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We assess the profitability of momentum strategies using a stochastic discount factor
approach. In unconditional tests, approximately half of the strategies’ profitability is
explained. In conditional tests we see a further slight decline in profits. We argue that
the risk of these strategies should be increasing in the market risk premium. Empirically,
while their risk measures estimated relative to the stochastic discount factor behave as
predicted, market betas do not; thus capital asset pricing model (CAPM)-like benchmarks
may lead to incorrect inferences. Given that our nonparametric risk adjustment explains
roughly half of momentum strategy profits, we cannot rule out the possibility of residual
mispricing.

A large number of empirical articles document the ability of investors to
achieve abnormal returns through the use of simple trading strategies based
on historical returns. Recently Jegadeesh and Titman (1993) show that, over
intermediate horizons of 3—12 months, a portfolio that purchases past winners
and sells past losers has a positive abnormal return. The evidence that such
a “momentum” strategy exhibits abnormal performance has received a great
deal of attention. Some authors have proposed risk-based explanations of
these apparent profits [see, e.g., Fama and French (1996)], but to date, the
evidence that the returns of these strategies are related to identifiable risk
measures is mixed. In response, several articles have proposed new theories to
explain, among other stylized facts, momentum strategy profits. These articles
rely on psychological factors; for example, Barberis, Shleifer, and Vishny
(1998) build a model which assumes factors such as representativeness and
conservatism, while Daniel, Hirshleifer, and Subramanyam (1998) rely on
overconfidence and self-attribution.

In this article we reassess the risk-based explanations for the profitability
of momentum trading strategies by measuring these profits against a non-
parametric benchmark. The motivation for this analysis is straightforward.
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First, existing articles which examine the risk-adjusted performance of trad-
ing strategies rely, by necessity, on a particular pricing model or models to
measure risk, and therefore abnormal returns. For example, Jegadeesh and
Titman (1993) use a capital asset pricing model (CAPM) benchmark, while
Grundy and Martin (2001) use a conditional factor model with two factors
(the market portfolio and a size factor). However, if these pricing models
are misspecified, then the abnormal returns which follow from their use are
misspecified as well. That is, as Fama (1998) points out, these studies are
plagued by a “bad model” problem.

The method that we employ follows Chen and Knez (1996) in using a
stochastic discount factor retrieved from a set of basis assets to measure
risk-adjusted performance. The existence of a stochastic discount factor is
a necessary and sufficient condition for equilibrium in securities markets;
thus evidence that a stochastic discount factor prices the momentum strate-
gies is consistent with the ability of risk to explain these profits. However,
unlike parametric performance measures, which adopt candidate stochastic
discount factors implied by particular asset pricing models, nonparametric
performance measures attempt to recover a set of admissible stochastic dis-
count factors based on minimal conditions such as the law of one price or
no arbitrage conditions. Thus, relative to parametric approaches, this study
asks whether momentum profits can be explained with the minimal restric-
tion of equilibrium in securities markets. Our approach provides insight into
whether the profitability of such strategies represents the failure of particular
parametric models in describing the cross section of returns or the failure of
the rational pricing paradigm.

This approach has several advantages. First, as mentioned above, estimat-
ing a stochastic discount factor from a set of basis assets imposes equilib-
rium pricing conditions without the need to specify a parametric benchmark.
Second, the estimation of a discount factor leads to natural measures of
risk-adjusted abnormal performance. If the trading strategies considered out-
perform when measured in this manner, then it is more likely that their per-
formance is due to investor irrationality. However, if these strategies cannot
outperform the benchmark, their success may be consistent with rational asset
pricing. Third, the nonparametric measures we use can be easily extended
to conditional measures which incorporate the possibility that risk premiums
are time varying. This may be particularly important given the recent work
by Chordia and Shivakumar (2000), who present evidence that momentum
profits are related to business cycle conditions. Their model for expected
returns, however, imposes no cross-sectional constraints. In our framework,
we can test whether time variation in expected returns might contribute to
momentum “profits” while simultaneously requiring that those returns satisfy
equilibrium constraints such as the law of one price.

In unconditional tests, our results suggest that approximately half of the
momentum profits can be achieved by holding a fixed-weight combination
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of a set of basis assets, which are industry-sorted portfolios. Specifically,
the average nonparametric risk-adjusted performance of the strategies is 51%
of the profit level in the raw returns. Eight (nine) of the 16 strategies have
residual profits which are significant at the 5% (10%) level when we require
that the law of one price hold. We cannot rule out the possibility that this
remaining half of momentum profits is due to mispricing. A joint test of all
16 strategies fails to reject the null hypothesis of no abnormal performance.
This contrasts with the results obtained when using a CAPM benchmark, in
which 9 of the strategies have risk-adjusted performance higher than the raw
profits and 13 of the strategies examined remain significant at the 5% level
after adjusting for market risk. These results also contrast sharply with those
obtained using the Fama—French benchmark, in which all 16 of the strategies
retain significant positive profits and, indeed, all 16 risk-adjusted profits are
magnified relative to their raw levels.

If we require that a stronger no-arbitrage condition hold, that is, we require
that the pricing kernel be nonnegative, the results are similar. Average abnor-
mal profits decline substantially, but 8 of the 16 strategies’ profits remain
unexplained at the 5% level. We briefly examine conditional tests, in which
investors’ expectations are allowed to vary based on a limited set of publicly
known conditioning variables. Momentum profits decline slightly from those
observed in unconditional tests, particularly for shorter holding periods.

Our results suggest that a passive weighting of basis assets can explain
a significant fraction of the level of momentum profits observed in the
data. That is, an unconditional risk adjustment that relies on the risk/return
relations observed in benchmark assets reduces momentum profits by approx-
imately 50%. These results are surprising in light of the evidence in the litera-
ture that parametric benchmarks explain little of, or even magnify, momentum
strategy profits. However, the nonparametric results that we present in this
article suggest that momentum strategies so dramatically outperform previ-
ously considered benchmarks not because of information contained in past
prices, but rather because of the nature of the risk adjustment. We discuss a
simple model of the risk measures of securities in the extreme winner and
loser portfolios, measured relative to the “true” stochastic discount factor,
and show that the risk measure of a momentum portfolio should be increas-
ing in the true risk premium. In contrast, our empirical results, as well as
previous work in this area, suggest that momentum portfolios are associated
with negative risk measures when estimated relative to the market portfolio.
Thus CAPM (or CAPM-like) risk measures appear to be misspecified. How-
ever, the betas of momentum portfolios estimated relative to the alternative
pricing kernels employed in our article conform more closely to the predicted
behavior.

These results are subject to an important caveat. We are implicitly assum-
ing that the industry portfolios themselves are correctly priced. This assump-
tion may be incorrect. That is, while some of the momentum strategies’
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profits can be attributed to variation in the cross section of the basis assets’
returns, the basis assets themselves may not be in equilibrium. In that case,
we may have simply shifted the focus of the pricing puzzle to industry port-
folios. However, subject to this point, this article shows that a portion of
momentum returns is attributable to the risk inherent in the strategies.

The remainder of the article is outlined as follows. In Section 1 we discuss
the theoretical basis for the existence of the measure of excess performance
used in the article, largely following Chen and Knez (1996), and outline
the methods used for estimating the risk-adjusted performance of the strate-
gies. In Section 2 we describe the data. Estimation results are presented in
Section 3. In Section 4 we formalize the theoretical link between past return
information and risk, perform an empirical investigation of these implica-
tions, and examine the properties of the test statistics using Monte Carlo
techniques. We discuss the interpretation of the results and briefly summa-
rize in Section 5.

