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Abstract

In this paper, we model cash flow and consumption growth rates as a vector-

autoregression (VAR), from which we measure the response of cash flow growth to

consumption shocks. As the appropriate cash flow proxy is not unambiguous, nor

likely to be measured without error, we consider three alternatives for portfolio cash

flows: cash dividends, dividends plus repurchases and corporate earnings. We find

that the long-run exposure of cash flows to aggregate consumption risk can justify a

significant degree of the observed variation in risk premia across size, book-to-market,

and industry sorted portfolios. Also, our economic model highlights the reasons for the

failure of the market beta to justify the cross-section of risk premia. Most importantly,

our results indicate that measured differences in the long-run exposures of cash flows

to aggregate economic fluctuations as captured by aggregate consumption movements

contain very valuable information regarding differences in risk premia. In all, our re-

sults indicate that the size, book-to-market and industry spreads are not puzzling from

the perspective of economic models.



1 Introduction

The focus of this paper is to characterize the systematic sources of priced risks in the cross-

section of returns from the perspective of general equilibrium models by appealing directly

to the information embedded in the assets’ cash flows. The empirical work of Hansen and

Singleton (1982, 1983) underscores the importance of consumption risks in understanding risk

premia. A consistent implication of these consumption based models is that the link between

cash flows and aggregate consumption is a key input in determining an asset’s exposure to

and compensation for risk. Our approach emphasizes the long-run links between cash flows

and consumption, and shows that this relation is empirically important for interpreting risk

premia.

We concentrate on characterizing the sources of risk inherent in size, book-to-market,

and industry sorted portfolios. These portfolios have been at the center of the asset pricing

literature over the past two decades. These sorts produce economically meaningful risk

premia; from 1949 through 2001, size sorted decile portfolios generate premia of 0.87% per

quarter, book-to-market sorted portfolios generate premia of 1.51% per quarter, and industry

groupings produce a spread of 0.83% per quarter. As the empirical literature has shown, the

return premia of these dimensions pose a considerable challenge to economic models.

We explore the sources of these differences in average returns by examining the implica-

tions of a general economic model. In this model, returns are assumed to be generated by

realized shocks to current and expected future cash flow growth. Further, asset cash flows

are explicitly linked to the dynamics of aggregate consumption. In this setting, we show

that differences in the long-run response of cash flows to a unit consumption shock (i.e., the

cash flow beta) should explain cross-sectional variation in risk premia. When we additionally

allow risk premia to fluctuate, we highlight some of the reasons why the usual market beta

of an asset may fail to capture differences in risk premia across assets.

A key dimension of this paper is the measurement of long-run cash flow exposures to

economic fluctuations. We model the consumption and cash flow growth rate dynamics as

a vector autoregression (VAR). The cash flow beta for a given asset can be obtained from

this VAR as the response of cash flow growth to a unit shock in consumption. Using only

cash dividends, the first paper to focus on the empirical measurement of cash flow betas,

Bansal, Dittmar, and Lundblad (2001), argues that covariation between dividend growth
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rates and consumption at long lags provides sharp information regarding risk premia on

assets. In contrast to their paper, we provide the joint transition dynamics of cash flows

and consumption in order to measure the cash flow betas. Since the appropriate cash flow

associated with an equity claim is not unambiguous, we also estimate these relationships

across three alternative candidate measures for cash flows: cash dividends, dividends plus

repurchases, and corporate earnings. Further, it is also likely that observed cash flows are

affected by high-frequency noise and corporate payout management. Hence, we determine

whether long-run economic risk estimates are robust across several reasonable empirical

candidates for equity payouts and the degree to which they are affected by high-frequency

noise in their measurement. Additionally, we examine the links between cash flow betas and

market betas, and analyze the reasons for the failure of standard market betas to capture

risk premia across assets. Finally, we incorporate industry portfolios in our analysis, which

pose their own unique empirical challenges as documented in Fama and French (1997).

As predicted by the theory, we find that the prices of risk associated with cash flow

exposures to long-run economic risks are highly significant and positive across all three cash

flow measures. To confirm our statistical inference, we conduct Monte Carlo experiments to

examine the finite sample distribution of the price of risk and the cross-sectional R2. This

finite sample distribution accounts for estimation error in the VAR dynamics of consumption

and dividend growth. For instance, the point estimate for the price of cash flow (for cash

dividends) beta risk is 0.079, and highly significant, with an adjusted cross-sectional R2 of

53%. Most importantly, we demonstrate that the component of the cash flow beta associated

with the long-run exposure of cash flows to aggregate consumption fluctuations is the key

parameter in explaining cross-sectional variation in observed premia. While the effects are

somewhat less pronounced for the other two cash flow measures, this observation is robust,

suggesting that both cash flow risk is a key component determining asset prices and can be

detected by focusing on the long-run relationships between cash flows and the economy.

We present a model based on Epstein and Zin (1989) preferences, similar to that devel-

oped in Bansal and Yaron (2002). This model highlights the conditions under which the

long-run cash flow exposure to aggregate risk will explain the cross-section of risk premia.

Further, it also provides insights into the failure of the market betas to capture cross-sectional

risk premia. In this model, asset returns are driven both by cash flow news and changing risk

premia; the risk premium fluctuates due to changes in aggregate economic uncertainty (i.e.,

consumption volatility). The result is that the cross-section of risk premia is determined
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both by an asset’s cash flow beta and its beta with respect to news about aggregate risk

premia. The standard market beta is a weighted combination of these different betas, where

each of these sources of risk bears a different price. Consequently, the market beta may fail

to explain the cross-section of risk premia. The message implied by this evidence is that the

cash flow beta is an important source of risk in isolation, and explains a considerable degree

of the cross-sectional variation in observed risk premia.

In all, our empirical evidence indicates that the long-run exposure of cash flows to move-

ments in the aggregate economy, as measured by consumption, contains very valuable infor-

mation regarding differences in risk premia across assets. Cash flow streams that have larger

exposure to aggregate consumption news also offer higher risk premia across several alter-

native cash flow measures. The work of Lettau and Ludvigson (2001) and Jagannathan and

Wang (1996) highlight alternative channels for explaining differences in risk premia across

assets. Our work augments the understanding of the determinants of risk premia by focusing

on the links between cash flows and consumption.

The remainder of this paper is organized as follows. In section 2, we discuss the model for

cash flow betas when discount rates are constant. Our strategy for estimating these betas is

discussed in section 3. Section 4 discusses the empirical evidence. We analyze the economic

implications of our framework in section 5. Section 6 provides concluding remarks.

2 Cash flow Betas

In this section, we provide the arguments that motivate our cash flow beta. For any asset

i, consider the Campbell and Shiller (1988) linear approximation for the log return, ri,t =

ln(1 +Ri,t) = ln(Pi,t +Di,t)− ln(Pi,t−1):

ri,t = κi,0 + gi,t + κi,1pdi,t − pdi,t−1 (1)

where pdi,t = ln(Pi,t/Di,t) is the log price-cash flow ratio, gi,t the log cash flow growth rate,

and ri,t the log return (κi,0 and κi,1 are parameters in the linearization). At this point, we

abstractly interpret the cash flow, Di,t, as the general payout to which the equity holder

has claim. Empirically, there are important considerations associated with measuring equity

cash flows, and this is one of the key issues we address in this paper (see Section 3).
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Under this approximation (1), one can derive the following present value implication for

the log price-cash flow ratio assuming the usual transversality condition holds:

pdi,t =
κi,0

(1− κi,1)
+ Et[

∞
∑

j=1

κji,1gi,t+j −
∞
∑

j=1

κji,1ri,t+j ] (2)

Further, if we assume that expected returns are constant through time, the return innovation

can be expressed as follows:

ri,t − Et−1[ri,t] ≡ eri,t = gi,t − Et−1[gi,t] + Et[
∞
∑

j=1

κji,1gi,t+j ]− Et−1[
∞
∑

j=1

κji,1gi,t+j ] (3)

Note that the case for which expected returns and expected cash flow growth rates may vary

is considered in section 5.

2.1 Cash Flow Dynamics

To determine the long-run cash flow exposures to aggregate economic (consumption) shocks,

we first must characterize the dynamic processes for consumption and cash flows. Log

consumption growth, gc,t, is assumed to follow an AR(J) process

gc,t = µc +
J
∑

j=1

ρc,jgc,t−j + ηc,t, (4)

and (log) cash flow growth rates follow

gi,t = µi +
k=K
∑

k=1

γi,kgt−k + ui,t

ui,t =
L
∑

j=1

ρj,iui,t−j + biηc,t + ζi,t (5)

where ζi,t is uncorrelated with consumption innovations as stated above. Importantly, bi mea-

sures the contemporaneous relationship between consumption and cash flow shocks, whereas,
∑k=K

k=1 γi,k measures the long-run relationship between consumption and future cash flow

growth rates. This distinction will be very important in our empirical analysis, as contem-

poraneous relationships may be contaminated by measurement error, whereas the long-run
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relationships (which are closely related to cointegration) are not (see Bansal, Dittmar, and

Lundblad (2001)). Without loss of generality assume that K ≥ J .

To characterize the evolution of the system, let 1 + (K + L) = q. The q × 1 vector zt is

z′t = [gi,t ui,t · · · ui,t−(L−1) gc,t · · · gc,t−(K−1)] (6)

The dynamics of consumption and cash flow growth can then be expressed as

zt = µ+ Azt−1 +Gut (7)

where A and G are q × q matrices. Note that consumption feeds into the future dynamics

of cash flows, but cash flows do not feed back into consumption. The q × 1 vector ut has its

first elements as ζi,t and its last element as ηc,t; all other elements of ut are zero.

To account for the linearization effect of κ1, we define the matrix Aκ as κ1A. From

equation (3), it follows that eri,t is the first element of the matrix

[I +
∞
∑

j=1

Ajκ]Gut = [I − Aκ]
−1Gut (8)

The cash flow beta, βi,t, equals the first element of [I − Aκ]
−1Gι, where ι has an element

one corresponding to the consumption innovation and zero elsewhere. Note that the return

innovation is

eri,t = βi,dηc,t + ζi,t;

where βi,dηc,t is the return response to aggregate consumption news and ζi,t represents the

cash flow news specific to the asset. Note also that ζi,t and ηc,t are uncorrelated. βi,d is

determined by the reaction of the infinite sum of cash flow growth rates to consumption news;

that is, the accumulated impulse response of cash flow growth rates to a unit consumption

shock. We call βi,d the cash flow beta. In other words, this beta provides the response of the

present value of future cash flow growth to a unit consumption shock.

