
time t. Hence, in this model the yield curve 
represented in [1] varies over time, in shape as 
well as level, as a result of temporal variation in 
the Wj(t) weights. We assume throughout this 
paper that the weights are normally distributed 
random walks with zero drift, unity variance per 
week and statistically independent of each other. 
If we let t0, t1, t2……be a sequence of times 
one week apart, we can rewrite equation [1] as: 

                                                      
2 Again, the model is an appreciable contribution to 
the analysis of yield-curve dynamics by Kenneth 
Garbade, cfr. Fixed Income Analytics. 
3 The instrument can be a Treasury bill, a zero-
coupon bond, a spot claim or a coupon-bearing 
security like a Treasury Note or Bond. For the 
purpose of this exercise, we will consider Treasury 
Bills, Notes and Bonds. 
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The change in yield from time t(k-1) to time t(k) 
at a maturity of y years, i.e. at a particular point 
across the curve is: 

Using equation [2] and [3], as well as denoting: 

we can express [3] as: 

Thus, this function describes the shift in the 
yield curve from time t(k-1) to t(k) as a linear 
combination of the shifts functions f1(y)….fJ(y). 
Based on the assumptions regarding the 
behavior of the weights wj(t), we can now claim 
that the ej(tk) terms are i.i. normally distributed 
random variables with zero drift and unit 
variance. Hence, the adopted model relies on the 
assumption that the shift functions represent 
normalized and statistically independent modes 
of fluctuation in the yield curve. 
 

The estimation problem 
The problem of interest in this paper is the 
estimation of the Ro(y) and f1(y)…..fJ(y) 
functions and of the weights w1(t)….wJ(t) at 
any point in time. 
We assume that the baseline function R0(y) and 
the fj(y) shift functions are five-degree 
polynomials in y, i.e. that: 

where I is equal to 6, βi0 are the coefficients of 
the baseline polynomial and βij are the 
coefficients of the shift polynomials. We will 
also assume without loss of generality that J=I, 
i.e. we will consider six modes of fluctuations of 
the curve through time. 
As a consequence of equations [6] and [7], we 
can restate the initial problem as: How can we 
estimate the βi0 and βij coefficients and the 
wj(t) weights at any point in time t? 
Replacing the shift functions in [5] with their 
polynomial counterparts, we obtain: 

We will now focus on a set of n=10 > I specific 
and distinct (but arbitrary) maturities: 
 
Y1(t) = 0.25 years Y2(t) = 0.5 years 
Y3(t) = 1 year  Y4(t) = 2 years 
Y5(t) = 3 years  Y6(t) = 5 years 
Y7(t) = 7 years  Y8(t) = 10 years 
Y9(t) = 20 years Y10(t) = 30 years 
 
and on a specific time horizon of one year (53 
weeks) from April 25th 1997 to April 24th 19984. 
We then define the vectors: 

and the matrices: 

and: 

As a result, we can write equation [8] in matrix 
form as: 

Equation [9] says that the vector of one-week 
changes DR(tk) is a linear function of the 
random vector e(tk), normally distributed with a 
mean-vector of zero and a covariance matrix 
equal to the JxJ identity matrix. 
Let Ω(DR) denote the 10x10 covariance matrix 
of DR(tk). Since Ω(DR) is a symmetric matrix, 
we can represent it, through the well-known 

                                                      
4 The original Garbade contribution correctly relies 
on theoretical-spot yields as baseline of analysis. For 
the purposes of this paper, benchmark-Treasury non-
par bond yields were used, instead. 

( ) ( ) ( )DR tk y R y tk R y t k, , , ( )= − −1              [ 3 ]

( ) ( ) ( )ej tk wj tk wj t k= − −( )1                            [ 4 ]

( ) ( ) ( )DR y tk f y ej tkj
j

J
, = ⋅

=1
                         [ 5 ]

( )

( )

R y y

f y y j J

i
i

i

I

j ij
i

i

I

0 0
1

1

1

1
1

=

= =

−

=

−

=

β

β

                      [ 6 ]

              [ 7 ],.... ,

( ) ( )DR y tk y ej tki
ij

ji
, = ⋅�

�
�
�

−

==

1

1

6

1

6
β              [ 8 ]

( )

( )

( )

( )

( )

( )

DR tk

DR y tk

DR y tk

e tk

e tk

e tk

=

�
�
�
�
�
�

�
�
�
�
�
�

=

�

�

�
�
�
�
�
�

�
�
�
�
�
�
�

1

10

1

6

,
.
.
.