. Nonparametric Performance Measures of Trading

Strategy Portfolios

In this section we discuss the implications of the existence of a stochastic
discount factor for the analysis of the profitability of trading strategies.

1.1 Stochastic discount factors and performance measures

Under suitable regularity conditions, Harrison and Kreps (1979) prove that
the absence of arbitrage opportunities in a securities market implies the exis-
tence of a stochastic discount factor. This stochastic discount factor satisfies
the pricing relationship

E[m X . Fl=1 Vit (1)

where x; ., =1+ R; . denotes the gross return on traded asset 7 in the
economy, 7, is a filtration, representing information available to the investing
public at time ¢, and m, . denotes the economy-wide stochastic discount
factor or pricing kernel. If we assume the existence of a risk-free asset, then
for any excess return Equation (1) implies

E[m, .r; 1 7] =0, 2)

where r; .. =R; ... — R, , denotes the excess return on asset i in the econ-
omy. The returns to the trading strategies discussed in the introduction, which
buy winning securities and sell losing securities, are of the form of Equa-
tion (2). Under the law of one price, an m, . should exist that prices the
gross (and excess) returns on these securities as well. Under the stronger

condition of no arbitrage, this m,, must also be positive.

Following Hansen and Jagannathan (1991), we use a nonnegativity condition instead of the positivity condition
in actual estimation.
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Intuitively this formulation states that the “fair” or risk-adjusted return of
any asset (or trading strategy) will be determined by the pricing kernel or
stochastic discount factor in the economy. Note that this formulation also
expressly accounts for risk. That is, Equation (2) can be rewritten as

E[ri, H—T] = - ]Cov[r,«, 147 mt-H']' (3)

E[m,,,
The covariance of the return on the asset with the pricing kernel varies for
each asset and reflects its risk: if an asset’s payoffs are greater in good states
(when the value of m is lower), its expected risk premium is higher.
Hansen and Jagannathan (1991) investigate how to retrieve the stochastic
discount factors m, . from a given set of tradable, or basis, assets. The key
underlying assumption therein is that there is no pricing inconsistency among
the basis assets: that is, the stochastic discount factors are admissible. Hansen
and Jagannathan (1991) suggest two particular solutions for m,, . which are
the minimum-norm discount factors defined in different metrics. The first is
defined as the m, . that satisfies Equation (1) [or equivalently Equation (2)]
and is in the linear span. That is,
o = x,,. 5. @)
This stochastic discount factor has been studied extensively in the literature
[e.g., Chamberlain and Rothschild (1983), Hansen and Jagannathan (1991,
1997)]. We follow Chen and Knez (1996) and term this solution for the
stochastic discount factor the law of one price (LOP) discount factor, since
its existence necessitates only that the law of one price hold.
The second stochastic discount factor satisfies Equation (1) and the further
requirement that m, ;. is nonnegative, or
m¥ = (x,.8)", (5)

+7 +7

where (x;,.6)" = max(x], .6, 0). This stochastic discount factor satisfies the
stronger condition of no arbitrage, thereby ruling out investment opportunities
with positive payoffs and nonpositive prices. We refer to this discount factor
as the no-arbitrage stochastic discount factor.

The implications of Equations (1) and (2) for trading strategies are straight-
forward. Consider the set of basis assets from which the strategies are to be
implemented, X, ,. Under the law of one price (or alternatively, no arbitrage),
there must be a stochastic discount factor that correctly prices x, . and all
linear combinations thereof. Furthermore, this must hold even in the case

in which the combinations represent zero-cost portfolios. Thus the testable
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implication of Equations (1) and (2) for trading strategies is that

Im;,, s.t.
E[mr+7XB, t+7|%] =

1
%] =0, (6)

*
E[mr+r 18, 14 r

where X, . represents the gross returns on the basis assets over 7 periods

and ryg ., represents the return to the trading strategy over 7 periods.
Chen and Knez (1996) show that Equation (6) provides the basis for a test

of the risk-adjusted performance of a portfolio. According to Equation (6),

a, = E[at, 1-] = E[mTJrq-rTS, t+7] =0. (7)

Therefore a natural hypothesis to test is whether a, is equal to zero. This
measure is similar to other abnormal performance measures such as Jensen’s
(1968) alpha, which obtains as a special case of Equation (7). However,
unlike the Jensen measure, Equation (7) does not rely on the existence of a
particular model of equilibrium asset prices.

It is important to note the differences between this method and other
approaches in assessing the abnormal performance of momentum strategies.
Other researchers assume a particular parametric pricing model, which is
assumed to price all assets, then test whether the momentum strategy out-
performs relative to this model. For example, Jegadeesh and Titman (1993)
employ a CAPM benchmark, thereby using the pricing kernel

m = ¢y+ ¢1RM,r+1»

where R, ., is the return on a particular market-proxy portfolio. Grundy and
Martin (2001) employ a conditional factor model, with the market portfolio
and a size factor representing the set of priced factors. In their results, these
researchers find evidence that risk-adjusted returns of momentum strategies
are significant, and frequently larger than the raw returns themselves. Thus,
conditional on a particular parametric pricing model being true, their results
suggest that momentum strategies generate statistically and economically sig-
nificant profits and in fact may in some cases have negative risk measures.
Given the lack of consensus in the literature about which pricing model is
more “correct” (and, in fact, the large body of literature that suggests that
the CAPM is not empirically supported in the data), it seems worthwhile
to examine the abnormal performance of such strategies without the need to
specify a particular parametric model. Rather, the model we employ assumes,
first, that the set of basis assets chosen form a basis of comparison for the
remaining assets in the economy and, second, that the pricing kernel can be
accurately retrieved from this set of assets. Given such a pricing kernel, we
test whether the momentum strategy enhances the investor’s opportunity set,
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or whether the momentum profits can be achieved through a combination
of the basis assets. We provide some additional comparisons between the
pricing kernel we extract and other parametric benchmarks in Section 4.

1.2 Methods
Estimating « and testing Equation (7) is straightforward and can be accom-
plished easily via Hansen’s (1982) generalized method of moments (GMM).
In order to implement this procedure, we substitute x, 6((x,, 6)") for
m=CF (mM ) and collect the vector of errors

Et+7 =(u2+f’ Ut+7)/’ (8)
where

. ’
uH—T - XB, H—TXB, t+75 - ln

4
vt+r - rTS, t+TXB,I+76'

We then form the vector of sample moment conditions

8(0)= 7 Y ©

Under the null hypothesis of no abnormal performance, Equation (7),
E[g;(0)] =0. We test this hypothesis by minimizing the quadratic form

Jr = Tgr(8)W;gr(9), (10)

where the weighting matrix is

W, = E[g,(8)g,(8)] .

As shown by Hansen (1982), under the null J; ~ x> ,, where n is the number
of moment conditions and k is the number of parameters. Each of the n assets
is associated with one moment condition. We incorporate the return on a
risk-free asset into the estimation as well; Dahlquist and Soderlind (1999)
emphasize the importance of this technique in order to fix the mean of the
stochastic discount factor at a reasonable level. The trading strategy return
adds an additional moment condition so that J; ~ xi.