To gain some intuition into what this risk measure captures, note that, for exposition,

the cash flow beta with K = L = J = 1 is

βi,d =
κi,1γi,1

1− κi,1ρc,1
+

bi
1− κi,1ρi,1

(9)
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which reflects both the contemporaneous correlation between cash flow and consumption

shocks, bi, and the long-run exposure of current consumption growth on future dividends,

γi. In general, the cash flow beta for asset i will be

βi,d =

∑

k κ
k
i,1γi,k

1−
∑

j κ
j
i,1ρc,j

+
bi

1−
∑

l κ
l
i,1ρi,l

(10)

When equality is imposed (γi,k = γi), then
∑

k κ
k
i,1γi,k = γi

∑

k κ
k
i,i. This expression measures

the average covariance between cash flow growth and the lagged, K-period smoothed growth

rate of consumption, and is what we employ in practice.

Next, we explore the ability of the estimated cash flow beta to explain the cross-sectional

variation in observed average returns for market capitalization, book-to-market ratio, and

industry sorted portfolios (30 portfolios in all). In section 5, we provide detailed economic

motivation for why the cash flow beta should explain the cross-sectional differences in risk

premia. This motivation leads to the specification

Ri,t = λ0 + λcβi,d + vi,t (11)

In equation (11), Ri,t are the observed returns for asset i. The cross-sectional price of risk

parameters λ0 and λc, as shown in section 5, are determined by preference parameters. The

above equation imposes the restriction that the differences in average returns across assets

reflect differences only in βi,d. This structure will form the baseline for our empirical anal-

ysis. However, as mentioned, we are concerned that high-frequency measurement noise and

corporate payout management might affect the measured contemporaneous relationships. In

contrast, we conjecture that the cash flow exposures to economic risk, γi, are robust to these

considerations. Hence, in addition to cash flow beta, we also estimate the cross-sectional

regression, (11), separating the contribution of the long-run risk exposures, γi, and the con-

temporaneous covariances, bi. Note, if you assume that bi = 0 in equation (10), the βi,d is

a simple function of γi, and they contain the same cross-sectional information; under this

assumption, cross-sectional R2 will be identical (ignoring the approximation constants). Fi-

nally, we will subsequently explore the pricing implications of the cash flow beta in relation

to standard CAPM market betas.

6



3 Data

3.1 Aggregate Cash Flows and Factors

Our empirical exercise is conducted on data sampled at the quarterly frequency from 1949-

2001. We collect seasonally adjusted real per capita consumption of nondurables plus services

data from the NIPA tables available from the Bureau of Economic Analysis. To convert

returns and other nominal quantities, we also take the associated personal consumption

expenditures (PCE) deflator from the NIPA tables. The mean of the quarterly real con-

sumption growth rate series over the period spanning the second quarter of 1949 through

the fourth quarter of 2001 is 0.0053 with standard deviation of 0.0050, and the mean of the

inflation series is 0.0087 per quarter with a standard deviation of 0.0068. For subsequent

analysis, we also measure the aggregate market portfolio return as the return on the CRSP

value-weighted index of stocks.

3.2 Portfolio Menu

We consider portfolios formed on firms’ market value, book-to-market ratio, and industry

classification. Our rationale for examining portfolios sorted on these characteristics is that

size and book-to-market based sorts are the basis for the factor model examined in Fama and

French (1993). Additionally, industry sorted portfolios have posed a particularly challenging

feature from the perspective of systematic risk measurement (see Fama and French (1997)).

We focus on one-dimensional sorts on these characteristics as this procedure typically results

in over 150 firms in each decile portfolio which facilitates a more accurate measurement of the

consumption exposure of cash flows; it is important to limit the portfolio specific variation

in cash flow growth rates, and a larger number of firms in a given portfolio helps achieve

this.

Market Capitalization Portfolios

We form a set of value-weighted portfolios on the basis of market capitalization. The

set of all firms covered by CRSP are ranked on the basis of their market capitalization at

the end of June of each year using NYSE capitalization breakpoints. In Table 1, we present

means and standard deviations of market value-weighted returns for size decile portfolios.
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The table displays a significant size premium over the post-war sample period; the mean real

return on the lowest decile firms is 3.14% per quarter, contrasted with a return of 2.27% per

quarter for the highest decile. The means and standard deviations of these portfolios are

similar to those reported in previous work.

Book-to-Market Portfolios

Book values are constructed from Compustat data. The book-to-market ratio at year

t is computed as the ratio of book value at fiscal year end t − 1 to CRSP market value of

equity at calendar year t− 1.1 All firms with Compustat book values covered in CRSP are

ranked on the basis of their book-to-market ratios at the end of June of each year using

NYSE book-to-market breakpoints. Sample statistics for these data are also presented in

Table 1. The highest book-to-market firms earn average real returns of 3.76% per quarter,

whereas the lowest book-to-market firms average 2.25% per quarter.

Industry Portfolios

Value-weighted industry portfolios are formed by sorting NYSE, AMEX, and NASDAQ

firms by their CRSP SIC Code at the beginning of each month. Industry definitions follow

those in Fama and French (1997). We specifically utilize definitions for ten industries: i1,

consumer nondurables, i2, consumer durables, i3, oil, gas, and coal extraction, i4, chemicals

and allied products, i5, manufacturing, i6, telephones and television, i7, utilities, i8, wholesale

and retail, i9, financial, and i10, other.2 Sample statistics for these data are also presented

in Table 1. The mean real returns range from 2.04% for the Financial industry to 2.87% for

Durable goods.

3.3 Measuring Cash Flows

3.3.1 Portfolio Cash Dividends

To measure the cash flow beta, we also need to measure the portfolio-specific cash flows

described in the previous section. For our first candidate measure we extract the cash

1For a detailed discussion of the formation of the book-to-market variable, refer to Fama and French
(1993).

2Industry definitions follow those provided by Kenneth French at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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dividend payments associated with each portfolio discussed in the previous section. Our

construction of the dividend series is the same as that in Campbell (2000). Let the total

return per dollar invested be

Rt+1 = h1,t+1 + y1,t+1

where h1,t+1 is the price appreciation and y1,t+1 the cash dividend yield (i.e., cash dividends

at date t + 1 per dollar invested at date t). More clearly stated, h1,t+1 represents the ratio

of the per dollar value of the portfolio at time t + 1 to time t, V1,t+1

V1,t
, and y1,t+1 represents

the per dollar cash dividends paid by the portfolio at time t + 1 cash divided by per dollar

value at time t, D1,t+1

V1,t
. We directly observe both Rt+1 and the price gain series h1,t+1 for

each portfolio; hence, we construct the cash dividend yield as y1,t+1 = Rt+1 − h1,t+1.
3 The

level of the cash dividends we employ in the paper is extracted as follows

D1,t+1 = y1,t+1V1,t

where

V1,t+1 = h1,t+1V1,t

with V1,0 = 100. Hence, the cash dividend series that we use, D1,t, corresponds to the total

cash dividends given out by a mutual fund at t that extracts the cash dividends and reinvest

the capital gains. The ex-cash dividend value of the mutual fund is V1,t and the per dollar

total return for the investors in the mutual fund is

Rt+1 =
V1,t+1 +D1,t+1

V1,t
= h1,t+1 + y1,t+1

which is precisely the reported CRSP total return for each portfolio.

3.3.2 Dividends and Repurchases

It is important to note that the payout strategy described above is only one of an infinite

number that would be consistent with the reported CRSP total returns, Rt+1, on these

portfolios. Additionally, given the surge in repurchase activity over the latter third of our

sample, we consider an alternative measure for the payouts to equity shareholders that

3The price appreciation series, h1,t is equivalent to the retx series available in CRSP. At the portfolio
level, this denotes the price appreciation for a mutual fund that pays out (without reinvestment) the cash

dividend series.

9



incorporates a candidate measure for repurchases. Unlike previous research (see, for example,

Jagannathan, Stevens, and Weisbach (2000) and Dittmar and Dittmar (2003)), we do not

collect the reported repurchase activity from Compustat. Instead, our repurchases measure

employs the information presented only in CRSP, but has the advantage of being completely

consistent with the reported total return.

Denote the number of shares (after adjusting for splits, stock dividends, etc. using the

CRSP share adjustment factor) as nt. We construct the following adjusted capital gain series.

h2,t+1 = [
Pt+1

Pt
] ·min[(

nt+1

nt
), 1] (12)

Note that this “capital gain” series will coincide with the CRSP capital gain series (retx)

associated with cash dividend payouts if (nt+1

nt
) is greater than or equal to one. That is,

if the firm issues new shares or has no change in shares outstanding then the capital gain

will be identical to h1,t above. Only if there is a reduction in the number of shares, which

is highly correlated with reported share buy-backs, will the ratio ( nt+1

nt
) be less than one.

In this case, the CRSP capital gain series will be adjusted downwards to account for the

additional payout associated with any share repurchases. Hence, h2,t+1, the adjusted capital

gain, is strictly less than or equal to the usual CRSP capital gain series.

Given the adjusted capital gain series h2,t, the total payout (cash dividend plus repur-

chases) yield, denoted y2,t, is computed by Rt − h2,t. As above, the payout level (cash

dividends plus repurchases) is computed as

D2,t+1 = y2,t+1V2,t

where

V2,t+1 = h2,t+1V2,t

with V2,0 = 100. As above, the ex-payout (cash dividend plus repurchases) value is V2,t and

the per dollar return for the investors in the mutual fund is

Rt+1 =
V2,t+1 +D2,t+1

V2,t
≡ h2,t+1 + y2,t+1

which, as for the cash dividend case above, is exactly consistent with the reported CRSP

total return Rt+1.
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We construct the level of cash dividends, D1,t, and dividends plus repurchases, D2,t, for

the size, book-to-market, and industry portfolios on a monthly basis. From this series, we

construct the quarterly levels of dividends by summing the cash flows within the period

under consideration. As these payout yields still have strong seasonalities at the quarterly

frequency, we also employ a trailing four quarter average of the quarterly cash flows to

construct the deseasonalized quarterly dividend series. This procedure is consistent with the

approach in Hodrick (1992), Heaton (1993), and Bollerslev and Hodrick (1995). These series

are converted to real by the personal consumption deflator. Log growth rates are constructed

by taking the log first difference of the cash flow series. Statistics for the annual cash

dividends and dividend plus repurchases growth rates of the portfolios under consideration

are presented in Table 1.