,

.

.

.
       

Y

y y y

y y y

=

�
�
�
�
�
�

�
�
�
�
�
�

1 1 1 1

1 10 10 10

2 5

2 5

.
. . . . .
. . . . .
. . . . .

.

B

J

I IJ

=

�
�
�
�
�
�

�
�
�
�
�
�

β β

β β

11 1

1

. . .
. . . . .
. . . . .
. . . . .

. . .

( ) ( )DR tk Y B e tk= ⋅ ⋅                           [ 9 ]



 3

procedure of “diagonalization”, in the following 
form: 
 
Ω(DR) = V(DR)⋅D(DR)⋅V(DR)’            [ 10 ] 
 
where the columns of V(DR) are the 
eigenvectors of Ω(DR) and D(DR) is a diagonal 
matrix whose entries are the eigenvalues of 
Ω(DR). Note that e(tk) is a J-dimensional vector, 
DR(tk) is a 10-dimensional vector and 10 > J: 
this will imply that Ω(DR) has only J positive 
eigenvalues. Hence, without loss of generality, 
we can assume the following partitions for 
V(DR) and D(DR): 

where there are J column vectors in V’(DR) and 
where D’(DR) is a JxJ matrix with all the 
positive eigenvalues on its diagonal. It follows 
that: 
 
Ω(DR) = V’(DR)⋅D’(DR)⋅V’(DR)’            [ 11 ] 
 
We consider now a generic J-normally 
distributed random vector e with a mean vector 
of zero and a covariance matrix equal to the 
identity matrix. Further, we define the 10-
dimensional vector: 
 
DR = V’(DR)⋅(D’(DR)^1/2)⋅e  [ 12 ] 
 
where D’(DR)^1/2 is a JxJ diagonal matrix 
whose diagonal entries are the square roots of 
the corresponding entries on the diagonal of 
D’(DR). It is then easy to prove that: 
 
COV(DR) = V’(DR)⋅D’(DR)⋅V’(DR)’ =  Ω(DR) 
 
Thus, DR in the left side equation [12] and 
DR(tk) in the left side of equation [9] both are 
normally distributed with a mean vector zero 
and the same covariance matrix Ω(DR). 
Moreover, the  “residual” vectors on the right 
side of both equations are normally distributed 
with mean zero and covariance matrix equal to 
the JxJ identity matrix. Thus, we can identify the 
matrices on the right side of both equations: 
 

Y⋅B = V’(DR)⋅(D’(DR)^1/2)  [ 13 ] 
 
This implies that we can solve the equation [13] 
for the unknown matrix B: 

Equation [14] permits to reduce the problem of 
estimating the coefficients in B to the problem 
of estimating the covariance matrix Ω(DR). 
To do so, we need to refer again to equation [2]. 
Replacing the baseline function and the shift 
functions with their polynomial counterparts, 
equation [2] becomes: 

If we further define: 

using the definition of ei(tk), then we can 
specify the following I-dimensional vector: 

This permits us to represent equation [18] in 
matrix form as  
 
Da(tk) = B⋅e(tk)    [ 19 ] 
 
Equation [19] says that the vector Da(tk) of 
composite coefficients changes is a linear 
function of the normally distributed random 
vector e(tk). Thus, Da(tk) is normally 
distributed, as well. The expected value of 
Da(tk) is again the zero vector. We define 
Ω(DA) as the covariance matrix of the vector 
Da(tk). Why is Ω(DA) interesting for our 
purposes? Because Ω(DA) is related to Ω(DR). 
Indeed, looking at equations [19] and [9], it is 
clear that: 
 
DR(tk) = Y⋅B⋅e(tk) = Y⋅Da(tk)  [ 20 ] 
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Thus, it is easy to verify that: 
 
Ω(DR) = COV(DR(tk)) = E[DR(tk)⋅DR(tk)’] =  
             = E[Y⋅Da(tk)⋅Da(tk)’⋅Y’] = 
             = Y⋅Ω(DA)⋅Y’   [ 21 ] 
 
Equation [21] finally provides us a method for 
computing Ω(DR) through the estimation of 
Ω(DA) and the use of the known matrix Y.  
 