We have limited our discussion thus far to agents employing static trad-
ing strategies in the formulation of the basis portfolios, that is, buy-and-hold
strategies. This approach is equivalent to asking whether the momentum strat-
egy returns are spanned by a constant-weight, linear combination of the basis
assets or a constant risk premium. This static approach ignores a large body

465



The Review of Financial Studies /v 16 n 2 2003

of evidence that suggests that expectations vary over time.? In fact, Chordia
and Shivakumar (2000) argue that such time variation in expected returns
can fully explain momentum strategy profits (although as we mention above,
they examine expected returns in a setting that does not impose equilibrium
constraints). Similarly, using size and book-to-market portfolios, Lewellen
(2001) argues that macroeconomic factors, rather than firm-specific returns,
are responsible for momentum profits in these assets. Consequently we briefly
consider and estimate an alternative pricing kernel, allowing for the use of
a limited set of conditioning information. The conditioning information that
we use does not rely explicitly (or only) on information contained in past
prices; rather it takes the form of public information known to economic
agents at the time of portfolio formation. As noted by Fama (1991), this type
of conditioning does not violate market efficiency if risk premia are time
varying.?

In order to incorporate the idea of time-varying expectations, we follow
Hansen and Singleton (1982) in assuming that conditional expectations are
linear in time ¢ information variables, Z,. This case yields the following
representation for the pricing relation of Equation (1):

E[(Xf+T®ZI)(X[+T ®Zt)/8] = 1N~ (11)
‘We can then collect the vector of errors,

/
€ 1tr — (u;,zﬂ" v, t+7) > (12)

where

W = (X, ®Z) (X, ® 7,)6-1Q1Z,

’
VZ, t+r = rTS, t+T(Xt+T ®Zt) 5

The no-arbitrage discount factor can also be employed in the methods dis-
cussed above. It requires that we replace x'é with (x'8)" = max(x'8, 0) in
the unconditional setting and (x®Z)'8 with ((x®Z)'8)" in the conditional
setting. The estimation of this quantity is significantly more complicated, but

% The literature documenting time variation in expected returns is voluminous. Some articles include Campbell
(1987), Fama and French (1988), and Shanken (1990). The implications of this time variation for asset
pricing models has been investigated theoretically in Hansen and Richard (1987) and empirically in Gibbons
and Ferson (1985), Harvey (1989), and Ferson and Harvey (1991), among others.

3 If risk premia are not time varying, of course, then any predictability would be the result of (marketwide) lags
in response to public information. Our explicit assumption that the law of one price (or no-arbitrage) condition
holds rules out this type of lagged price adjustment (as do most, if not all, parametric pricing models). If
this assumption is counterfactual, then our measure of abnormal performance is a measure of the incremental
profit that individual security momentum strategies add to the marketwide lag in price adjustment to our three
public information variables. Intuitively, allowing for the use of conditioning information expands the set of
basis assets to include managed portfolios, which take into account changes in the moments of returns that are
related (only) to changes in the conditioning variables. [See also Cochrane (1997) for an excellent discussion
of the nature of conditional tests.]
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can be achieved through the procedure in Hansen and Jagannathan (1991).
This approach also imposes the restriction that the estimated stochastic dis-
count factor has the minimum second moment in the set of positive pricing
kernels.

. Data

As a starting point, we consider the universe of firms listed by the Cen-
ter for Research in Security Prices (CRSP) over the period December 31,
1962, through December 31, 1997, yielding 420 monthly observations. We
construct the momentum payoffs and the basis portfolios as follows.

2.1 Momentum portfolios

We follow the method outlined in Jegadeesh and Titman (1993) for the con-
struction of the momentum strategy payoffs. New York Stock Exchange
(NYSE) and American Stock Exchange (AMEX) firms are classified into
10 deciles on the basis of the past J = {3, 6,9, 12}-month cumulative hold-
ing period returns at month 7. The firms offering the best performance over
these horizons are termed “winner” firms and the firms offering the worst
performance over these horizons are termed “loser” firms. The winner and
loser firms are then held in portfolios for the next K = {3, 6,9, 12} months.
That is, at time ¢ for horizon J, we purchase an equally weighted portfolio
of firms that were winners from ¢ — J through ¢ and sell an equally weighted
portfolio of firms that were losers over period ¢ —J through ¢. Since the
J =12, K = 12 strategy requires 24 months to implement, this reduces the
number of time series observations to 396, covering the period January 31,
1965, through December 31, 1997.

2.2 The basis assets

An important consideration in estimating the measure of abnormal perfor-
mance discussed in the article is the choice of reference assets. In complete
markets, the stochastic discount factor will be unique. However, when mar-
kets are incomplete, there exists a multiplicity of stochastic discount fac-
tors that will correctly price the assets in the economy [Harrison and Kreps
(1979)]. If the reference set from which the stochastic discount factor is
formed spans the payoff opportunity set which is available to investors, then
measuring abnormal performance relative to this reference set will provide a
correct (and unique) inference. However, if the reference set does not span
the payoffs, it is possible to incorrectly reject the null hypothesis of zero
abnormal performance.*

* Ahn and Shivdasani (1999) discuss this issue more fully and present methods for addressing the spanning
problem.
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Ideally, to prevent an incorrect rejection of the null, the reference assets
should mimic the entire opportunity set from which the trading strategies are
chosen. However, since the momentum strategies we investigate are formed
from the set of all NYSE and AMEX securities, this approach cannot be
implemented in practice. Therefore we must choose a more parsimonious set
of reference assets that capture as much of the investment opportunity set as
possible; that is, we wish to group securities in a manner that maximizes
intragroup correlation and minimizes intergroup correlation. King (1966)
demonstrates that industry groupings do precisely that. In an exhaustive anal-
ysis of factors important in the determination of stock returns, he concludes
that market and industry factors capture most, if not all, of the common
variation in stock returns. For example, he demonstrates that “large” positive
covariances in returns cluster strongly within industry groupings, and nega-
tive covariances are observed exclusively across industry groupings. There-
fore we form the reference set by forming portfolios on the basis of industry.
Specifically, each year we form 20 equally weighted portfolios of NYSE and
AMEX firms on the basis of two-digit SIC code groupings. Definitions of
the groups can be found in Ahn, Conrad, and Dittmar (2000).°

Moskowitz and Grinblatt (1999) implement a variant of the momentum
strategy that relies on the use of industry portfolios. Specifically, they exam-
ine a strategy that buys the top three industry winners and sells the bottom
three industry losers each period; they control for specific sources of risk
(in their case given by the three Fama—French portfolios) to measure abnor-
mal performance. That is, as in Jegadeesh and Titman (1993) and Grundy
and Martin (2001), Moskowitz and Grinblatt choose a particular parametric
risk adjustment. In contrast, we assume that industry portfolios are rationally
priced by some pricing kernel m,_; the purpose of the industry portfolios
in this article is merely to retrieve this kernel. In their article, Moskowitz
and Grinblatt vary the weights on industry portfolios based on relative past
performance of the portfolios. In contrast, in the pricing kernel, the weights
assigned to our industry portfolios are fixed (in the unconditional analysis)
or are allowed to vary only with the three public information variables in
the conditional tests. That is, in our unconditional (conditional) tests, we are
asking whether momentum strategy profits can be priced by passive com-
binations of industry (industry plus a particular set of managed) portfolios.
These two weighting schemes will coincide only if the industry momentum
strategy is a reflection of the publicly available information we use in our
tests.®

> We have also used industry portfolios reformed each month. The explanatory power of the basis assets is
improved in that case. Note that Chen and Knez (1996) also use industry portfolios in their analysis of the
performance of mutual funds.