It is likely that this approximated measure of repurchase activity will differ somewhat

from the reported Compustat measures. In Figure 1, we present actual US$ amounts for

cash dividends and repurchases, separately, for the aggregate US market (NYSE, AMEX,

and NASDAQ) from 1949 through 2001. As can be seen, prior to the early 1980’s, the

repurchases series is effectively zero, as share repurchase activity did not make up a signif-

icant component of payout strategy. However, repurchase activity picks up sharply in the

mid-1980’s through the present, but does display a strong cyclical pattern, dropping off sig-

nificantly in the early 1990’s and the last few years of the sample. Further, the time-series

patterns are generally consistent with those presented in Jagannathan, Stevens, and Weis-

bach (2000). This evidence suggests that our repurchases measures, while not employing the

actual reported values from Compustat, is a reasonable compromise, particularly considering

that our measure is entirely consistent with the reported CRSP total returns.

In Table 1, we present average cash dividend and repurchase yields, separately, for each of

the 30 firms under consideration.4 Several interesting cross-sectional patterns emerge in the

relative importance of cash dividends and repurchases across our asset menu. First, small

capitalization firms exhibit lower relative cash dividend payouts relative to large firms. The

average cash dividend yield for small firms is, on average, only 0.56% per quarter, whereas

large firms have an average cash dividend yield of 0.93% per quarter. This is consistent

with the idea that small firms retain more cash for investment. Interestingly, however, small

4Using our notation, the “cash dividend” yield presented in Table 1 is y1,t and, just for exposition, the
“repurchase yield” is that component of payouts associated only with repurchases y2,t − y1,t. Of course, our
second measure of cash flows, D2,t, includes both cash dividends and repurchases.
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firms do exhibit somewhat relatively larger repurchase yields at 0.25% per quarter versus

0.16% per quarter for large firms. On net, the total payout (cash dividends plus repurchases)

is still significantly larger for large capitalization firms. Second, low book-to-market firms

exhibit considerably lower cash dividend and repurchase yields relative to high book-to-

market firms. Low book-to-market firms have a cash dividend yield of 0.58% per quarter

and a repurchase yield of 0.13% per quarter. In contrast, the comparable measures for high

book-to-market firms as 1.10% and 0.31% per quarter respectively, suggesting that so-called

“value” firms, with potentially fewer growth opportunities, do indeed disburse a great deal

more of their cash, in both dividend and repurchase form. We also observe some payout

differences across industries. For example, the financials industry has a cash dividend yield

of 1.50% per quarter with a repurchases yield of only 0.09% per quarter. In contrast, the

chemicals industry appears to have a relatively large payout in both forms. The largest

repurchases yield is associated with the non-durables goods industry at 0.21% per quarter.

The cross-sectional cash dividend and repurchases payout characteristics detailed above

only reflect time-series averages across a half century of experience. Importantly, we know

(see Figure 1) that the relative employment of these payout avenues has changed through

time. For the extreme size (S1 and S10) and book to market (B1 and B10), Figure 2 shows

time-series plots of the cash dividend and repurchases yields. As can be seen, in all cases,

repurchases have become an increasingly important component of a firms payout strategy

over time relative to cash dividends; however, this is considerably more pronounced for small

and high book-to-market firms.

3.3.3 Portfolio Earnings

Finally, we consider an third measure of equity cash flow, by appealing directly to corporate

earnings levels. In small samples, corporate earnings are admittedly not a precise measure

of the exact payout to which equity holders have claim. Our conjecture is, however, that

the long-run economic forces affecting overall cash payouts are the same as those affecting

long-run corporate earnings, allowing us to detect low-frequency cash flow exposures. We

view this issue as primarily an empirical question. If the long-run exposures to aggregate

economic fluctuations are evident in cash dividends, dividends plus repurchases, and directly

in corporate earnings, we have detected a risk source that is extremely important for un-

derstanding cross-sectional variation in expected returns. This would suggest that long-run
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economic risk spans several reasonable candidate measures for equity payouts, and most

importantly, is unaffected by high-frequency noise in their measurement, which is known to

plague both earnings and cash payouts. Further, this evidence would suggest that earnings

and/or payout management is also a high frequency issue, and long-run economic risk affects

the profitability of all firms regardless of short-run corporate strategy.

To explore this issue, we extract an earnings measure for each portfolio from Compustat.

Quarterly Compustat earnings data are only available from 1962-2001; nevertheless, this

sample still facilitates a important cross-check of the portfolio-specific exposures to long-run

economic risk. In collecting the earnings data, we must first impose some initial screens. In

order to be included in the calculation of portfolio earnings, firms must meet the following

criteria:

1. Have valid Compustat income before extraordinary items (Quarterly Data Item 8) as

of the end of the portfolio holding period, the month prior to the end of the holding

period, or two months prior to the end of the holding period. That is, the firm must

have had valid income before extraordinary items in the quarter of the holding period.

2. Have valid data for the characteristic in question (Book-to-Market Ratio, Capitaliza-

tion, Capital Expenditures, or Industry) as of the ranking date for the characteristic.

3. Have valid market values as of the portfolio formation, valid total returns as of the

end of the holding period, and valid capital gain returns as of the end of the holding

period.

Earnings are then calculated as Income Before Extraordinary Items, Compustat (Quarterly

data item 8) plus depreciation and amortization expense (Quarterly data item 5). The firm’s

earnings as of mm/dd/yy are treated as those for the fiscal quarter ending mm/dd/yy. For

example, if a firm is in a given portfolio as of 6/30/99, and its fiscal year end is September,

the earnings for the firm as of 6/30/99 are the 3rd quarter earnings for the fiscal year ending

in 1999. Due to dating conventions, this is altered a bit for firms with fiscal year ends in

January through May. If a firm is in a portfolio as of 6/30/99 and its fiscal year end is

March, the firm’s 6/30/99 earnings are those of the 1st quarter of the fiscal year ending in

2000. Portfolio earnings are the sum of earnings for the firms in the portfolio as of date

mm/dd/yy.
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Designate the aggregate sum of earnings on all firms in a particular portfolio at time t+1

as Eagg
t+1. We construct the earnings yield for this portfolio as follows:

yet+1 =
Eagg
t+1

∑N

i=1 ni,t · Pi,t

where, as above, ni,t is the number of shares outstanding and Pi,t is the price per share for

firm i (total number of firms equals N), so that
∑N

i=1 ni,t · Pi,t is the aggregate total market

capitalization for the collection of firms in this portfolio. We assume that the investor holds

this portfolio as a mutual fund that reinvests the capital appreciation, h1,t. Similar to our

dividend construction, the level of earnings consistent with the mutual fund investment that

we use in the paper is

Et+1 = yet+1 · V1,t

From this series, we construct quarterly levels of earnings by summing the level of earnings

within a quarter. As above, we employ a trailing four quarter average of the quarterly

earnings to construct the deseasonalized quarterly earnings series. These series are converted

to real by the personal consumption deflator.

Since the union of the CRSP and Compustat sources are required to obtain portfolio

earnings data, some firms are excluded. Hence, the size, book-to-market, and industry

portfolios are slightly different from those constructed above. Also, given Compustat data

limitations, we only measure quarterly corporate earnings over the 1965-2001 period. Hence,

when we conduct cross-sectional regressions for the earnings-based risk measures, we will

employ the associated average returns on the matched portfolios (and shorter time-period)

presented here. In Table 2, we present summary statistics for the real total returns and

earnings growth rates of the exact portfolios of firms that satisfy the above criteria. First,

the general pattern in observed average returns across portfolios are nearly identical to those

reported in Table 1 over the full post-war period for the broader collection of firms. The

ability to explain these relative size and value spreads is still a challenge.

There is one important issue to address with regards to the earnings construction. While

dividends (with or without repurchases as we measure them) will never be negative, measures

of real corporate earnings may fall below zero for any of our portfolios. Indeed, for the small

size (S1) portfolio, the real earnings are negative for the first two quarters of 1991 and over

the last year of our sample (2001). Few of the other portfolios ever have negative values,
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except in the fourth quarter of 2001. In our empirical work, we measure the log growth rates

consistent with the model specification, but given the (rare) appearance of negative values,

earnings growth rates are constructed by taking the percentage change in the quarterly

deseasonalized earnings series. For nearly all of our 30 portfolios, this is not an issue, and

the cross-sectional regressions are not affected by the decision to employ log or simple growth

rates. The earnings growth rates presented in Table 2 exhibit a considerably higher degree

of volatility than the other two cash flow growth rate measures. In particular, the small

firms and high book-to-market portfolios are very volatile. Note, however, much of this

volatility is driven by the last two years of the sample when corporate earnings contracted

sharply. If you exclude this period, earnings growth rate volatility is generally more in line

(though somewhat still more pronounced) with the other cash flow growth measures. Most

importantly, the inclusion of this period does not affect our cross-sectional estimates of long-

run risk exposure, but does highlight the importance of high-frequency measurement issues,

which are clearly pronounced during this period. Elevated earnings growth volatility makes

the detection problem that much more challenging.

4 Estimation and Results

To explore the long-run relationship between consumption and our three candidate mea-

sures of cash flow growth (cash dividends, dividends plus repurchases, and earnings), we

first estimate the dynamic processes described for consumption and cash flow growth rates.