The estimation procedure 
The estimation procedure implemented in this 
paper consists of 10 steps relying on the main 
results of the Feasible GLS estimation approach. 
 

Step 1 
For each date t(k) in a sequence t0……..t52 
from April 25th 1997 to April 24th 1998 we need 
to estimate the values of the composite 
coefficients a1(tk)……a6(tk) of equation [15]: 

where e is a random error term. We define R as 
a vector of all observed yields from 0.25 years to 
30 years. R is a 10x1 vector. ε is a vector or 
error terms. We finally define the following 
regressors-matrix, using scaled regressors: 

Z is a (6x10) matrix in this application. Using 
equation [21], we can write: 
 
R = Z⋅ϒ + ε    [ 22 ] 
 
where ϒ is the following vector of scaled 
coefficients: 

We assume that ε is normally distributed with a 
mean vector equal to zero and a covariance 
matrix given by σ2F, where σ is an unknown 
scalar and F is a still unknown positive definite 
matrix. 
We will assume that F is of the form: 

The selected form for F is based on the 
observation that interest rate-change volatility is 
generally lower for lower maturities and that the 
correlation among disturbances arises from 
correlation in the yield-estimation errors. While 
we assume that diagonal elements in the matrix 
vary through time, we maintain that our “rhos” 
will be constant across the sample, in line with 
what would be reasonable to assume for the 
yield estimation errors. It is common practice to 
assume that this correlation declines when the 
absolute difference in bond maturities increases. 
We have still to estimate “alpha” and “rho”. To 
do so, we observe that: 

Thus, if we find a consistent estimator for ε, we 
can use it to regress its natural log on –2LN(yi). 
As a result we will obtain a consistent estimator 
for “alpha”5. 
The residuals in a LSE regression of R on Z will 
be consistent estimators for the true 
disturbances. Thus, we will regress: 
 
LN(e) = LN( R – Z[((Z’Z)^(-1))Z’R]) 
 
on –2LN(Y) to estimate “alpha” for each of the 
sample weeks. 
 
 

                                                      
5 It is worth noting that the constant term of the 
proposed regression won’t be a consistent estimator 
for LN(σ2). 
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The following chart shows the pattern for 
“alpha” across the sample. 

Step 2 
A problem remains unsolved: “rhos” are still 
unknown. Even in this case, we will use a very 
“natural” approach: our estimator for “rho(ij)” 
will be the observed correlation among the 
estimated residuals ei and ej. 
 

Step 3 
Step 1 and 2 permitted us to obtain an estimate 
of the matrix F(tk) for each of the 53 weeks in 
our sample. These estimates will permit us to 
provide values for the unknown coefficients in 
the model. As we assumed that the disturbances 
are normally distributed, a Feasible GLS 
estimator for the vector of coefficients ϒ(tk) for 
each of the sample weeks will have the same 
properties of a Maximum Likelihood Estimator. 
The proposed estimator is the following: 

We obtain series of 53 estimator vectors for each 
of the sample weeks. From the definition of 
ϒ(tk), we derive the corresponding series of 53 
vectors of estimators for a(tk), i.e. our estimates 
for ai(tk)….a6(tk), for tk = 0,…….,52. 
 

Step 4 
We now use the estimated values of the 
composite coefficients ai(tk) to estimate the 

covariance matrix of weekly changes in the 
composite coefficients. In other terms, we can 
now provide an estimate for the matrix Ω(DA). 
Each of the entries in Ω(DA) will be replaced by 
the observed COV(Dai, Daj). 
 

Step 5 
For the sequence of maturities of our sample, 
y1,…, y10, we construct the matrix Y defined in 
the previous paragraph. Y, Y’ and the estimated 
Ω(DA) will permit us to estimate Ω(DR) 
through equation [21]. 
 

Step 6 
We compute the eigenvalues and eigenvectors of 
the estimated Ω(DR), in order to identify the 
matrices V(DR) and D(DR), as defined in 
equation [10]. 
 

Step 7 
We now extract V’(DR) and D’(DR) through the 
partition suggested at the bottom of equation 
[10].  
 

Step 8 
We can finally compute the coefficients βij 
applying the formula in equation [14] to derive 
the estimate for the matrix B. 
 