 As mentioned, another difference between our analysis and that of Moskowitz and Grinblatt is that we
employ an (annually rebalanced) equal weighting in our industry portfolios, while Moskowitz and Grinblatt
(1999) use a value weighting. We examined the possibility of using value weights in our industry portfolios.
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Table 1
Summary statistics: momentum portfolios

Mean returns

K=3 K=6 K=9 K=12

J=3: Win 0.0132 0.0131 0.0148 0.0154
Lose 0.0121 0.0125 0.0099 0.0093

Win-Lose 0.0011 0.0006 0.0049 0.0061

J=6: Win 0.0158 0.0167 0.0172 0.0164
Lose 0.0102 0.0090 0.0081 0.0090

Win-Lose 0.0056 0.0077 0.0091 0.0074

J=9: Win 0.0180 0.0185 0.0175 0.0163
Lose 0.0090 0.0075 0.0081 0.0094

Win-Lose 0.0090 0.0090 0.0094 0.0079

J=12: Win 0.0188 0.0178 0.0168 0.0156
Lose 0.0072 0.0075 0.0087 0.0100

Win-Lose 0.0116 0.0103 0.0081 0.0056

Standard deviations

K=3 K=6 K=9 K=12

J=3: Win 0.0629 0.0628 0.0635 0.0645
Lose 0.0860 0.0850 0.0850 0.0802

Win-Lose 0.0520 0.0484 0.0452 0.0368

J=6: Win 0.0637 0.0644 0.0647 0.0644
Lose 0.0910 0.0883 0.0857 0.0846

Win-Lose 0.0625 0.0567 0.0507 0.0484

J=09: Win 0.0651 0.0651 0.0651 0.0649
Lose 0.0924 0.0905 0.0890 0.0881

Win-Lose 0.0648 0.0612 0.0577 0.0552

J=12: Win 0.0662 0.0657 0.0655 0.0653
Lose 0.0914 0.0911 0.0906 0.0899

Win-Lose 0.0641 0.0627 0.0605 0.0583

This table presents monthly means and standard deviations of the returns to 16 relative strength strategies formed as in Jegadeesh
and Titman (1993). The portfolios are formed by purchasing the portfolio formed of firms in the tenth decile of returns and
selling the portfolio formed of firms in the first decile of returns over the past J months. Portfolios are held for the subsequent
K months. The data cover the period February 28, 1965, through December 31, 1997.

Estimation Results

3.1 Returns to relative strength portfolios

Summary statistics for the returns to the momentum trading strategies are
presented in Table 1. Consistent with Jegadeesh and Titman (1993), the
mean monthly returns for the strategies vary widely, from 6 basis points per
month for the 3-month/6-month strategy to 116 basis points per month for
the 12-month/3-month strategy. As in Jegadeesh and Titman, the returns to
the strategies tend to increase in the length of the portfolio formation period.
However, the average returns to the strategies in Table 1 are almost always

However, these portfolios performed poorly as basis assets, perhaps due to a lack of diversification in some
portfolios. In our sample we observed individual security weights as high as 60% in some months; this led
to a large standard deviation of returns in these portfolios and a Hansen—Jagannathan bound much lower
than that observed for equally weighted portfolios. That is, the equally weighted portfolios capture wider
cross-sectional variation in asset returns and thus impose a more informative restriction on the admissible set
of stochastic discount factors. Consequently we use equal-weighted portfolios in our analysis, but rebalance
only annually to ensure that the transaction costs of holding the basis assets is not prohibitive.
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lower than those reported by Jegadeesh and Titman. At the extreme, the
12-month/3-month strategy reported in this article has a mean return of 116
basis points per month compared to a return of 131 basis points per month
reported by Jegadeesh and Titman. Much of this discrepancy is attributable
to the sample period; the data in this article cover an additional eight years
of returns. Over a common sample period, the difference in mean returns is
negligible.

3.2 Measuring abnormal performance

As noted in the previous section, the returns to the strategies are fairly large
and vary across both formation and holding periods. In this section, we assess
the degree to which risk can explain this variation.

3.2.1 CAPM-based performance measure. Table 2 presents an analysis
of the abnormal performance of the trading strategies using a CAPM bench-
mark for risk. This analysis follows that presented in Jegadeesh and Titman
(1993) and consists of regressing the returns to the trading strategies on the
excess market return and a constant,

rrs,ipr = Qs+ Brs(Ry 1pr — Ry, r+7) T €75, 1re (13)

The trading strategy earns an abnormal return if a¢ # 0.

The results of Table 2 suggest that 13 of the 16 trading strategies earn
positive abnormal returns. In fact, in 9 of the 16 cases, the abnormal prof-
its after CAPM risk adjustment are larger than the raw profits observed in

Table 2

CAPM performance measure
J=3,K=3 J=3,K=6 J=3,K=9 J=3,K=12

ay_p 0.0021 0.0015 0.0035 0.0050

p (0.4306) (0.5229) (0.1087) (0.0073)
J=6,K=3 J=6,K=6 J=6,K=9 J=6,K=12

ay_p 0.0065 0.0085 0.0082 0.0068

p (0.0377) (0.0033) (0.0015) (0.0058)
J=9,K=3 J=9,K=6 J=9,K=9 J=9,K=12

ay_p 0.0099 0.0094 0.0085 0.0063

p (0.0028) (0.0026) (0.0038) (0.0245)
J=12,K=3 J=12,K=6 J=12,K=9 J=12,K=12

ay_p 0.0123 0.0103 0.0082 0.0057

p (0.0002) (0.0013) (0.0076) (0.0528)

This table presents results from estimating the excess returns on the relative strength strategies based on Jensen’s (1968)
performance measure. Specifically, the table presents estimates of the intercepts from the least squares regression,

78, 147 = ars + Brs Ry, 147 — Ry 147) + €75, 1475

where rrg ;4 denotes the excess return on relative strength portfolio 7S and Ry 4, represents the return on the value-
weighted CRSP index over the one-month Treasury bill return.
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Table 1. The “average” profit across all 16 strategies is 70 basis points per
month, and is virtually unchanged from the average raw or unadjusted profits
of 71 basis points per month. At the extremes, the 3-month/6-month strat-
egy earns the smallest abnormal return, 15 basis points per month, whereas
the 12-month/3-month strategy earns the largest, 123 basis points per month.
Jegadeesh and Titman (1993) present results only for the 6-month/6-month
strategy and find that the strategy earns an abnormal return of 100 basis
points per month, which is slightly higher than the abnormal return of 85
basis points per month shown in Table 2. However, this differential is pro-
portional to the difference in raw returns discussed in the previous section.

Under the assumption that the CAPM is the relevant pricing model and
that risk measures are well estimated, the conclusion drawn from Table 2
is that a momentum trading strategy provides significant excess returns on
a risk-adjusted basis. This evidence is consistent with that in Jegadeesh and
Titman (1993), who report that momentum profits persist even after CAPM
risk adjustments. However, given the large body of evidence which suggests
that the CAPM does not hold [e.g., MacKinlay (1987), Fama and French
(1992)], we explore alternative benchmarks.