Note that in estimation we remove the unconditional mean from all the cash flow and con-

sumption growth rate series and use these demeaned series in estimating the dynamics of

consumption and cash flow growth rates. We use GMM, and consider the following set of

moment conditions for estimation. First, the consumption dynamics can be estimated using

the moment conditions:

E [g0,t] = E[ηc,tgc,t−j ] = 0 (13)

for j = 1 · · · J . This expression gives us J moment conditions associated with estimating

the consumption dynamics. We estimate the cash flow growth dynamics with the following
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moment restrictions:

E [g1i,t] =







E[ui,tgc,t−k]

E[ui,t−lζi,t]

E[ηc,tζi,t]






= 0 (14)

for k = 1 · · ·K, and l = 1 · · ·L. The last moment condition estimates bi. This expression

yields (K + L + 1) moment conditions for each cash flow growth under consideration, and

J moment conditions associated with estimating the consumption growth dynamics. For N

assets we consequently have J + N(K + L + 1) moment conditions and the same number

of parameters. We will set J = 1, K = 8 and L = 8. In addition, we also consider the

cross-sectional restrictions

E [g2,t] =

(

∑

iE [Ri,t − (λ0 + λcβi,d)]
∑

iE [(Ri,t − (λ0 + λcβi,d)) βi,d]

)

= 0 (15)

The final two moment conditions ensure an exactly-identified system where the GMM based

estimates for the relevant risk prices, λ0 and λc, are equivalent to those obtained under

ordinary least squares. Taken together, this yields 2 + J + N(K + L + 1) parameters, and

the same number of orthogonality conditions. To explore the separate contributions of the

long-run and the contemporaneous exposures, we also consider the cross-sectional regression

of average returns on γi and bi.

With 30 assets and 4 parameters to characterize the cash flow growth rates, the dimension

of the optimal GMM weight matrix would be at least 120 × 120, which is impossible to

estimate given the number of time-series observations. In practice, since the joint optimal

GMM weighting matrix becomes too large, we utilize the following weighting matrix for the

calculation of standard errors:

W−1 =



















E
[

g0,tg
′

0,t

]

0 · · · · · · 0

0
(

E
[

g1i,tg
′

1i,t

])

· · · · · · 0
... · · ·

. . . · · ·

...

0 · · · · · ·

(

E
[

g1N,tg
′

1N,t

])

0

0 · · · · · · 0 E
[

g2,tg
′

2,t

]



















(16)

That is, the weighting matrix is a block-diagonal matrix of the covariance of the moment
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conditions. The resulting weighting matrix is HAC-adjusted following Newey and West

(1987). It is important to note that the standard errors on the time-series parameters for

a given (univariate) dividend growth rate utilize the full GMM weight matrix—and hence

are quite reasonable. The system associated with the estimating the risk prices is exactly

identified; that is, the point estimates correspond to the OLS estimates. However, the

standard errors for the risk prices, that is λ0 and λc, do not take account of the error in

estimating the time-series parameters that go into the construction of the cash flow betas.

For this reason, we also report the Monte Carlo finite sample distribution for the t-statistic

on the estimated risk prices and the cross-sectional R2 that takes account of the estimation

error of all the time series and cross-sectional parameters for all assets at the same time.

The details of this Monte Carlo are provided in the next section.

4.1 Empirical Evidence

For the purposes of estimation, we assume that the log consumption growth rate, gc,t, follows

an AR(1) process; that is, we assume J = 1. The smoothed consumption growth, g̃c,t, is

measured over eight quarters (K = 8); consequently, we assume an AR(8) for the shocks

to the cash flow growth rate, ui,t (L = 8).5 Additionally, we assume that γi,k = γi ∀ k.

Taken together, the dynamic process for the demeaned quarterly consumption and cash flow

growth rate data that we consider:

gc,t+1 = ρcgc,t + ηt+1

gi,t+1 = γig̃c,t + ui,t+1

ui,t+1 = biηt+1 +
L
∑

l=1

ρl,iui,t−l+1 + ζi,t+1

βi,d =
Kκi,1γi
1− κi,1ρc

+
bi

1−
∑

l κ
l
i,1ρl,i

(17)

In this case, the cash flow beta, βi,d, is determined both by the contemporaneous covariance

between the cash flow and consumption shock, bi, and the effect the smoothed consumption

growth rate has upon future cash flows, embodied in the coefficient γi; in both cases, the

5Results are not sensitive to the order of the AR process for the cash flow growth rate shocks.
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autoregressive nature of the processes magnify the effects accordingly.6 Note, our results

appear to be qualitatively robust to alternative choices for K and L.

For our first candidate measure of cash flows, cash dividends, the parameter estimates for

this model are presented in Table 3. Estimates of γi for the characteristic-sorted portfolios

are presented in Table 3 along with HAC-adjusted standard errors. As shown in the table, a

clear pattern emerges in the projection of cash dividend growth rates on the smoothed aver-

age of lagged consumption growth rates. Sorting on market capitalization produces a pattern

in γi. For example, the small firm portfolio exhibits a covariance with smoothed consump-

tion growth of 1.76 (S.E. 2.12) compared to 0.09 (S.E. 0.70) for the large firm portfolio. The

pattern is most pronounced within the decile sort. Also, the book-to-market sorted portfolios

produce large spreads in γi; the high book-to-market firms’ sensitivity to smoothed consump-

tion growth is 8.48 (S.E. 2.73) compared to 1.27 (S.E. 2.38) for the low book-to-market firms.

The pattern among industry-sorted portfolios is less identifiable. In untabulated results, we

find that the pattern in the long-run exposure to consumption fluctuations is very similar

across our other candidate cash flow measures: dividends plus repurchases and earnings.

This evidence suggests that exposures to long-run economic risk are evident in all our can-

didate measures of cash flow, and for this reason, we present the cross-sectional implications

of these patterns below. Despite strong cross-sectional significance across all our cash flow

measures documented below, the estimates of γi are associated with large standard errors.

Monte Carlo evidence presented below confirms that the cross-sectional evidence is never-

theless robust even when accounting for the time-series imprecision of the long-run exposure,

γi.

We also present the contemporaneous covariance between the consumption and cash flow

growth rate shocks, bi, in Table 3. This parameter measures the immediate response of each

asset’s cash flow growth rate to an aggregate shock. For cash dividends, sorting on market

capitalization and book-to-market produces a strong pattern in the contemporaneous rela-

tionship between consumption and cash dividend shocks. However, in untabulated results,

this pattern is not pronounced for our other measures of cash flow, dividends plus repur-

chases or earnings. The contemporaneous covariances, bi’s, for these alternative measures are

not consistent across candidate cash flow measures. This suggests that measurement noise

6Note, that κi,1 is estimated to be equivalent to 1/(1+ exp(d − p)), where (d − p) is the average log cash
flow-price ratio. For cash dividends, κi,1 is, on average, 0.988 for quarterly data. Incorporating κi,1 in the
calculation of the cash flow beta does not materially impact our results. For example, if we assume κi,1=1
for all assets, our results are materially unchanged.
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and/or payout management is driving a wedge between the high-frequency relationships

among cash dividends, repurchases, and earnings.

In Table 3, we also document the sum of the autoregressive coefficients for the portfolio-

specific cash dividend growth rate shocks (the evidence for the other cash flow measures are

comparable). Many of these coefficients are reasonably large and significant. Additionally,

the first order autocorrelation coefficient in consumption growth is estimated to be 0.25

(S.E. 0.07). Our estimates of the cash flow beta (see equation (17)) will utilize this serial

correlation.

Finally, we also present the implications of the previously estimated parameters for the

cash flow beta, βi,d, for each of the 30 portfolios implied by the cash dividends. This is a

key parameter of interest, as it describes each portfolio’s dividend response to an aggregate

consumption shock. Further, according to the model presented above, this parameter is the

sole measure of exposure to systematic risk which determines risk premia in the cross-section.

Accordingly, we will explore the ability of the cash flow beta to explain cross-sectional vari-

ation in average returns across the 30 portfolios. As can be seen in equation (17), the cash

flow beta is essentially the sum of the projection coefficient describing the long-run exposure

of cash dividend growth to smoothed consumption, γi, and the contemporaneous covariance

between shocks to cash dividend and aggregate consumption growth, bi, adjusted for serial

correlation in each series. Empirically, the estimated cash flow betas differ dramatically

across the portfolios, generally in line with their observed average returns. For example,

we document a large cash flow beta spread in market capitalization portfolios; the βi,d for

the small firm portfolio is 2.65 (S.E. 1.84), whereas the same for the large firm portfolio is

only 0.76 (S.E. 0.40). The same pattern emerges for the book-to-market sorted portfolios;

the estimated βi,d’s for the low and high book-to-market portfolio are 1.73 (S.E. 1.18) and

5.02 (S.E. 1.87), respectively, in line with the large observed dispersion in average returns

across high and low book-to-market portfolios. Finally, a less pronounced pattern emerges

with the industry sorted portfolios, with the durable goods industry displaying the largest,

by far, estimated cash flow beta at 2.90 (S.E. 1.10). The lowest cash flow beta among the

industry-sorted portfolio is associated with the chemicals industry. HAC-adjusted standard

errors, computed using the delta method, demonstrate that the cash flow betas are gen-

erally estimated with precision in the time-series. In untabulated results, we observe less

pronounced patterns in the cash flow betas for the dividend plus repurchases and earnings

measures. However, they continue to be consistent with the observed size and value spreads.
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In the next section, we will explore, for each of our candidate cash flow measures, the ability

of the cash flow betas (and their associated components bi and γi) to explain average returns.

4.2 Cash Dividend Betas and the Cross-section of Returns

In this section, we examine the ability of the cash flow beta, βi,d, to explain the cross-sectional

variation of observed equity risk premia. Effectively, we perform standard cross-sectional

regressions using the 30 decile portfolios (10 size, 10 book-to-market, and 10 industry). The

estimated cross-sectional risk premia restriction is stated in equation (15), with λ0 and λc

as the cross-sectional parameters of interest, given the estimated cash flow beta. For cash

dividends, D1,t, Table 4 (Panel A) documents the ability of the estimated cash flow betas

to explain the cross-section of average returns. For this measure of payouts, our results

demonstrate that the estimated price of consumption risk is both positive and significant;

the OLS estimate of λc is 0.079, with a HAC-adjusted t-statistic of 2.41. The GMM based

standard errors account for the time-series variation in measured returns. Further, the

adjusted R2 is 53%. Within portfolios sorts, this relationship holds as well; for example,

the correlations between average returns and the cash flow betas are 0.46, 0.75, and 0.18

for the size, book-to-market and industry portfolio, respectively. Consistent with the large

cross-sectional R2, the estimated cash flow beta can explain a considerable portion of the

cross-sectional variation in measured risk premia associated with this set of portfolios.