Step 9 
It is now time to examine the problem of 
estimating the βi0 coefficients of the baseline 
polynomial function R0(y) defined in equation 
[6]. This step is quite short, because these 
coefficients cannot simply be estimated. Any 
polynomial representation of the yield curve is 
consistent with any polynomial representation of 
the baseline function. Next step will help in 
clarifying this point. 
 

Step 10 
Given the basic representation of the yield curve 
in equation [2], we now want to examine the 
problem of computing the fj(y) shift functions 
and the wj(tk) weights.  
As from equation [16] it is clear the nature of 
ai(tk) as a composite indicator, we can define 
a(tk) as a Ix1 vector containing the estimated 
values for a1(tk)…..a6(tk) in the week tk. 
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fj(tk) are estimated simply applying equation [7] 
and using our estimate for B. 
Then define: 

It is clear that, using the matrix B, we can 
represent equation [16] in the following matrix 
form: 
 
a(tk) = β0 + B⋅w(tk)   [ 23 ] 
 
We already estimated both a(tk) and B. Thus, we 
can solve equation [23]. As J=I, we are sure that 
B is invertible. We finally derive the following 
equation for w(tk): 
 
w(tk) = B^(-1)⋅[a(tk) - β0]  [ 24 ] 
 
Equation [24] suggests an interesting 
interpretation that helps us in clarifying step 9. 
We just said, in equation [1], that the yield at 
t(k) can be represented as a baseline function 
plus a linear combination of shift functions. We 
also said that the yield curve R(t,y) and the 
R0(y) baseline functions are polynomials of 
degree I-1. Then, the difference between those 
two functions has to be a polynomial of degree 
I-1. This difference polynomial can be expressed 
exactly as a linear combination of an arbitrary 
set of I linearly independent polynomials of 
degree I-1. If the matrix B is nonsingular, then 
the shift functions are independent polynomials. 
Thus R(t,y) – R0(y) can be expressed exactly as 
a linear combination of the shift functions. This 
argument is valid for each chosen R0(y). Thus, 
we can calculate a vector w(tk) of weights for 
any baseline function or for any coefficient 
vector β0. Hence, we can comfortably specify 
exogenously the benchmark against which we 
want to measure the fluctuations in the yield 
curve. We will define the baseline function as 
the actual yield curve at t0 = April 25th 1997, so 
that R0(y) = R(y,t0) or βi0 = ai(t0) for I=1,…,6. 
The resulting weights will reflect the movement 
of the yield curve relative to the curve which 
prevailed in week t0. 

We present selected charts for the shift functions 
and the weights related to the three most 
important modes of fluctuations of the yield 
curve, level, slope and curvature. 

The twists in the shift functions explain the 
twists observed in the chart at the beginning of 
the paper for the term-structure of interest rates 
in the U.S. F1 changes the level of the yield 
curve, F2 changes its slope, while F3 determines 
the curvature (convexity or concavity). 

Short-term interest rates move up (down) and 
longer-term interest rates move down (up), i.e. 
the spread goes up (down) as w2(t) increases 
(decreases). Short and long term interest rates 
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move down (up) and yields in the middle move 
up (down), as w3(t) increases (decreases). 
The three remaining shift functions, f4, f5 and 
f6, cause more complex twisting of the yield 
curve, but the magnitude of their effect on the 
term structure is almost negligible. 
An estimated value of σ for each week of our 
sample interval has been computed using the 
unbiased estimator: 

The following chart plots the resulting 
estimation over the sample interval: 

In general, lower values of I, the number of 
coefficients in the selected polynomial, will shift 
up the graph and higher values of I will lower it. 
This reflects the greater relative representation 
errors associated with polynomial of lower 
degrees. 
 

Conclusions 
The model examined in this paper is useful 
when an analyst needs to represent a yield curve 
and its modes of fluctuation with continuous 
functions rather than with tabulation of the 
behavior of yields at a finite number of discrete 
maturities. This paper suggests a 10-step FGLS 

approach to the estimation of the parameters of a 
polynomial representation of the yield curve. 
Is the proposed model really effective? The shift 
function F1, positively sloped, rather than 
parallel to the x-axis, as theoretically expected, 
casts some doubts regarding some of the initial 
assumptions. More work is needed to improve 
some of the assumptions of the model and to 
reach a better fit. 
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