3.2.2 Fama-French performance measure. Table 3 presents abnormal
performance measures of momentum trading strategies using the Fama and
French (1992) three-factor model to adjust for risk. Thus the following model

Table 3
Fama-French performance measure
J=3,K=3 J=3,K=6 J=3,K=9 J=3,K=12
ay_p 0.0056 0.0048 0.0082 0.0090
SE (0.0022) (0.0021) (0.0018) (0.0016)
J=6,K=3 J=6,K=6 J=6,K=9 J=6,K=12
ay_p 0.0108 0.0123 0.0130 0.0114
SE (0.0027) (0.0025) (0.0022) (0.0021)
J=9,K=3 J=9,K=6 J=9,K=9 J=9,K=12
ay_p 0.0144 0.0156 0.0142 0.0119
SE (0.0028) (0.0026) (0.0024) (0.0022)
J=12,K=3 J=12,K=6 J=12,K=9 J=12, K =12
ay_p 0.0169 0.0157 0.0137 0.0112
SE (0.0028) (0.0027) (0.0025) (0.0024)

This table presents results from estimating the excess returns on the relative strength strategies based on a Jensen’s (1968)
performance measure. Specifically, the table presents estimates of the intercepts from the least squares regression,

18, 147 = ars +Brs, Mrp (Rurp, t+7) + Brs, smp(Rsmp, 1+7) + Brs, Mrp (RHML, 1+7) + €TS, 147

where rrg 1, denotes the excess return on relative strength portfolio T'S, Rygp represents the return on the value-weighted
CRSP index over the one-month Treasury bill return, Rgy,p represents the return on a portfolio that is long in large-capitalization
stocks and short in small-capitalization stocks, and Ry represents the return on a portfolio that is long in high book-to-market
stocks and short in low book-to-market stocks. Heteroscedasticity-consistent standard errors are presented in parentheses.

471



The Review of Financial Studies /v 16 n 2 2003

is estimated:

7, i4r = Qs+ Brs, MRP (RMRP, r+7) + ,Brs, SMB (RSMB, rir)

+ IBTS, HML (RHML, ir)t €75, 147 (14)

where R,zp is the return on a market proxy, Ry, is the return on a zero-cost
portfolio that buys large-capitalization firms and sells small-capitalization
firms, and R, is the return on another zero-cost portfolio that buys high
book-to-market firms and sells low book-to-market firms. As before, we
test whether the intercept is significantly different from zero. The results in
Table 3 show that, using this model to adjust for risk, 16 of 16 trading strate-
gies earn positive abnormal returns, with very small associated p-values. In
addition, abnormal profits increase relative to raw profits in all 16 cases, aver-
aging 118 basis points per month. As with the CAPM risk adjustment, the
largest abnormal return is in the 12-month/3-month strategy with an abnor-
mal return of 1.69% per month. This evidence is consistent with the results
presented in Fama and French (1996) and Carhart (1997), who show that the
three-factor model does not explain momentum profits.

3.2.3 Unconditional performance measures. Next we examine the impli-
cations of the unconditional performance measure based on the law of one
price. As discussed previously, the basis used for the tests consists of the 20
industry-sorted portfolios augmented by the return on the riskless asset.
Results of this estimation are shown in Table 4.

The results in Table 4 suggest that the abnormal performance of momen-
tum strategies declines when the unconditional performance measure is used.

Table 4

LOP-based performance measures—unconditional
J=3,K=3 J=3,K=6 J=3,K=9 J=3,K=12

ay_p —0.0002 —0.0006 0.0028 0.0035

p (0.9265) (0.7476) (0.1021) (0.0163)
J=6,K=3 J=6,K=6 J=6,K=9 J=6,K=12

ay_p 0.0032 0.0049 0.0055 0.0037

p (0.2587) (0.0632) (0.0141) (0.0471)
J=9,K=3 J=9,K=6 J=9,K=9 J=9,K=12

ay_p 0.0056 0.0065 0.0048 0.0026

p (0.0444) (0.0105) (0.0215) (0.1390)
J=12,K=3 J=12,K=6 J=12,K=9 J=12,K=12

ay_p 0.0068 0.0052 0.0031 0.0009

p (0.0144) (0.0326) (0.1272) (0.5881)

This table presents results from the unconditional law of one price estimation of performance measures. The table presents
results for 16 strategies representing different combinations of sorting and holding periods. Portfolios are ranked on the basis
of J-month lagged returns and held for K months. a represents average monthly excess performance over the portfolio of basis
assets for the strategy. The numbers in parentheses represent the p-values from a chi-squared test of the hypothesis Hy : @ = 0.
The basis assets in this sample consist of 20 industry sorted portfolios.
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The average profit level is 51% of the raw profits observed in Table 1. The
residual profit is frequently statistically significant: of the 16 individual strate-
gies analyzed, 8 continue to exhibit abnormal performance at the 5% level.
In one additional case, the abnormal performance is significant at the 10%
level. A joint test across all 16 momentum strategies fails to reject the null
hypothesis of no abnormal performance, with a p-value of 0.463. This evi-
dence suggests that a stochastic discount factor can be constructed from the
industry portfolios, which encompasses approximately half of the profits of
the momentum portfolios we form.

In Table 5 we require that the stronger no-arbitrage condition hold, and
again investigate whether a stochastic discount factor formed from the basis
assets can explain the momentum profits observed in the data. The results
are similar: 8 of the 16 strategies retain profits which are significant at the 5%
level and an additional one has profits significant at the 10% level. On average,
abnormal profits decline to average 48% of the levels observed in Table 1.
In addition, a joint test across all 16 momentum strategies fails to reject the
null hypothesis of no abnormal performance with a p-value of 0.469.

Overall the evidence in Tables 4 and 5 suggest that, while a specific factor
model (i.e., the CAPM) cannot explain momentum profits (and in fact appears
to magnify these profits), a pricing kernel estimated from industry-sorted port-
folios, which satisfies the much weaker condition of the law of one price
and which is stationary over time, can explain roughly half of these profits.
That is, these results suggest that up to one-half of the trading strategy profits
may be attributable to the risk inherent in the strategy. The remaining half of
momentum profits fall outside of the risk/return relations represented in the
set of basis assets; thus, using industry portfolios as our benchmark, we cannot
rule out the existence of residual mispricing in the momentum portfolios.

Table 5

No-arbitrage-based performance measures—unconditional
J=3,K=3 J=3,K=6 J=3,K=9 J=3,K=12

ay_p —0.0003 —0.0006 0.0026 0.0032

p (0.9317) (0.7474) (0.1031) (0.0161)
J=6,K=3 J=6,K=6 J=6,K=9 J=6,K=12

ay_p 0.0031 0.0047 0.0051 0.0034

p (0.2570) (0.0641) (0.0143) (0.04438)
J=9,K=3 J=9,K=6 J=9,K=9 J=9,K=12

ay_p 0.0054 0.0061 0.0044 0.0023

P (0.0475) (0.0112) (0.0209) (0.1311)
J=12,K=3 J=12,K=6 J=12,K=9 J=12,K=12

ay_p 0.0063 0.0047 0.0028 0.0007

p (0.0153) (0.0315) (0.1197) (0.5658)

This table presents results from the unconditional no arbitrage estimation of performance measures. The table presents results for
16 strategies representing different combinations of sorting and holding periods. Portfolios are ranked on the basis of J-month
lagged returns and held for K months. a represents average monthly excess performance over the portfolio of basis assets for
the strategy. The numbers in parentheses represent the p-values from a chi-squared test of the hypothesis Hj : @ = 0. The basis
assets in this sample consist of 20 industry sorted portfolios.
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Table 6
LOP- and no-arbitrage-based performance measures—conditional