To explore the small-sample features of our estimator, we conduct a simulation-based

Monte Carlo analysis. The small sample distribution may be particularly important since

the cash flow beta is not always precisely measured in the time-series. For most of the

portfolios, βi,d is significantly different from zero, but the projection of cash dividend growth

on lagged consumption growth, γi, is generally not. Despite this issue, the cross-sectional

price of consumption risk, λc, does appear to be estimated precisely with more than 50% of

the cross-sectional dispersion in risk premia explained. Collectively, this requires more careful

consideration, and in consequence, we consider an additional simulation based experiment

to ensure that our results reflect the economic content of our model rather than random

chance.

We conduct the following Monte Carlo experiment, in which we simulate 10,000 samples

of quarterly measured aggregate consumption growth of the same size as is available in our

sample (1949-2001). This experiment simulates under the alternative hypothesis that our
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model is incorrect. That is, we effectively assume that the price of consumption risk and

the cash flow beta, βi,d, are zero. The demeaned consumption is simulated from an AR(1)

process

ĝc,t+1 = ρ̂cĝc,t + η̂c,t+1 (18)

where ρ̂c is the autoregressive parameter for consumption estimated in the data, and η̂c,t+1 is

simulated from a normal distribution with standard deviation equal to ση, which corresponds

to the standard deviation of the consumption growth residual in the data. The simulated

consumption growth rates and demeaned observed cash dividend growth rates are used to

estimate the time-series parameters in equation (17). That is, we re-estimate the cash flow

beta for each iteration as follows:

ĝc,t+1 = ρcĝc,t + η̂t+1

gi,t+1 = γi˜̂gc,t + ui,t+1

ui,t+1 = biη̂t+1 +
8
∑

l=1

ρl,iui,t−l+1 + ζi,t+1

βi,d =
8κi,1γi

1− κi,1ρc
+

bi

1−
∑8

l=1 κ
l
i,1ρl,i

(19)

where each portfolio’s demeaned cash dividend growth rate, gi,t, is the actual observed

quantity for each portfolio, and ˜̂gc,t is the 8-quarter smoothed simulated consumption growth

rate. For each iteration, we then run the standard cross-sectional regression:

Ri,t = λ0 + λcβi,d + vi,t (20)

where Ri,t is the observed real return for each portfolio. As the simulated consumption

growth is independent of all the cash dividend growth rates, by construction, the population

values of the cash flow betas, βi,d, are zero, and therefore the population value of λc is also

zero. This Monte Carlo experiment provides finite sample empirical distributions for the

t-statistic on the estimated λc and the adjusted R2 for the cross-sectional projection. For

each iteration, we store the HAC-adjusted t-statistic and the R̄2.

The results of this experiment are presented in Table 4. The distribution for the HAC-

adjusted t-statistic on the estimated price of risk, λc, and the cross-sectional adjusted R2

are presented in Panel A. The t-statistic distribution is essentially centered at zero (the
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population value) for both frequencies. This evidence suggests that our point estimates for

λc are statistically significant, as our estimated t-statistic of 2.41 is in the far right hand tail

of the empirical distribution. These t-statistics are at the 95% quantile, which is consistent

with a rejection of the null hypothesis that no positive cross-sectional relationship exists at

the 5% confidence level. As additional evidence in favor of the relationship between the

measured average returns and the cash flow beta, an R̄2 of 53% is in the far right tail of

the adjusted R2 empirical distribution for these data, exceeding the 97.5% critical value.

Collectively, this experiment suggests that our empirical results reflect the true economic

content of the estimated cash flow beta rather than random chance. In an economy in

which asset returns and cash dividend growth are independent of consumption growth, the

probability of observing these estimated magnitudes of λc and the cross-sectional R̄2 is

extremely low.

We also consider the relative contributions of the components that comprise the cash

flow beta. In particular, we explore the cross-sectional regression in equation (20), replacing

βi,d with the estimate of the cash dividend exposure to long-run consumption fluctuations,

γi. The results of this regression are presented in Panel A of Table 4. As can be seen,

the estimated “price of risk” associated with the long-run exposure, γi, is both positive

and significant, with a cross-sectional R̄2 of 53%, identical to the cash flow beta regression.

Note, if we assume that bi = 0 for all assets, the cross-sectional R̄2’s would be identical for

either γi or βi,d; that is, they would contain exactly the same cross-sectional information.

To explore this issue further, we consider the joint regression of average returns on both γi

and bi. For cash dividends, the risk price associated with the long-run exposure continues

to be both positive and significant, whereas the contemporaneous covariance is statistically

insignificant. Taken together, this evidence suggests that γi provides the major contribution

to the explanatory power of the cash flow beta. In other words, bi=0 might be a reasonable

assumption, particularly if we are concerned that bi is contaminated by high-frequency noise.

We conduct an additional Monte Carlo experiment to explore the small-sample properties of

these two alternative cross-sectional regressions and, in particular, the estimate price of risk

on the long-run exposure, γi, since it is known to be estimated with imprecision in the time-

series. As can be seen, the cross-sectional R̄2 of these regressions exceed the 97.5% critical

value. Additionally, the t-statistics on the associated risk price exceed the 95% quantile.

The long-run exposure of cash dividends to consumption growth is the key factor explaining

cross-sectional variation in average returns.
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4.3 Alternative Cash Flow Measures and the Cross-section

As we have mentioned, the cash dividends associated with our asset menu represent only

one of many possible payouts associated with the total return for the equity claim. For that

reason, we perform the identical regression to those discussed above for our two alternative

cash flow measures, cash dividends plus repurchases and earnings. First, we perform the

same cross-sectional regressions using the 30 decile portfolios (10 size, 10 book-to-market,

and 10 industry) detailed above. For dividend plus repurchases, D2,t, and earnings, Et,

Table 4 (Panel B and C, respectively) document the ability of the estimated cash flow betas

to explain the cross-section of average returns. For dividend plus repurchases, our results

demonstrate that the estimated price of consumption risk is both positive and significant,

but not for corporate earnings. The OLS estimate of λc is 0.072 for D2,t and 0.011 for Et,

with a HAC-adjusted t-statistic of 2.77 and 1.57, respectively. The adjusted R2’s are 29%

and 9.3%, respectively, lower than what we document for the cash dividend betas. A non-

trivial amount of cross-sectional variation is explained by the cash flow betas for dividends

plus repurchases, but the cross-sectional explanatory power of the estimated cash flow beta

is limited for earnings.

Recall, however, that the cash flow beta is a weighted average of the long-run cash flow

exposure to consumption and the high-frequency contemporaneous relationship between cash

flow and consumption shocks. If the latter is measured with considerable error, as it certainly

is for the volatile corporate earnings (and likely D1,t and D2,t), the risk detection problem is

more challenging empirically. For cash dividends, we observe that the long-run risk exposure,

γi, is the key empirical component in the cash flow beta. Since, it is also likely that the long-

run exposure is less sensitive to high-frequency measurement and management problems, we

explore this further, performing the same alternative cross-sectional regressions for D2,t and

Et. The results of these regression are presented in Panel B of Table 4, respectively. First,

the estimated “prices of risk” associated with the long-run exposures, γi, are both positive

and highly significant, with a cross-sectional R̄2 of 42% for dividends plus repurchases and

27% for earnings. As before, we also consider the joint regression of average returns on both

γi and bi, estimated for our two alternative cash flow measures. For both D2,t and Et, the

risk prices associated with the long-run exposure continue to be both positive and highly

significant across both cases, whereas the risk prices on the contemporaneous covariance are

negative, but statistically insignificant. The inconsistency across cash flow measures in the

contemporaneous measures highlights the difficulties associated with detecting risk at high-
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frequencies, particularly in the presence of significant measurement and management issues.

The detection problem is particularly acute for our measure of earnings growth. In sharp

contrast, this evidence suggests that the exposure to long-run consumption risk, captured

by γi, is an extremely robust quantity, with considerable ability to explain the observed

cross-sectional patterns in average returns across all our candidate measures for equity cash

flows.

5 Economic Motivations

In this section, we explore the implications of extending the equilibrium model to facilitate

more general preference specifications. In particular, for the time-nonseparable preferences

developed in Epstein and Zin (1989) (EZ), the Intertemporal Marginal Rate of Substitution

(IMRS) is

Mt+1 = exp {θ ln δ −
θ

ψ
gc,t+1 − (1− θ)rc,t+1}. (21)

gc,t+1 is the growth rate (in logs) of consumption and rc,t+1 is the return (in logs) on an

asset that pays off aggregate consumption each period. Further, δ is a time preference

parameter and ψ the intertemporal elasticity of substitution. The parameter, θ ≡
1−α
1− 1

ψ

,

wherein α represents the coefficient of relative risk aversion. Under this parameterization,

the innovation in the (log) IMRS in this model is determined by

ηm,t = −

1− α

ψ − 1
ηc,t −

ψα− 1

ψ − 1
ηrc,t (22)

where the innovation in the return on the consumption asset is ηrc,t and ηc,t is the innova-

tion in consumption growth. It is well recognized that the innovation to the return to the

consumption stream, ηrc,t, is endogenous to the model. For example, when consumption

growth is assumed to be an AR(1) process with Gaussian innovations, equation (22) leads

to a single-factor risk premium specification–we refer to this as Model 1. In Model 1, ηrc,t is

a scalar multiple of the consumption innovation (i.e, perfectly correlated with consumption

innovations) and as shown below, the cash flow beta is sufficient to characterize risk premia

across assets. An alternative model (called Model 2) that leads to a two-factor specification

follows where consumption dynamics are also characterized by stochastic volatility. In this

case, expected returns may be time varying. Further, we have a two-factor model and the
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average return on assets is also determined by the covariation with ηrc,t. This model captures

the intuition that the risk premia on different assets are determined by the risk associated

with the cash flow beta and the exposure of assets to a factor that determines time-varying

risks.