Panel A: LOP estimation

J=3,K=3 J=3,K=6 J=3,K=9 J=3,K=12
ay g —0.0017 —0.0020 0.0015 0.0026
p (0.0914) (0.0553) (0.0634) (0.0858)
J=6,K=3 J=6,K=6 J=6,K=9 J=6,K=12
ay_p 0.0015 0.0027 0.0047 0.0031
p (0.5378) (0.3986) (0.1421) (0.1550)
J=9,K=3 J=9,K=6 J=9,K=9 J=9,K=12
ay g 0.0052 0.0044 0.0034 0.0024
p (0.3246) (0.1634) (0.1899) (0.1944)
J=12,K=3 J=12,K=6 J=12,K=9 J=12,K=12
ay_p 0.0054 0.0040 0.0032 0.0016
p (0.1446) (0.1075) (0.1352) (0.1904)
Panel B: No-arbitrage estimation
J=3,K=3 J=3,K=6 J=3,K=9 J=3,K=12
ay_p —0.0035 —0.0040 0.0007 0.0023
p (0.2993) (0.2046) (0.7257) (0.2155)
J=6,K=3 J=6,K=6 J=6,K=9 J=6,K=12
ay g 0.0006 0.0026 0.0035 0.0023
p (0.8466) (0.3687) (0.1256) (0.3308)
J=9,K=3 J=9,K=6 J=9,K=9 J=9,K=12
ay_p 0.0029 0.0043 0.0031 0.0015
p (0.3422) (0.0882) (0.1856) (0.5448)
J=12,K=3 J=12,K=6 J=12,K=9 J=12,K=12
ay g 0.0051 0.0040 0.0021 0.0000
p (0.0812) (0.1028) (0.4070) (0.9854)

This table presents results from the conditional law of one price and no-arbitrage estimation of performance measures. Each panel
presents results for 16 strategies representing different combinations of sorting and holding periods. Portfolios are ranked on the
basis of J-month lagged returns and held for K months. « represents average monthly excess performance over the portfolio
of basis assets for the strategy. The numbers in parentheses represent the p-values from a chi-squared test of the hypothesis
Hjy : a =0. The basis assets in this sample consist of 20 industry-sorted portfolios, augmented by managed portfolios, which
consist of the product of the equity portfolios with the instrumental variables z, = {tb, 1s, dy}, for a total of 80 basis assets.

3.2.4 Conditional performance measures. We examine whether our results
are affected if we allow investors’ expectations to vary conditional on three
publicly known information variables: the dividend yield on the S&P 500
index, the return on the Treasury bill with maturity closest to one month,
and the term spread, measured as the difference in yields on 10-year matu-
rity Treasury bonds over one-year maturity Treasury bills.” These results are
presented in Table 6.

Measured relative to a time-varying benchmark, LOP momentum prof-
its decline slightly from the unconditional measures of abnormal perfor-
mance. Averaging across all 16 strategies, abnormal profits are 72% of those

These variables have been shown to have predictive power for returns in numerous studies, including Fama and
Schwert (1977), Ferson (1989), and Fama and French (1988). In addition, these variables are similar to three
(out of four) variables included in Chordia and Shivakumar (2000); they add a default spread variable as well.
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observed in the unconditional tests and 37% of the raw profits. The use of
this particular set of conditioning variables appears to affect profits of strate-
gies with shorter holding periods to a greater extent. Despite the relatively
small difference in the level of abnormal profits, none of the profits are sta-
tistically significant at the 5% level, and only five are significant at the 10%
level; however, the larger standard errors may not be surprising given the
larger number of moment conditions estimated.® The no-arbitrage results in
panel B give qualitatively similar results.’

An Analysis of Risk Adjustment

The empirical results in the previous section suggest that a portion of momen-
tum profits can be explained by a fixed-weight combination of a set of basis
assets. Why, then, have existing studies of momentum profits, which use spe-
cific parametric benchmarks, failed to detect any evidence that momentum
profits may be compensation for risk bearing? In this section, we explore
the link between past return information and risk in order to address this
question. This study also provides us with an additional diagnostic tool
for evaluating whether the benchmark stochastic discount factor proposed
is admissible in the context of measuring the (risk-adjusted) profitability of
the trading strategies.'”

Given the existence of a stochastic discount factor, m, it is well known
[see, e.g., Cochrane (1997)] that one can construct a hedge portfolio or con-
stant consumption portfolio which is perfectly correlated with the stochastic
discount factor. Then, if we denote the return on such a hedge portfolio as
R,, the equilibrium expected return on asset i can be written as

E[Ri]_Rf ZBdi(E[Rd]_Rf)' (15)

The above expression is similar to the CAPM, but the hedge portfolio does
not need to be a market portfolio; in addition, this expression is still con-
sistent with a multifactor model."" In this characterization, B,; is similar to
the market beta and measures the sensitivity of the asset’s payoff to that of

8 We discuss the power characteristics of our tests in Section 4.2.

° The results in Table 6 are weak evidence that a portion of momentum profits are related to common macro-
economic factors. Chordia and Shivakumar (2000) find that momentum profits vary strongly with the business
cycle and a four-factor time-varying model of expected returns appears to subsume much of the profits
associated with momentum portfolios. In our tests, however, any time-varying expected returns in the basis
assets must still satisfy the equilibrium requirement of the law of one price (or no arbitrage).

O For a more detailed analysis, see Ahn, Conrad, and Dittmar (2000).

"' The existence of multiple factors in any form can be nested since Equation (3) is a mathematical identity
to Equation (15). The difference between the two equations is similar to the difference in the representation
of expected returns between the consumption CAPM of Breeden (1979) and the intertemporal CAPM of
Merton (1973). The multiple factors are reduced to a single stochastic variable which represents the intertem-
poral marginal rate of substitution. In our context, the pricing kernel m and the return on its corresponding
hedge portfolio, R,;, can be a function of multiple factors.
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the constant consumption portfolio, R,. In addition, given Equation (8), the
realized return on asset i can be expressed as a function of its beta and the
excess return on the hedge portfolio.

In this setting, consider the problem of selecting firms as “winners” and
“losers.” When the constant-consumption portfolio return is positive, the
highest beta asset will be the winner. In contrast, when the market reverses,
the lowest beta asset will be the winner. Assuming that the market price of
risk is, on average, positive, then on average winners should be high beta
securities and losers should be low beta securities. Consequently a momen-
tum portfolio, which consists of buying past winners and selling past losers,
should on average have a positive risk measure since a portion of that port-
folio’s high relative return is due to high expected return.

The intuition behind this argument is an extension of the analysis of Lo
and MacKinlay (1990), who show that momentum (contrarian) strategies
have, even in the absence of time-series effects, an average return that is
positive (negative). It is also similar to the point made by Ball, Kothari, and
Shanken (1995), who point out that “if the realized premium in the ranking
period is positive, the loser portfolio is more likely to consist of low-beta
stocks.” Note that this result does not imply that abnormal returns cannot be
earned with a momentum strategy—merely that the abnormal returns must
be earned after allowing for the (on average) positive risk such a strategy
entails.

We use this posited relationship between betas and the likelihood of being
chosen as winner or loser as a diagnostic for the “admissibility” of the pricing
kernels we consider. That is, we estimate the risk measures of the winner and
loser portfolios using both the CAPM and our constructed pricing kernel as
the benchmark. The results of this estimation are summarized in Table 7.
As we move from loser to winner portfolios down the table, we see that the
portfolios’ kernel betas increase for all four estimation techniques employed

Table 7
Portfolio betas
Unconditional Conditional
Value
Decile Mean LOP No arbitrage LOP No arbitrage weighted
1 0.0090 1.4411 1.3673 0.5863 1.2504 1.3797
2 0.0013 1.5027 1.4555 0.6634 1.3512 1.1784
3 0.0125 1.4987 1.4615 0.7702 1.4298 1.1095
4 0.0126 1.4532 1.4250 0.8610 1.4011 1.0726
5 0.0127 1.4328 1.4107 0.9399 1.4611 1.0474
6 0.0131 1.4689 1.4547 0.9615 1.4881 1.0417
7 0.0134 1.5184 1.5069 1.0351 1.6054 1.0475
8 0.0137 1.5955 1.5872 1.1032 1.7612 1.0779
9 0.0146 1.7415 1.7316 1.1915 1.9192 1.1369
10 0.0167 1.9379 1.9203 1.3230 2.2963 1.2588

This table presents betas and mean returns for the decile portfolios of the six-month/six-month momentum strategy. Betas
are estimated with respect to the six-month/six-month unconditional LOP, unconditional no-arbitrage, conditional LOP, and
unconditional no-arbitrage pricing kernels and the value-weighted portfolio.
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(LOP or NA, unconditional or conditional). The differences between the loser
and the winner portfolio betas are striking: for the conditional LOP measure,
the winner portfolio beta is more than twice the loser portfolio beta. The
difference using the other estimation techniques is also substantial. These
results imply that at least a portion of the returns to the momentum strategies
examined represent compensation for bearing increased risk.