5.1 Model 1: Constant Risk Premia

In the first model, we derive implications for risk premia in an economy where the risk premia

on all assets are constant. As in equation (4), consumption growth follows an AR process

with lag length 1:

gc,t+1 = µc + ρcgt + ηc,t+1

In this case, the innovation to the consumption portfolio is

ηrc,t = (1 + bc)ηc,t,

where bc =
1−ψ−1

1−κρc
. Substituting this expression into equation (22) implies that

ηm,t = λ1ηc,t,

where λ1 = α+ bc
ψα−1
ψ−1

. When consumption is assumed to be i.i.d, then bc = 0 and λ1 equals

the risk aversion parameter α. Note that the return innovation to the consumption stream,

ηrc,t, is perfectly correlated with the innovations in consumption. These assumptions lead

to a single-factor model with constant risk premia. The single factor prices risks associated

with consumption news.

With constant cost of capital, it is also straightforward to show that for any asset i, the

return innovation is:

ri,t − Et−1[ri,t] ≡ eri,t = βi,dηc,t + ζi,t (23)

where, as before, the term βi,dηc,t + ζi,t represents news about cash flows. The arithmetic

risk premium on any asset, approximately, is determined by covt(λ1ηc,t+1, eri,t+1), hence the

risk premium is

Et[Ri,t+1 −Rf,t+1] = βi,dλ1V ar(ηc,t) (24)

In this model, the cross-sectional differences in risk premia are determined by the differences

25



in the long-run exposure of cash flows to consumption news.

The cross-sectional implications in equation (24) motivate the set of cross-sectional re-

strictions that we have explored in the previous section. Under these assumptions, the

long-run exposure of cash flows to consumption news may be modeled using a VAR for cash

flow and consumption growth. The resulting restriction on cross-sectional risk premia is

E[Ri,t+1] = λ0 + βi,dλc (25)

which follows from equation (24), with the average risk free rate being λ0 and the price of

risk for consumption λ1V ar(ηc) being λc. Consequently, under this set of assumptions, risk

premia in the cross section are driven only by the price of risk associated with risk inherent

in aggregate consumption growth.

5.2 Model 2: Risk and Return with Time-Varying Risk Premia

To allow for the possibility that risk premia are time-varying, we begin by assuming that

consumption growth innovations are characterized by stochastic volatility. In this setting,

the innovation in the return to the consumption stream is given by

ηrc,t = b1ηc,t +
∑

K

bkηk,t

The terms ηk,t correspond to the innovations in risk premia—for simplicity we assume that all

the risk sources are uncorrelated. This can be motivated by a model that captures fluctuating

consumption volatility as in Bansal and Yaron (2002) or can simply be viewed as a version

of the ICAPM in Merton (1973). The innovations to the returns on the consumption stream

are not perfectly correlated with consumption innovations as in Model 1.

Consider the innovation in the return to any asset i, where the risk premium on the asset

varies:

ri,t − Et−1[ri,t] ≡ eri,t = βi,dηc,t + ζi,t −
∑

k

βi,kηk,t (26)

In addition to cash flow news, changes in expected returns also affect the return innova-

tions. Consider the covariation in return innovations with innovations in the pricing kernel,

covt(
1−α
ψ−1

ηc,t+
ψα−1
ψ−1

ηrc,t, eri,t). Given our assumptions above, this covariation implies that the
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risk premium can be (approximately) stated as

Et[Ri,t+1 −Rf,t+1] = βi,dλ1V art(ηc,t) +
∑

k

βi,kλkV art(ηc,t) (27)

Economically, equation (27) captures the intuition that risk premia on assets are determined

by the cash flow beta and by variables that may influence the expected returns.

This model also allows us to interpret the links between market betas and expected

returns. Note that the market return innovation will also satisfy equation (26). Hence, the

covariance between return innovations to an asset i and the market is

βi,dβmk,dvar(ηc) +
∑

k

βi,kβmk,kvar(ηk) (28)

Note that across assets this covariance is a weighted average reflecting all risks: the cash

flow risk, βi,d, and risks associated with expected return news. The market beta of an

asset will also reflect a weighted average of these two individual betas. However, while each

individual beta may be important (and significantly priced), a weighted average of the two

betas may fail to appear to be a priced risk source, as each beta carries different prices of

risks (see equation (27)). This is one potential reason why market betas may fail to explain

the cross-section of average returns.

One way to evaluate this proposition is to consider a regression of the market betas on the

cash flow betas. This regression provides a sense of how much of the market beta is driven

by the cash flow beta. Since the residual from this projection would only approximately

identify the weighted average term
∑

L βi,Lvar(ηl), it may not be useful in explaining risk

premia across assets. That is, the portion of market beta that is orthogonal to cash flow beta

may be insufficient to capture risk attributable to aggregate economic uncertainty. However,

as we are able to identify βi,d separately, we can still infer the percentage of the cross-section

of market betas that are driven by the cash flow betas.

5.3 Multi Factor Model: Estimation and Empirical Results

To consider the implications of the addition of the market beta to the cross-sectional ex-

planatory power of the cash flow beta, we first must obtain a time-series estimate of the
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usual market beta. To do this, we augment the set of orthogonality conditions to include

E[(ri,t − r̄i,t)(rm,t − r̄m)] = 0 (29)

where, to maintain parsimony in estimation as above, we also demean all returns and market

betas are estimated asset-by-asset. In addition, we also consider the modified cross-sectional

restrictions

Ri,t = λ0 + λ1γi + λ2bi + λmβi,m + ei,t (30)

Given the evidence presented above, we explore the separate effects of βi,m, γi and bi for the

all three candidate measures of cash flows. All standard errors for the prices of risk are, as

before, HAC-adjusted.

In Table 5 (Panel A), we report the time-series estimates of the market betas (see equa-

tion (29)). As can be seen, the market betas, βi,m, are estimated in the time-series with

precision. Additionally, it appears that the market betas across the market capitalization

sorted portfolios exhibit a strong pattern in accordance with their observed average returns

(a well-known result), but this is not true for the book-to-market sorted portfolios; the high

and low book-to-market portfolios have very similar estimates of the market beta. The in-

dustry sorted portfolios display a less pronounced pattern, but the durable goods industry

is associated with the largest market beta and does display the largest average return. In

the cross-section, however, the estimated market price of risk, λm, is not significant, and the

adjusted R2 is only 4%.

In Table 5 (Panel B), the results for the multi-factor specification are presented. As can

be seen, the inclusion of the market beta into the cross-sectional regressions, does not dra-

matically affect the explanatory power of the long-run exposure, γi. Estimated risk-prices

for the market beta are not statistically different from zero in any case. For example, for

the cash dividend measure, the estimated risk price associated with the market portfolio

covariance, λm, is 0.12, but with a HAC adjusted t-statistic of only 0.14. Conversely, the

estimated risk price for the long-run cash dividend exposure, γi, with respect to consump-

tion is 0.09, with a HAC adjusted standard error of 2.81. The adjusted R2 is 0.51, nearly

identical to the R2 observed above. This patterns are consistent across all three cash flow

measures. Additionally, in no case is the contemporaneous covariance between cash flow and

consumption shocks, bi priced, as documented above. Taken together, the evidence that the

usual CAPM market beta, a weighted average of an asset’s exposure to multiple sources of
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risk, does not do a particularly good job explaining the cross-section of observed returns is

not particularly surprising. However, from the perspective of our model, the pronounced

cross-sectional variation in exposure to long-run consumption risk is uniform across various

candidate measures of portfolio cash flow. Further, as these exposures correspond to the

observed average returns, the documented risk premia spreads across these portfolios does

not appear to be particularly puzzling.

5.4 Long-run Aggregate Risk Factor Analysis

This paper differs from standard practice in the asset pricing literature in that risk measures

are obtained by estimating covariances between cash flow measures and aggregate sources of

risk. In contrast, the standard pricing framework retrieves risk measures from the covariance

of returns with these sources of risk. In this section, we provide an analysis of the information

contained in both the cash flow streams and the price appreciation of the portfolio for the

cross section of returns. In particular, we examine a factor portfolio that captures the

information in our cash flow risk measures, similar to practice in the asset pricing literature.

We first construct a long-run aggregate risk factor mimicking portfolio, Rγ,t+1, by weight-

ing returns by the second column of

ω =
(

(γ′γ)
−1
γ′
)

′

(31)

where γ represents the vector of estimated long-run risk exposures, γi, presented above for

cash dividends and dividends plus repurchases. We exclude earnings from this exercise given

the shorter time span for which earnings data are available. Factor loadings for each of the

30 size, book-to-market and industry portfolios are calculated via time series regressions as

follows:

Ri,t+1 = αi + βi,γRγ,t+1 + εi,t+1 (32)

The remaining models are obtained by regressing returns on the value-weighted market

(CAPM), the per capita growth in consumption of nondurables and services (CCAPM), and

the Fama-French risk factors (FF).

In Table 6 (Panel A), we present cross-sectional regressions of average returns for the

30 size, book-to-market and industry portfolios on alternative factor beta specifications.
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First, measured exposures to our long-run risk factor mimicking portfolio do a very good

job of explaining the observed cross-sectional variation in average returns. For example, the

estimated prices of long-run aggregate factor risk are 0.796 (based upon the cash dividend

sort, D1,t) and 0.805 (based upon the dividend plus repurchases sort, D2,t), and are both

highly significant. Further, the cross-sectional R̄2’s associated with each factor are 56% and

71%, respectively. Figure 3 presents a plot of the estimated γi using the cash flow measure

D1,t against the factor mimicking portfolio loadings. As shown by the plot, the two risk

measures display a strong positive relationship; the correlation between the two series is

0.74. Our long-run risk factor compares favorably with alternative factor based models. The

CAPM and C-CAPM factors capture only 17% and 32%, respectively, of the variation in

average returns. The three-factor Fama French model performs much better, with an R̄2

of 67%. Interestingly, correlations between the three Fama-French factors and the long-run

risk factor mimicking portfolios are quite high. The correlation between the long-run risk

factor portfolio measured with D1,t and SMBt is 0.75, whereas the correlation between the

long-run risk factor portfolio measured with D2,t and HMLt is 0.56. This evidence suggests

that the FF factors may actually be sorting along long-run economic risk.

6 Conclusion

This paper documents a striking empirical observation. The long-run cash flow exposures

to aggregate consumption shocks across assets can explain a significant component of the

cross-sectional variation in observed average returns across a challenging collection of size,

book-to-market, and industry sorted portfolios. We measure cash flow betas by estimating

the joint time-series dynamics for both aggregate consumption and portfolio specific cash

flow growth rates using a VAR; however, we find that the long-run cash flow exposure implied

by this specification is the key determinant of risk for all cash flow measures. In fact, the cash

flow beta is equivalent to this long-run exposure if we assume, that the contemporaneous

relationship between cash flow and consumption growth is insignificant (as it appears to

be empirically). This assumption may be appropriate due, for example, to excessive high-

frequency measurement noise.

Finally, we describe a model which allows for time-variation in both expected consump-

tion growth and aggregate uncertainty, for which each risk source will require a distinct
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price. Under this specification, it is not surprising that the usual market beta, as a weighted

average of an asset’s exposure to these potential sources of risk, does not do a particularly

good job explaining the cross-section of observed returns. From the perspective of our cash

flow beta model, the pronounced cross-sectional variation in average returns across these

portfolios does not appear to be particularly puzzling. Our model captures the economic

intuition that cash flows of different assets, however measured in practice, have different

long-run exposures to fluctuations in aggregate consumption, and that this exposure has

considerable capacity to explain differences in mean returns across assets.
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Table 1: Summary Statistics

Returns D1 D2
Portfolio Mean Std. Mean Std. Mean Std. Div. Yld. Rep. Yld.
s1 0.0314 0.1258 0.0111 0.0616 0.0134 0.0814 0.56 0.25
s2 0.0299 0.1145 0.0098 0.0409 0.0105 0.0713 0.72 0.23
s3 0.0299 0.1098 0.0079 0.0363 0.0092 0.0548 0.80 0.22
s4 0.0296 0.1069 0.0065 0.0376 0.0082 0.0712 0.84 0.23
s5 0.0294 0.1010 0.0069 0.0368 0.0089 0.0535 0.87 0.20
s6 0.0271 0.0961 0.0048 0.0306 0.0071 0.0555 0.90 0.21
s7 0.0273 0.0940 0.0056 0.0321 0.0076 0.0647 0.89 0.22
s8 0.0267 0.0910 0.0053 0.0540 0.0076 0.0711 0.92 0.21
s9 0.0253 0.0827 0.0047 0.0364 0.0058 0.0625 0.97 0.20
s10 0.0227 0.0766 0.0028 0.0209 0.0040 0.0481 0.93 0.16
b1 0.0225 0.0967 0.0025 0.0427 0.0043 0.0860 0.58 0.13
b2 0.0244 0.0875 0.0047 0.0536 0.0070 0.0705 0.77 0.13
b3 0.0235 0.0849 0.0035 0.0641 0.0051 0.0769 0.88 0.17
b4 0.0221 0.0826 0.0044 0.0615 0.0048 0.0891 0.94 0.22
b5 0.0286 0.0762 0.0092 0.0435 0.0104 0.0873 1.06 0.21
b6 0.0262 0.0764 0.0064 0.0344 0.0089 0.0548 1.10 0.19
b7 0.0279 0.0783 0.0067 0.0411 0.0082 0.0629 1.18 0.20
b8 0.0319 0.0793 0.0112 0.0379 0.0118 0.0600 1.22 0.19
b9 0.0320 0.0830 0.0091 0.0468 0.0095 0.0694 1.22 0.20
b10 0.0376 0.0974 0.0136 0.0794 0.0189 0.1320 1.10 0.31
i1 0.0255 0.0845 0.0073 0.0457 0.0077 0.0609 0.87 0.24
i2 0.0287 0.1039 0.0054 0.0634 0.0059 0.1012 1.12 0.17
i3 0.0222 0.0926 0.0014 0.0515 0.0035 0.0651 0.88 0.19
i4 0.0255 0.0840 0.0068 0.0304 0.0069 0.0803 1.01 0.21
i5 0.0260 0.1098 -0.0011 0.0445 0.0045 0.0879 0.62 0.19
i6 0.0219 0.0801 -0.0006 0.0331 0.0030 0.0836 1.14 0.12
i7 0.0255 0.1012 0.0011 0.0580 0.0039 0.0904 0.72 0.18
i8 0.0267 0.0859 0.0085 0.0281 0.0088 0.0826 0.77 0.18
i9 0.0204 0.0697 0.0011 0.0129 0.0010 0.0348 1.50 0.09
i10 0.0266 0.0905 0.0072 0.0316 0.0082 0.0555 0.95 0.20

Table 1 presents summary statistics for the data used in the paper. The table presents real mean returns

and cash flow growth rates for a set of 30 portfolios. Portfolios are sorted into deciles on the basis of market

capitalization (s1-s10), book-to-market (b1-b10), and ten industry groups (i1-i10). Summary statistics for

two measures of cash flow growth, D1, the growth rate in dividends paid and D2, the growth rate in dividends

plus repurchases, are presented. The final columns depict the average dividend and repurchase yields for

the portfolios. Data are sampled at the quarterly frequency over the period 1949.2 through 2001.4 and are

converted to real using the PCE deflator.

34



Table 2: Summary Statistics: Earnings

Earnings Returns
Portfolio Mean Std. Mean Std.
s1 0.0550 0.4950 0.0286 0.1436
s2 0.0204 0.2001 0.0273 0.1293
s3 0.0176 0.0939 0.0271 0.1208
s4 0.0032 0.1532 0.0263 0.1176
s5 0.0144 0.0624 0.0270 0.1110
s6 0.0100 0.0796 0.0225 0.1052
s7 0.0103 0.0612 0.0237 0.1030
s8 0.0086 0.0518 0.0227 0.0991
s9 0.0118 0.0481 0.0208 0.0898
s10 0.0086 0.0374 0.0176 0.0811
b1 0.0092 0.0868 0.0166 0.1039
b2 0.0178 0.0936 0.0193 0.0936
b3 0.0088 0.0973 0.0202 0.0902
b4 0.0145 0.1023 0.0201 0.0893
b5 0.0164 0.1211 0.0193 0.0785
b6 0.0125 0.1272 0.0234 0.0801
b7 0.0114 0.0965 0.0248 0.0826
b8 0.0164 0.1408 0.0263 0.0819
b9 0.0228 0.1249 0.0296 0.0910
b10 -0.0338 0.6339 0.0362 0.1049
i1 0.0151 0.0606 0.0244 0.0940
i2 0.0101 0.0786 0.0190 0.1064
i3 0.0064 0.0602 0.0202 0.0849
i4 0.0097 0.0471 0.0227 0.0893
i5 -0.0055 0.1413 0.0188 0.1100
i6 0.0353 0.3276 0.0191 0.0894
i7 0.0085 0.0296 0.0148 0.0772
i8 0.0194 0.0692 0.0250 0.1258
i9 0.0516 0.1306 0.0237 0.0996
i10 0.0217 0.1044 0.0140 0.1061

Table 2 presents summary statistics for the earnings data used in the paper. The table presents the mean and

standard deviation of arithmetic growth rates in earnings for a set of 30 portfolios. Portfolios are sorted into

deciles on the basis of market capitalization (s1-s10), book-to-market (b1-b10), and ten industry groups (i1-

i10). Data are sampled at the quarterly frequency over the period 1965.2 through 2001.4 and are converted

to real using the PCE deflator.
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Table 3: Time Series Parameters

γ SE
∑8

l=1
κli,1ρl,i SE bi SE βi,d SE

s1 1.7600 (2.1200) 0.6390 (0.0892) 0.8510 (0.6080) 2.6500 (1.8400)
s2 4.2960 (1.6320) 0.6090 (0.0923) 1.1800 (0.4820) 3.7100 (1.6400)
s3 2.1200 (1.2800) 0.5680 (0.1370) 0.9400 (0.5230) 2.5300 (1.4500)
s4 2.4240 (1.1360) 0.3150 (0.1270) 0.0135 (0.3760) 0.4200 (0.6130)
s5 1.7760 (1.1440) 0.4030 (0.1180) 0.0467 (0.3710) 0.3710 (0.6300)
s6 2.4400 (0.8400) 0.4460 (0.1010) 0.6500 (0.3300) 1.5800 (0.6530)
s7 1.7680 (1.1200) 0.1910 (0.1950) -0.3230 (0.4090) -0.1080 (0.4990)
s8 1.8400 (1.1840) 0.1880 (0.2000) 1.1200 (0.5280) 1.6900 (0.6650)
s9 1.3360 (0.7768) 0.3370 (0.1330) 0.4970 (0.2620) 0.9700 (0.4210)
s10 0.0896 (0.7024) 0.2320 (0.1420) 0.5740 (0.2600) 0.7630 (0.3990)
b1 1.2720 (2.3840) 0.4480 (0.1230) 0.8390 (0.4520) 1.7300 (1.1800)
b2 -3.3680 (1.7200) 0.4200 (0.1210) 0.5120 (0.6310) 0.3260 (1.2000)
b3 0.4240 (1.8640) -0.0172 (0.1340) 0.7300 (0.6770) 0.7880 (0.7310)
b4 -0.5544 (2.0560) 0.5240 (0.1420) -0.6550 (0.6350) -1.4700 (1.5400)
b5 0.4680 (1.5120) 0.4500 (0.1420) -0.3350 (0.4240) -0.5310 (0.8370)
b6 1.6960 (1.2160) 0.5330 (0.1280) 0.4010 (0.3710) 1.1400 (0.9620)
b7 1.7760 (1.0720) 0.0831 (0.1830) 0.7130 (0.6260) 1.0700 (0.5920)
b8 3.6080 (1.2560) 0.4800 (0.1160) 0.7830 (0.3780) 2.1000 (0.8670)
b9 4.0800 (1.9440) 0.4910 (0.1740) 0.4110 (0.5510) 1.4800 (1.3600)
b10 8.4800 (2.7280) 0.5060 (0.1680) 1.7900 (0.8020) 5.0200 (1.8700)
i1 0.2464 (0.9680) 0.5550 (0.1890) -0.1300 (0.3630) -0.2520 (0.8560)
i2 3.0640 (2.4320) 0.0578 (0.1340) 2.2500 (0.7850) 2.9000 (1.1000)
i3 2.7760 (1.0800) -0.1170 (0.1550) 0.4310 (0.4250) 0.8450 (0.4410)
i4 -0.2528 (0.8000) 0.3800 (0.1470) -0.1470 (0.2930) -0.2800 (0.5170)
i5 2.9200 (0.9360) 0.1670 (0.1400) 0.2310 (0.3700) 0.7600 (0.5300)
i6 -0.3128 (0.7136) 0.1100 (0.1470) -0.0364 (0.3780) -0.0926 (0.5030)
i7 2.0880 (1.2960) 0.1190 (0.2240) -0.3520 (0.4070) -0.0537 (0.4320)
i8 -0.5896 (0.7120) 0.0468 (0.1540) 0.5240 (0.2870) 0.4520 (0.3030)
i9 -0.3032 (0.5752) 0.6120 (0.0705) 0.6950 (0.1160) 1.7400 (0.3930)
i10 0.6432 (0.8320) 0.1260 (0.1760) 0.7790 (0.3940) 0.9980 (0.4910)