In contrast, firms’ market betas are high for both extreme winner and
loser portfolios. Thus, using this diagnostic, the CAPM kernel appears to be
misspecified—the market betas of loser firms are “too high.” In fact, note that
the market betas of losers are slightly larger than the market betas of winners
in this sample, consistent with the results of Jegadeesh and Titman (1993).
This results in the market beta of the combined (winner minus loser) portfolio
being slightly negative, which would correspond to a negative market price of
risk, A, and magnify the risk-adjusted profit of the strategy. Since the market
price of risk implied by the CAPM is positive, this result seems to contradict
the theory. In addition, this result contributes to the inference that the risk-
adjusted return of the momentum strategy is positive. The difference in results
across the two types of pricing kernels in this context is another illustration
of the importance of benchmark specification in assessing abnormal profits;
as Roll (1978) shows, even small differences in benchmarks can lead to large
differences in inferences about performance.

The difference in our nonparametric benchmark and the CAPM and the
resulting difference in inferences can be illustrated graphically since DeSan-
tis (1995) and Bekaert and Urias (1996) show that there is a direct rela-
tion between the LOP and the more familiar mean-variance analysis. In the
CAPM, the market is mean-variance efficient, that is, it is the tangency port-
folio with the highest possible Sharpe ratio. In contrast, in the LOP estimation
procedure that we use, the 20 industry portfolios are used to form an “effi-
cient frontier” relative to which the market portfolio may or may not com-
pare favorably. The test of abnormal performance in this context is a test of
whether the momentum portfolio’s returns represent a significant improve-
ment over the opportunity set formed by the industry portfolios. Figure 1
presents the mean-variance opportunity set created by the industry portfo-
lios, the six-month/six-month momentum strategy and (for comparison) the
value-weighted market.

It is clear from this figure that the market portfolio is dominated by combi-
nations of the industry portfolios that we use. For example, the Sharpe ratio
of the market portfolio is 0.1096; in contrast, the maximum Sharpe ratio esti-
mated from the set of industry portfolios is substantially higher, at 0.3255.
Corrected for the bias caused by searching for the maximum [as outlined
in MacKinlay (1995)], it is 0.1961. In comparison, the six-month/six-month
momentum portfolio has a Sharpe measure of 0.2084. Thus the fact that
the abnormal performance of momentum portfolios is significant with respect
to the CAPM pricing kernel, but declines substantially when industry-sorted
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Figure 1

The ex post mean standard deviation frontier for the industry portfolios utilized as basis assets in this article.
In addition to this frontier, the figure depicts the plot of the market portfolio, the industry momentum strategy,
and the six-month/six-month momentum strategy. The dashed line represents a line with slope equal to the
Sharpe ratio of the six-month/six-month momentum strategy and intercept equal to the risk-free rate.

portfolios are used to form the benchmark, is a consequence of the fact that the
opportunity set created by industry portfolios dominates the market portfolio.

The finding that the Sharpe ratio obtained from the sample of industry
portfolios is larger than that observed using the market proxy is consistent
with the evidence in Cohen and Polk (1998). MacKinlay (1995) argues that
ratios larger than 0.175 are implausibly high; the ratio observed from the
industry-sorted portfolios in our sample exceeds that threshold. Thus, while
our evidence suggests that momentum portfolio strategies are not mispriced
relative to industry portfolios, it may be that industry portfolios are them-
selves mispriced. In that case, we have succeeded only in shifting the puzzle
to another venue. Since the use of industry portfolios is widespread both
among academic and practitioners, however, this puzzle is an important one.
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If we accept the industry-sorted portfolios as a valid set of basis assets,
note that the higher Sharpe measure they imply suggests that it may be
feasible to construct a linear multifactor model which prices momentum
strategies. For example (and independent of the literature on momentum trad-
ing strategies), Dittmar (1999) develops a pricing model based on investors’
preferences in which kurtosis measures are associated with a positive risk
premium. Using this particular parametric pricing model as the benchmark
and industry portfolios as the set of benchmark assets, we cannot reject the
hypothesis that momentum portfolios earn zero abnormal return (a = 0.0023,
p-value = 0.23).

4.1 Industry momentum and individual security momentum

Moskowitz and Grinblatt (1999) document that industry momentum strate-
gies are profitable. The authors find profits of 43 basis points per month in a
strategy that buys an equally weighted portfolio of the top three performing
industries and shorts an equally weighted portfolio of the bottom three per-
forming industries, holding this position for six months. The authors attribute
these profits to industry components in the data-generating process that are
unrelated to priced factors and present evidence that industry momentum is
responsible for much of the momentum in individual securities. The authors
suggest that their results are potentially attributable to either behavioral or
rational explanations for the profitability of momentum strategies.

In this section we investigate whether our pricing kernel approach can
explain the profits to these industry momentum portfolios. The industry port-
folios employed in our study are the same as those investigated in Moskowitz
and Grinblatt (1999), with the exception that our industry portfolios are
equally weighted rather than value weighted. We find that using equally
weighted portfolios and our sample period results in slightly lower returns,
although these returns are still statistically significant. For example, the return
to the six-month/six-month industry momentum strategy is 27 basis points
per month (z-statistic = 2.60).

Table 8 displays the results of the LOP and no-arbitrage performance eval-
uation for the six-month/six-month industry momentum strategy. When prof-
its are measured relative to the reference assets, the LOP point estimate of
profits remains roughly the same at 26 basis points (unconditional) and 28
basis points (conditional), although they are not statistically significant at the
5% or 10% level. The no-arbitrage profits are similar, at 26 and 21 basis
points, respectively, for the unconditional and conditional tests. These results
suggest that while our basis assets can explain approximately half of individ-
ual security momentum profits, they explain little or none of the profits of
the industry momentum strategy. This appears to confirm the contention of
Grundy and Martin (2001), who argue that individual and industry momen-
tum are distinct phenomena. Moreover, the evidence that passive industry
(or industry plus managed) portfolios cannot explain “industry momentum”
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Table 8
Performance assessment of industry momentum strategies

Panel A: Unconditional

Measure: LOP No arbitrage
ay_p 0.0026 0.0026

p (0.2500) (0.2520)
Panel B: Conditional

Measure: LOP No arbitrage
ay_p 0.0028 0.0021

p (0.1581) (0.3627)

This table presents results from the LOP and no-arbitrage performance measures in unconditional (panel A) and conditional
(panel B) settings for the six-month/six-month industry momentum strategy. « represents average monthly excess performance
over the portfolio of basis assets for the strategy. The numbers in parentheses represent the p-values from a chi-squared test of
the hypothesis H : @ = 0. The basis assets in this sample consist of 20 industry-sorted portfolios (for unconditional measures),
augmented by managed portfolios (for conditional measures), which consist of the product of the equity portfolios with the
instrumental variables z, = {tb, ts, dy}, for a total of 80 basis assets.

suggests that it is the dynamic nature of the “industry momentum” strategy,
rather than the “industry” component, that is important.

The dynamic nature of the Moskowitz and Grinblatt (1999) strategy com-
pared to ours can be seen in the contrast between the weights on the indus-
try portfolios in our application and theirs. In our unconditional setting, the
pricing kernel is represented by a fixed-weight combination of the industry
portfolios; the weights exhibit no variation through time. In contrast, Figure 2
depicts the time-series weight on each industry in the industry momentum
strategy. As is shown in the figure, one substantial, and apparently important,
difference in the industry momentum strategy and our approach is that in the
industry momentum strategy the weights vary considerably from month to
month. In fact, this variation is sufficiently high that its returns cannot be
mimicked by a fixed-weight portfolio. Consequently the (dynamic) indus-
try momentum strategy earns abnormal profits relative to the fixed-weight
industry benchmark.'

In conjunction with the results of Moskowitz and Grinblatt (1999), our
results suggest the possibility that two components of industry returns are
important for explaining the profits to momentum strategies. First, as we
show, since a fixed-weight portfolio of industries explains roughly half of
the momentum profits, static risk accounts for about half of the general
momentum strategy performance. Since Moskowitz and Grinblatt show that
the industry momentum strategy, with its dynamic reweighting over time,
subsumes virtually all of the profits to the general momentum strategy, we
conjecture that the remaining component of momentum returns is related to
dynamic rebalancing. It is not clear, however, whether this dynamic compo-
nent arises from dynamic sources of risk or investors’ biases.

12 When industry portfolios are reformed every month, instead of annually, we find that industry momentum
profits can be explained by basis assets. Again, this suggests that it is the dynamic nature of the strategy,
rather than the industry component, that is important.
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Figure 2

The time series of the weights on each industry portfolio in the industry momentum strategy. A weight of 1.0
indicates that the industry comprises 100% of the winner portfolio at the time of portfolio formation, whereas
a weight of —1.0 indicates that the industry comprises 100% of the loser portfolio at the time of portfolio
formation. Portfolios are formed as in Moskowitz and Grinblatt (1999).

4.2 Robustness checks

One issue that arises when utilizing the risk-free rate as a basis asset is its
near unit-root behavior. We examine the robustness of the performance of
our test assets as a basis by conducting alternate tests of the ability of the
excess industry returns to span the strategy returns. Specifically we utilize
the methodology of Huberman and Kandel (1987) as explained in Kan and
Zhou (2001). That is, we perform a Wald test of the null hypothesis that
the basis assets do not span the strategies. The test fails to reject the null
hypothesis (p-value 0.999), suggesting that the industry portfolios serve well
as a basis for the momentum strategy portfolios."* Thus the result suggests

'3 This result is untabulated, but is available from the authors upon request.
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Table 9
Performance assessment: winners and losers removed from basis
Unconditional Conditional
LOP No arbitrage LOP No arbitrage
p (0.453) (0.440) (0.530) (0.371)

This table presents results of joint tests for the significance of 16 momentum strategies using both the LOP and no-arbitrage
measures in unconditional and conditional settings when winners and losers are removed from basis assets. The p-values shown
are the result of testing the hypothesis Hy : @ = 0. The basis assets in this sample consist of 20 industry-sorted portfolios (for
unconditional measures), augmented by managed portfolios (for conditional measures), which consist of the product of the
equity portfolios with the instrumental variables z, = {tb, ts, dy}, for a total of 80 basis assets.

that our conclusions are not driven by the statistical properties of the risk-free
asset.

In a further robustness check, we investigate whether the inclusion of win-
ner/loser securities in the industry portfolios contribute to our finding that
momentum portfolio profits are explained by a set of industry portfolios.
Specifically, we identify individual winner/loser securities and remove them
from their respective industry portfolios. We repeat the analysis of momen-
tum strategy abnormal performance; the results of joint tests are shown in
Table 9. Clearly, removing individual securities with extreme price move-
ments from the basis does not change our results.

Finally, we investigate the power and size characteristics of our tests of
abnormal performance. Our results (available on request) suggest that for
levels of abnormal performance similar to those observed in the literature,
the power characteristics of these tests are reasonable for both the LOP and
no-arbitrage measures. For example, for abnormal performance levels of 100
basis points per month and significance levels of 5%, the rejection rates never
fall below 80% (75%) for the unconditional (conditional) tests.

Conclusions and Extensions

This article investigates the profitability of momentum trading strategies by
using a nonparametric test that asks whether these profits can be explained
by an equilibrium pricing model that satisfies some minimal restrictions. We
investigate two benchmark cases for such a pricing model: the first requires
only that the LOP holds and the second that a no-arbitrage condition holds.
We find that a stochastic discount factor can be constructed from a basis set
of industry-sorted portfolios, which explains approximately half the level of
momentum profits in an unconditional setting. That is, a risk measure which
assumes only that the LOP holds can account for an average of 49% of the
profitability of the trading strategies when agents cannot use conditioning
information in forming their expectations. A joint test on the significance
of the remaining profits fails to reject the null hypothesis of no abnormal
performance. If we require that the stochastic discount factor be positive,
the results are similar; individual momentum strategies retain residual prof-
itability, with the average profits lower, and a joint test of significance fails
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to reject. In further tests, when agents are allowed to implement dynamic
trading strategies based only on a limited set of public information, we find
that the abnormal performance of the strategies we consider decline further,
to slightly more than one-third (one-fourth) of the level of raw profits using
the LOP (no-arbitrage) estimation technique.

These results suggest the possibility that at least a portion of the returns to
momentum strategies is due to the risk of the strategies rather than investor
underreaction. Based on a simple extension of the equilibrium model of secu-
rity returns we employ, we argue that the risk measure of momentum strate-
gies should, on average, be positive. We develop a diagnostic measure of the
risk adjustment used in momentum strategies and show that the stochastic
discount factor we estimate appears to be a better fit than the pricing models
previously used to adjust for the risk of such strategies.

We also examine the ability of this nonparametric benchmark to explain the
profits of an industry momentum strategy, such as Moskowitz and Grinblatt
(1999) devise. Of interest is that the profit levels of the industry momentum
strategy are virtually unaffected after risk adjustment. Since the nonparamet-
ric benchmark essentially consists of adjusting for the risk and return levels of
a fixed-weight industry portfolio, this result suggests that it is the dynamic
nature of the industry momentum strategy, rather than the cross-sectional
variation in industry returns, that is responsible for its profitability.

It is important to note that, although we avoid assuming that a particular
parametric pricing model holds, we are requiring that securities markets be
in equilibrium, that is, by assuming that the LOP (or no arbitrage) holds,
we are ruling out mispricing in the basis assets. If this assumption does
not hold, then measuring profits in relation to these basis assets results in
a misspecified measure of abnormal performance.'* However, this criticism
would apply to any risk-adjusted measure of performance, since such a mea-
sure would have to assume an (equilibrium) pricing model. Subject to this
criticism, our results provide some evidence that a portion of the profits to
momentum strategies are the result of rational, rather than irrational, pric-
ing behavior. The nonparametric benchmark leaves a nontrivial fraction of
momentum profits unexplained, however; consequently we cannot rule out
the existence of mispricing in momentum portfolios relative to our set of
basis assets.
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