Table 3 depicts the estimated time series parameters from the model

gc,t+1 = ρcgc,t + ηt+1

gi,t+1 = γigc,t + ui,t+1

ui,t+1 = biηt+1 +

8
∑

l=1

ρl,iui,t−l+1 + ζi,t+1

βd,i =
κi,1γi

1 − κi,1ρc
+

bi

1 −
∑8

l=1
κli,1ρl,i

where gc,t+1 represents the demeaned growth rate in aggregate consumption and gi,t+1 represents the de-

meaned growth rate in the dividends paid on portfolio i. The parameter κi,1 represents a constant of

approximation in the Campbell and Shiller (1988) expression for returns. Data used in the estimation are

30 portfolios sorted on size, book-to-market and industry and are sampled quarterly over the period 1949.2

through 2001.4. All quantities are demeaned and converted to real using the PCE deflator. Standard errors

are presented in parentheses and are estimated using a HAC covariance matrix with one Newey-West lag.

Standard errors for
∑8

l=1
κli,1ρl,i and βd,i are computed via the delta method.
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Table 4: Cross-Sectional Regressions

Panel A: D1

λ0 λγ λb λc R̄2

a) Point Est. 2.450 0.079 0.532
t-stat 4.730 2.410

b) Point Est. 2.470 0.101 0.527
t-stat 4.760 2.480

c) Point Est. 2.460 0.092 0.044 0.522
t-stat 4.750 2.590 0.915

Distribution of t-statistics and R̄2

2.5 5.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 95.0 97.5
a) t-stat (λc) -2.570 -2.380 -2.110 -1.700 -1.230 -0.681 0.017 0.673 1.240 1.720 2.140 2.410 2.600

R̄2 -0.036 -0.035 -0.032 -0.021 -0.004 0.023 0.056 0.098 0.155 0.226 0.331 0.410 0.476

b) t-stat (λγ) -2.572 -2.368 -2.111 -1.700 -1.244 -0.714 -0.029 0.706 1.255 1.714 2.129 2.399 2.586
R̄2 -0.035 -0.035 -0.032 -0.019 -0.001 0.026 0.061 0.108 0.164 0.239 0.348 0.430 0.488

c) t-stat (λγ) -2.529 -2.319 -2.044 -1.609 -1.151 -0.642 -0.013 0.613 1.161 1.637 2.062 2.340 2.557
R̄2 -0.064 -0.053 -0.033 0.009 0.052 0.095 0.141 0.190 0.245 0.311 0.398 0.467 0.520

Panel B: Alternative Cash Flow Measures

λ0 λγ λb λc R̄2 λ0 λγ λb λc R̄2

Point Est. 2.430 0.072 0.285 Point Est. 2.210 0.011 0.093
t-stat 4.690 2.770 t-stat 3.310 1.570

Point Est. 2.470 0.090 0.415 Point Est. 2.080 0.029 0.265
t-stat 4.650 3.180 t-stat 3.060 2.230

Point Est. 2.510 0.088 -0.031 0.404 Point Est. 2.070 0.030 0.004 0.255
t-stat 4.990 3.090 -0.564 t-stat 3.050 2.200 0.720

Table 4 presents cross sectional regressions of average returns for 30 portfolios on the long-run beta, βd,i developed in the paper:

Ri,t = λ0 + λcβd,i + vi,t

In Panel A, results are presented for cash dividends, D1,t, covering the period 1949-2001; results with quarterly data over the period 1949:2-2001:4 for D2,t and

1965:2-2001:4 for Et are presented in Panel B. Parameters are estimated via ordinary least squares (OLS); t-statistics are computed with HAC-adjusted standard

errors. We also present the distribution of the t-statistics for the test H0 : λc = 0 and the R̄2 generated by a Monte Carlo experiment of 10,000 replications. In the

Monte Carlo, we simulate the demeaned consumption growth rate where ρ̂c is the autoregressive using the AR(1) parameter and standard deviation of the residual in

the data. Simulated consumption growth rates and observed dividend growth rates are used to generate the trailing moving sum of growth rates used in the estimation

of γi, estimate the time series parameters in model (9) and the cross-sectional parameters in the above specification.
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Table 5: Cross-Sectional Regressions

Panel A: Betas

βi SE βi SE βi SE
s1 1.240 (0.066) b1 1.110 (0.027) i1 0.904 (0.062)
s2 1.230 (0.050) b2 1.040 (0.025) i2 1.110 (0.035)
s3 1.220 (0.047) b3 1.010 (0.023) i3 1.060 (0.033)
s4 1.200 (0.049) b4 0.942 (0.034) i4 0.737 (0.065)
s5 1.170 (0.033) b5 0.868 (0.040) i5 1.250 (0.052)
s6 1.120 (0.033) b6 0.890 (0.030) i6 0.750 (0.063)
s7 1.120 (0.026) b7 0.887 (0.040) i7 1.090 (0.060)
s8 1.090 (0.022) b8 0.899 (0.046) i8 0.933 (0.049)
s9 1.010 (0.014) b9 0.903 (0.056) i9 0.585 (0.054)
s10 0.931 (0.016) b10 0.975 (0.074) i10 1.020 (0.039)

Panel B: Cross-Sectional Regressions

CF Measure λ0 λγ λb λmkt R̄2

Point Est. 2.100 0.580 0.038
t-stat 2.860 0.670

D1 Point Est. 2.340 0.090 0.043 0.121 0.507
t-stat 3.280 2.810 0.931 0.146

D2 Point Est. 1.860 0.085 -0.066 0.704 0.483
t-stat 2.450 3.130 -1.670 0.806

E Point Est. 1.081 0.034 0.005 0.905 0.402
t-stat 1.141 2.313 0.872 0.935

Table 5 presents cross sectional regressions of average returns for 30 portfolios on the long-run beta, βd,i
developed in the paper:

Ri,t = λ0 + λcβd,i + λββmkt,i + vi,t

Panel A depicts GMM estimates of betas using quarterly real returns data. In Panel B, cross-sectional

regression results are presented for various cash flow measures; data cover the period 1949-2001 in the case

of D1 and D2 and 1965-2001 in the case of E. Parameters are estimated via ordinary least squares (OLS);

t-statistics are computed with HAC-adjusted standard errors.
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Table 6: Cross-Sectional Regressions: Alternative Specifications

λ0 λγ λβi,c
λβi,m

λMRP λSMB λHML R̄2

D1 1.038 0.796 0.564
13.184 6.316

D2 1.211 0.805 0.708
26.580 8.589

CCAPM 1.014 0.178 0.318
8.111 3.876

CAPM 1.055 0.930 0.168
6.594 2.667

FF 0.242 0.993 0.333 0.971 0.666
0.530 2.159 3.195 5.432

Table 6 presents cross-sectional regressions of average returns for 30 portfolios on alternative beta specifica-
tions. Betas for the models designated D1 and D2 are calculated via time series regression:

Ri,t+1 = αi + βi,γRγ,t+1 + εi,t+1

where Rγ,t+1 represents a factor mimicking portfolio constructed by weighting the returns by the second
column of

ω =
(

(γ′γ)
−1

γ′
)

′

where γ represents the vector of in sample estimated γi above. The remaining models are obtained by regress-

ing returns on the value-weighted market (CAPM), the per capita growth in consumption of nondurables

and services (CCAPM), and the Fama-French risk factors (FF).
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Figure 1: Aggregate Repurchases and Dividends
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Figure 1 presents aggregate dividends and repurchases. Dividends are calculated as D1,t+1 = y1,t+1V1,t,
where y1,t+1 represents the dividend yield on the aggregate market at time t+1 and V1,t represents the entry
value of the market. Repurchases are calculated by subtracting D1,t+1 from the quantity D2,t+1 = y2,t+1V2,t,
where V2,t represents the adjusted market value from:

h2,t+1 =
Pt+1

Pt
· min

[

nt+1

nt
, 1

]

and y2,t+1 = Rt+1 − h2,t+1.
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Figure 2: Cash Flow Yields by Characteristic
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Figure 2 presents yields for cash dividends and repurchases for portfolios sorted on the characteristics of size

and book-to-market ratio. Panel A presents results for the small market capitalization portfolio, Panel B

for the low book-to-market portfolio, Panel C for the large capitalization portfolio, and Panel D for the high

book-to-market portfolio.
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Figure 3: Scatterplot: γi vs. Factor Mimicking Portfolio Beta
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Figure 3 presents a scatterplot of the risk measures of the 30 portfolios used in the paper. The scatter

plot represents a plot of γi against the factor loading, βi for the portfolio. γi is estimated as a regression

of the growth rate in the cash dividend series, D1,t, on the trailing eight-quarter moving sum of aggregate

consumption growth. βi is estimated as the projection coefficient from a regression of the return on asset i

on the D1,t factor mimicking portfolio.
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